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Unit-XI1: Matrices

Matrices

31.1 DEFINITION

Let us consider a set of simultaneous equations,
x+2y+3z+5t =0
4x+2y+5z+7¢t =0
3x+4y+2z+6¢t =0.

Now we write down the coefficients of x, y, z, ¢ of the above equations and enclose them
within brackets and then we get

1 2 3 5
A=14 2 5 7
34 26

The above system of numbers, arranged in a rectangular array in rows and columns and
bounded by the brackets, is called a matrix.

It has got 3 rows and 4 columns and in all 3 x 4 = 12 elements. It is termed as 3 x 4
matrix, to be read as [3 by 4 matrix]. In the double subscripts of an element, the first
subscript determines the row and the second subscript determines the column in which
the element lies, a; lies in the ith row and jth column.

31.2 VARIOUS TYPES OF MATRICES

(/) Row Matrix. If a matrix has only one row and any number of columns, it is called
a Row matrix, e.g., [27 3 9]
(b) Column Matrix. A matrix, having one column and any number of rows, is called a

1
Column matrix, e.g., | 2

3

(c) Null Matrix or Zero Matrix. Any matrix, in which all the elements are zeros, is
called a Zero matrix or Null matrix e.g.,

00 0O
0000
(d) Square Matrix. A matrix, in which the number of rows is equal to the number of
columns, is called a square matrix e.g.,

il
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(e) Diagonal Matrix. A square matrix is called a diagonal matrix, if all its non-diagonal
elements are zero e.g.,

1 00
030
00 4

(f) Scalar matrix. A diagonal matrix in which all the diagonal elements are equal to a
scalar, say (k) is called a scalar matrix.
For example;

-6 0 0 0
2 00

0 -6 0
0 2 0f,

0 0 -6 0
0 0 2

0 0 0 -6

) A 0, wheni#;j
ie, A=[a] . isascalar matrix if a = o
yinxn v k, wheni=j

(2) Unit or Identity Matrix. A square matrix is called a unit matrix if all the diagonal
elements are unity and non-diagonal elements are zero e.g.,

1 00
1 0
01 0f
01
0 01
(h) Symmetric Matrix. A square matrix will be called symmetric, if for all values of i and j,

a.=a.le, A=A
i i

a h g
eg,|h b f
g f «c
(/) Skew Symmetric Matrix. A square matrix is called skew symmetric matrix, if
(1) a;=-a, for all values of i and j, or 4’ =—
(2) All diagonal elements are zero, e.g.,
0 -h -g
h 0 —f
g f 0

(/) Triangular Matrix. (Echelon form) A square matrix, all of whose elements below the
leading diagonal are zero, is called an upper triangular matrix. A square matrix, all
of whose elements above the leading diagonal are zero, is called a lower triangular

matrix e.g.,
1 3 2 2 00
0 4 1 4 1 0
0 0 6 5 6 7

Upper triangular matrix Lower triangular matrix
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and is denoted by 4’ or 47 e.g.,

(k) Transpose of a Matrix. If in a given matrix 4, we interchange the rows and the cor-
responding columns, the new matrix obtained is called the transpose of the matrix 4

2 3 4
A=|10 5| 4=

21
30
6 7 8 4

(/) Orthogonal Matrix. A square matrix A4 is called an orthogonal matrix if the product
A A =1

of the matrix A4 and the transpose matrix A4’ is an identity matrix e.g.,

if | 4| = 1, matrix 4 is proper.
(m) Conjugate of a Matrix

[(1+i 2-3i 4
Let A7 7420 < 3-24)
Conjugate of matrix 4 is A
Z::_l—i 2+3i 4
7-2i i 3+2i]
(n) Matrix A° Transpose of the conjugate of a matrix 4 is denoted by 4°.
[1+i 2-3i 4
et A= 742i < 3-2i
Z::_l—i 2+3i 4
|7-2i +i 3+2i]
[ 1-i 7-2i]
(A =|2+3i i
4 3421
[ 1-i 7-2i]
A =2+3i i
| 4 3421
(o) Unitary Matrix. A square matrix 4 is said to be unitary if
A% 4 =1 (Vidyasagar University 2018)
Lei L i1
2 2 0 2
e.g. A= L4 , A =

20 4A =
1-i —-1-i 1+i
2 2 2 2
(p) Hermitian Matrix. A square matrix 4 = (aij) is called Hermitian matrix, if every

i-jth element of 4 is equal to conjugate complex j-ith element of A4.
In other words,

a.. =

ij af"
1 2430 3+i
e.g. 2-3i 2 1-2i§
3—i 1+2i

5
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Necessary and sufficient condition for a matrix 4 to be Hermitian is that 4 = 4° i.e.
conjugate transpose of 4

= A= (4).
(¢) Skew Hermitian Matrix. A square matrix 4 = (al.].) will be called a Skew Hermitian

matrix if every i-jth element of 4 is equal to negative conjugate complex of j-ith
element of 4.

In other words, a,=—4a,

All the elements in the principal diagonal will be of the form

a; = - a, or a; +a; =0
If a,=a+ib then a,=a—ib
(a+ib)+(a-ib) =0 = 2a=0=a=0

So, a,, is pure imaginary = a, = 0.
Hence, all the diagonal elements of a Skew Hermitian Matrix are either zeros or pure
imaginary.
i 2-3i 4+5i

eg. —-(2+39) 0 2i

-(4-5i) 2i -3i
The necessary and sufficient condition for a matrix 4 to be Skew Hermitian is that

A =—4, (A =-4

(r) Idempotent Matrix. A matrix, such that 42 = 4 is called Idempotent Matrix.

2 -2 -4 2 2 4| 2 -2 -4 2 -2 -4
egAd=|-1 3 4, 4=/-1 3 4||-1 3 4|=|-1 3 4|=4
1 -2 3 1 -2 3| 1 -2 -3 1 -2 3
(s) Periodic Matrix. A matrix A will be called a Periodic Matrix, if
Sk = 4

where k is a +ve integer. If k is the least + ve integer, for which 4! = 4, then k is
said to be the period of 4. If we choose k = 1, we get 4> = 4 and we call it to be
idempotent matrix.

(Y) Nilpotent Matrix. A matrix will be called a Nilpotent matrix, if 4¥ = 0 (null matrix)
where k is a +ve integer ; if however k is the least +ve integer for which 4* = 0, then
k is the index of the nilpotent matrix.

e ab b’ £ ab b’ || ab b | [0 0 o
¢& e —a* —ab||-a* -ab 0 0

A is nilpotent matrix whose index is 2.

(u) Involuntary Matrix. A matrix 4 will be called an Involuntary matrix, if 4% = /
(unit matrix). Since /7 = [ always .. Unit matrix is involuntary.

(v) Equal Matrices. Two matrices are said to be equal if
(i) They are of the same order.
(if) The elements in the corresponding positions are equal.
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Thus if A—F 3} B—F 3}
1 470 1 4
Here A=B
(w) Singular Matrix. If the determinant of the matrix is zero, then the matrix is known

1
3

Example. Find the values of x, y, z and ‘a’ which satisfy the matrix equation.
x+3 2y+x| |0 -7
z—1 4a-6] |3 2a

Solution. As the given matrices are equal, so their corresponding elements are equal.

as singular matrix e.g. 4 = { 6} is singular matrix, because |[4| =6 — 6 = 0.

x+3=0 = x=-3 . (1)

2y +x=-17 .. (2)

z—1=3 = z=4 ..(3)

4a-6=2a = a=3 .. (4)
Putting the value of x = — 3 from (1) into (2), we have
2y—-3=-17 =) y=-2

Hence, x=-3, y=-2, z=4, a=3 Ans.

31.3 ADDITION OF MATRICES

If A and B be two matrices of the same order, then their sum, 4 + B is defined as the
matrix, each element of which is the sum of the corresponding elements of 4 and B.

- L[tz 8] o2
ust 13 6”77 |31 4

4+1 2+0 5+2 BE 2 7
143 3+1 —6+4| |4 4 -2

If A= [aij], B = [bij] then A4 +B= [aij + bii]

Symmetric and Anti Symmetric matrices

then A+B—{

A=§(A+A’)+%(A—A’)

Square matrix = Symmetric matrix + Anti-symmetric matrix Proved.

Example 1. Write matrix A given below as the sum of a symmetric and a skew
symmetric matrix.

(1 2 4

A:L—Z 5 3J

-1 6 3
12 4 1 -2 -1
Solution. A =|-2 5 3| On transposing, we get4'= |2 5 6
16 3 4 3 3

On adding A and A’, we have
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1 2 -2 -1 2 03
A+A4'=|-2 5 3|+|2 S5 6|=/0 10 9 . (D)
-1 6 3] | 3 1 13 9 6
On subtracting 4’ from 4, we get
[ 1 2 4] [1 -2 —1] 0 4 5
A-A'=|-2 5 3|-12 5 6|=|-4 0 -3 . (2
-1 6 3| | |1 -5 3 0
On adding (1) and (2), we have
I 0 3] [ 0 4 5
24=10 10 9|+|-4 0 3]
3 96| |[-53 0
1 0 3 0 2 >
2 2
A=]0 5 a +-2 0 3
2 2
39 -5 3
22 ° 12 2 °
A = [Symmetric matrix] + [Skew symmetric matrix.] Ans.
1 -2 -3
Example 2. Express A = |3 0 5| as the sum of a lower triangular matrix and
5 6 1
upper triangular matrix.
Solution. Let A=L+U

(1 -2 -3 [a 0 0] [1
3 0 S5|=|b ¢ 0]+]|0
5 6 1] |d e f] |0

o =3
—_ N

1 -2 -3 [a+1 0+p 0+¢q
3 0 S5|=|b+0 c+1 O0+r
5 6 1 |ld+0 e+0 f+1

Equating the corresponding elements on both the sides, we get

at+l =1 p=-2 q=-3
b =3 c+1=0 r=>5
d =5 e=6 f+1=1
On solving these equations, we get
a =0 p=-2 q=-3
b =3 c=-1 r=>5
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d =5 e=6 /=0
0 00 1 2 -3
Hence,L=|3 -1 O|landU=|0 1 5 Ans.
5 60 0o 0 1

31.4 PROPERTIES OF MATRIX ADDITION

Only matrices of the same order can be added or subtracted.

(i) Commutative Law. A +B=B+A. (ii) Associative law. A+(B+C)=(4A+B)+C.
31.5 SUBTRACTION OF MATRICES

The difference of two matrices is a matrix, each element of which is obtained by sub-
tracting the elements of the second matrix from the corresponding element of the first.

A-B=la,~b,]
o 8 6 4] [3 5 1
us 12 0| |7 6 2
[8-3 6-5 4-1] [ s 1 3 R
“11-7 2-6 0-2| |-6 -4 -2 s
31.6 SCALAR MULTIPLE OF A MATRIX

If a matrix is multiplied by a scalar quantity &, then each element is multiplied by £, i.e.
2 3 4
A=14 5 6
6 79

2 3 4 6 9 12
34=314 5 6|=[12 15 18
6 7 9 18 21 27

EXERCISE 31.1

-1 7 1
L (Ifd=| 2 3 4|, represent it as A = B + C where B is a symmetric
5 0 5] and C is a skew-symmetric matrix.
1 20
(b) Express |3 7 1| as a sum of symmetric and skew-symmetric matrix.
59 3

2. Matrices 4 and B are such that

2 1
3A2B=[ }and4A+B=[

20
5 .1 },FmdAandB.

-4 3
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. Xy x 6 4 x+y .
3. Given 3 = +* , Find x, y, z and w.
z w -1 2w zZ+w 3
0
3
2

0 2 121
4. If A=[1 0 3|, B=|2 1 O|,Find()24+3B (i)34—4B.
11 00 3

ANSWERS
-1 9 3 0 S ) 1 505 0 s
2 2 2 2 2 2
9 -5 5 1
1 A= — 3 2/+|— 0 2| () A=|— T 5|+ |— 0o -4
(a) 5 ) (b) 3 5
3 25 2 =2 0 E 5 3 é 4 0
2 2
0 -1 -1 -2
2. A= . B=
R
310 3 4 -2 -4
3. x=2, y=4, z=1, w=3 4. ) |8 3 6|, @) |-5 -4 9
2 2 13 3 3 -6

31.7 MULTIPLICATION

The product of two matrices 4 and B is only possible if the number of columns in 4 is
equal to the number of rows in B.

Let 4 = [aij] be an m x n matrix and B = [bij] be an n x p matrix. Then the product 4B

of these matrices is an m x p matrix C = [c[j] where

;= a, blj +a, sz +a, b3j +o.ta, bn/‘

(AB)' = B'A’

If A and B are two matrices conformal for product AB, then (AB)' = B'A’, where dash
represents transpose of a matrix.

31.8 PROPERTIES OF MATRIX MULTIPLICATION
1. Multiplication of matrices is not commutative.
AB # BA

2. Matrix multiplication is associative, if conformability is assured.
A (BC)=(4B) C

3. Matrix multiplication is distributive with respect to addition.
AB+ C)=4B + AC

4. Multiplication of matrix 4 by unit matrix.
Al=14=A
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5. Multiplicative inverse of a matrix exists if |A| # 0.
A . AT=A4".4=1
6. IfAisasquarethen 4 x 4 =A% A x A x4 = A3

7. A% =1
8. I" = I, where n is positive integer.
1 -2 3 1 0 2
Example 1. [f4=| 2 3 —Il|and B=|0 1 2
-3 1 2 1 2 0

from the products AB and BA, and show that AB # BA.
1 2 3 1 0 2

Solution. Here, AB=1] 2 3 -1 01 2
-3 1 2 1 20

[1-0+3 0-2+6 2-4+0 4 4 -2
=|2+0-1 0+43-2 4+6-0|=| I 1 10
|-3+0+2 0+1+4 -6+2+0 -1 5 -4
1 0 2 1 -2 3 1+0-6 -2+0+2 3-0+4 -5 0 7
BA=|0 1 2 3 -1|={0+2-6 O0+3+2 O0-1+4|=/-4 5 3
1 2 0f|-3 1 2 1+4+0 -2+6+0 3-2+4+0 5 4 1
AB # BA Proved.
Example 2. Verify that
1 2 2]
A= s 2 1 =2|is orthogonal.
3_72 2 1]
[ 2 2] 1 2 -2
Solution. Az% 2 1 -2 A'-% 2 | 2}
-2 2 -1 2 -2 -
2 2111 2 =2 9 0 0|1 0O
AA’=121—22 1 2:1090010:1
9—22—12—2—1 9009 0 0 1
Hence, 4 is an orthogonal matrix. Verified.

EXERCISE 31.2

1. Compute 4B, if

25 3
a=|' 2 3 wd=|3 6 4
T4 s 6| MOPT

475
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3
2 , B . From the product 4B and BA. Show that AB # BA.
0

0
Jo-|

2
0
}1
0

} choose o and B so that (o I + B 4)* = 4

3
2
1

N W A

1

IfA= ,B=

(=
S = O
— O O

0
0
0

If 4=

-1 0
Write the following transformation in matrix form :

V3o 1o\
2y1 > 2y1 5

Hence, find the transformation in matrix form which expresses y,, y, in terms of x;, x

=

1 yz ;X2: y2

2

o
0 —tan — .
cos o —sina

If4 = and / is a unit matrix, show that [ + 4 = (I — 4) {

J

sino  cos a

o
tan —
2

1

1
-2

1
3
—4

3
-3
-4

If £ (x) = x> — 20 x + 8, find f (4) where 4 =

}z

then show that 43 = 471

-1

1 tan —
2

cos® —sin0

Show that { .

sin® cos©

3
2
0

-3 4
-3 4
-1 1

IfA=

2
2
-1

2 1
-1 2
2 2

1
Verify whether the matrix 4 = — is orthogonal.
If A and B are square matrices of the same order, explain in general

(A+BP#A2+2AB+ B> (i) (A—BP#A2—2A4B + B> (iii) (A + B) (4 — B) = A% — B

ANSWERS

20 38 26
47 92 62

ona
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31.9 ADJOINT OF A SQUARE MATRIX

Let the determinant of the square matrix 4 be | 4 |.

a a4, 4 a4, 4, a4,
If A=|b b, by, Than |4 = |b b, by
G 6 G G 6 G

The matrix formed by the co-factors of the elements in

Al AZ A3
|A| is | B, B, By
C] CZ C3
b, b, b b,
where A4, = =b,c;, — byc,, A4, =- =-bc, + b,
2 G G G
b b, a, a4,
A, = =bc, —b,c, B =- =—a,c, + a,c,
cl CZ CZ CS
a, a, a, a,
B, = =a,c, —a,c, B, =- =-ayc, +a,c
G G G G
a, a, aq 4
C = =a,b, —ab,, C,=- =—-ab, + a;b,
b2 b3 bl b3
c, =" =g -ap
= =ab, —a
3 192 29
bl b2
Then the transpose of the matrix of co-factors
Al Bl Cl
AZ BZ CZ
A3 BS C3

is called the adjoint of the matrix 4 and is written as adj A4.

31.10 PROPERTY OF ADJOINT MATRIX

The product of a matrix A and its adjoint is equal to unit matrix multiplied by the
determinant A.

INVERSE OF A MATRIX

If A and B are two square matrices of the same order, such that
AB =BA=1 (I = unit matrix)
then B is called the inverse of 4 i.e. B = A~! and A4 is the inverse of B.

Condition for a square matrix A to possess an inverse is that matrix A is non-singular,
ie,|A|#0

If 4 is a square matrix and B be its inverse, then 4B = |

Taking determinant of both sides, we get
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| AB |=|I]or[A||B[=1
From this relation it is clear that | 4 | # 0 i.e. the matrix 4 is non-singular.

To find the inverse matrix with the help of adjoint matrix

We know that A.(Adj. A) = A1

1
= A.m(Adj;A) =7 [Provided | 4 | # 0]
and A. A =1

From (1) and (2), we have

At =L (adj. 1)

| 4]
3 -3 4
Example 1. IfA=|2 -3 4|, find 4.
0 -1 1
3 -3 4
Solution. 4 =2 -3 4
0 -1 1

|A|=3-3+4)+32-0)+4(-2-0=3+6-8=1
The co-factors of elements of various rows of | 4 | are
-3+4) (-2-0) (-2-0)
3-4) 3-0) 3-0)
(-12+12) (-12+8) (-9+6)

Therefore, the matrix formed by the co-factors of | 4 | is

1 -2 -2 1 -1 0
-1 3 3|, 4dj4 =|-2 3 -4
0 -4 -3 -2 3 -3
1 -1 0 1 -1 0
=L aga =2 3 —al=|2 3 4
|4 1

Example 2. If A and B are non-singular matrices of the same order then,
4By = B4
Hence prove that (A™'Y" = (A™)"" for any positive integer m.
Solution. We know that,
AB) . (B'A ") =[4B)B"].A ' =[4(BB]. 4"

=[AllA'=4.4"=1

Also, B'47'. (A4B) = B4 . (4UB)]=B"'[(4"4).B]
=B'[I.B]=B'.B=1

By definition of the inverse of a matrix, B~' 47! is inverse of 4B.

)
e

Ans.
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B A = (4B)
Ay = [ = A
— A AY AT = (A AT AT = (A (42
= (A A AP =AY AT (A= (A (A
— AUy = gy

Proved.

Proved.

EXERCISE 31.3

Find the adjoint and inverse of the following matrices: (1 - 3)

2 5 3 11 2 1 0 -1
1. (3 1 2 2. |1 9 3 3 3 4 5
1 2 1 1 4 2 0 -6 -7
3 -4 L |1+2n  —4n
4. If A= , then show that A" =
1 =i n 1-2n
1 1 -2 1 1 3 0 0
5. If4=|-1 2 1|,P=|0 3 2|, showthatP'4P=| 0 2 0| (Ranchi University 2019)
0 1 -1 1 1 1 0 0 1
1 1 1 2 5 3
6. If4=|1 2 3|,B=|3 1 2|, show that (4B)'=B"'4"
1 4 9 1 2 1
3 2 2 3 4 2
7. Giventhematrix 4= |1 3 1| compute det(4), 4! and the matrix B such thatAB=|1 6 1
5 3 4 5 6 4

Also compute BA. Is AB = BA ?
8. Find the condition of & such that the matrix

[ 1 3 4]
A=1| 3 k 6] hasan inverse. Obtain 4! for k= 1.
-1 5 1]
9. Prove that (4™ = (47
10 IfA_O 1—_2 ! h A—a b hen A4 i
5 _2 1 —__1 0 where _c d,ten 1S
21 b 01 21 . 1 AMIETE, Ji 2010
@1y @, @1, of @ 1 1| « , June 2010)
2 2
ANSWERS
Find the adjoint and inverse of the following matrices: (1 — 3)
. -3 1 7 | 6 6 —-15 2 6 4
.= -1 -1 5 .o 1 0 -1 .o —| 21 -7 -8
! 4 2 3 3 20
5 1 -13 -5 -3 8 -18 6 4
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9 -2 -4 100
7. 55 1 2 —ilB=|0 2 0|, 4B=B4
i 7 00 1
-29 17 14
8. k:t—%,A“:% -9 5 6 10. (d)
16 -8 -8

31.12 ELEMENTARY TRANSFORMATIONS

Any one of the following operations on a matrix is called an elementary transformation.

1. Interchanging any two rows (or columns). This transformation is indicated by Rij, if
the ith and jth rows are interchanged.

2. Multiplication of the elements of any row R, (or column) by a non-zero scalar quantity
k is denoted by (k.R).

3. Addition of constant multiplication of the elements of any row R. to the corresponding
elements of any other row Rj is denoted by (R, + kRj).

If a matrix B is obtained from a matrix 4 by one or more E-operations, then B is said
to be equivalent to 4. The symbol ~ is used for equivalence.

ie, A~ B.
Example 1. Reduce the following matrix to upper triangular form (Echelon form) :
1 2 3
2 5 7
3 1 2

Solution. Upper triangular matrix. If in a square matrix, all the elements below the
principal diagonal are zero, the matrix is called an upper triangular matrix.

1 2 3 1 2 3 1 2 3
25 70~[0 1 1|RPR2R 1y Ans.
31 2] o -5 —7|RORT3R g o R RTR
1 3 3
Example 2. Transform |2 4 10| into a unit matrix.
3 8 4
1 3 3 1 3 3
Solution. 2 4 10|~/0 -2 4|R, >R, -2R

38 4] |0 -1 -5|R, >R -3R,

1 3 3 | 1 0 9]R—>R-3R,
~[0 1 2R >R S0 1 2

0 -1 -5 0 0 -7|R,>R,+R,
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10 9 1 0 O|R >R -9R,
~l0 1 =2 _ 0 1 O|R —R,+2R, Ans.
0 0 1R3—>—7R3 0 0 1

TO COMPUTE THE INVERSE OF A MATRIX FROM ELEMENTARY
MATRICES (Gauss-jordan Method)

If A is reduced to [ by elementary transformation then

PA=I  where P=PP _ . PP,
P=4" = Elementary matrix.

Working rule. Write 4 = /4. Perform elementary row transformation on A of the left
side and on [/ of the right hand side so that 4 is reduced to 7 and 7 of right hand side is
reduced to P getting / = PA.

Then P is the inverse of 4.

31.13 THE INVERSE OF A SYMMETRIC MATRIX

The elementary transformations are to be transformed so that the property of being
symmetric is preserved. This requires that the transformations occur in pairs, a row

transformation must be followed immediately by the same column transformation.

Example 1. Find the inverse of the following matrix employing elementary transformations:

3 -3 4
2 -3 4 (U.P. I Semester Compartment 2013)
0 -1 1
3 -3 4
Solution. The given matrix is 4 = |2 -3 4
0 -1 1
4 1 R
3 -3 4] [10 0 L=l o] |3 0 0jR=>7
2 -3 =10 1 04 = |2 -3 4/=]0 10 A
10 -1 1] 0 0 1 0 -1 1 00
1 -1 4 1 00 1 -1 401 00
3 3 3 3
:0—1%2—%1014 :01—%=§—10A
_ R -R
0 -1 1] | 00 1|[R2R=2R 1o 1 ] [0 o 1|77
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1 -1 4 L
3 3
4 2
0 1 ——|=1]2 -1 0|4
- IE
0 0 _1 2 -1 1|R, >R, +R,
L 31 L3 i
P - 1 0 0
3 3
4 2
0 1 ——|=| = -1 0|4
= 3 3
0 0 1] [-2 3 -3|R—>-3R,
- 4
1 -1 0 3 -4 4 R]—>Rl—§R3
0 10| =|-2 3 -4
= R >R +2R,
0 0 1 -2 3 -3 377
100 [ 1 -1 O|R—>R+R
= |0 1 0|=|-2 3 —4|4
00 1] |-2 3 -3
1 -1 0]
Hence, At=|-2 3 -4 Ans.
-2 3 -3]

EXERCISE 31.4

Reduce the matrices to triangular form:

1 2 3 3 4
1. 4A=1(2 5 7 2. |1 2 -5
31 2 0 5
Find the inverse of the following matrices:
1 3 3 (1 -1 1
3. |1 4 3 4. 14 10
1 3 4 8

Use elementary row operations to find inverse of

1 1 3

5. A=| 1 3 -3| (AMIETE, June 2010) 6.
-2 4 -4

1 3 2 -3
-1 2 1 -1
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1 2 3 1 2 1 -1 2
71332 g 3 2 -3
12 4 3 3 a2 1 -
11 11 |2 3 -1 4
_ M 3 3 2 1
2 6 2 -3
1 4 3 3 -1
g | 0 13T 0.1 3 41 1
o 401 2 )
1 1 11 -1
0 1 0 1
1 -2 -1 2 2
ANSWERS
1 2 3 01 4 7 -3 -3
1. |10 1 1 2. |0 5 -19 3. /-1 1 o0
0 0 2 00 22 1 0 1
2 5 -7 1
1 2 -1 12 4 6
4. |-4 -7 4 5. L5 o1 o3 6. ~| > 1 52
4 18|-7 5 11 10
4 -9 5 -1 -1 -1
1 -2 10 5
1 2 1 0 2 5 7 1 21 0 1
1 2 2 -3 1|5 -1 5 =2 10 2 -1
7. 8. — 9,
0 1 -1 1 18/]-7 5 11 10 4 1 3 1
|2 3 2 3 1 2 10 5 10 2 2
30 20 —-15 25 -5
130711718 7 -8
IO'E_3O 12 21 -9 6
15 12 6 -9 6
15 -7 -6 -1 -1

31.14 RANK OF A MATRIX

The rank of a matrix is said to be 7 if

(a)
(b)
Notes:(7)
(1)

either of the matrices 4 and B.

(iii)

O such that

I 0
pAQ_{O 0}

It has at least one non-zero minor of order

Every minor of 4 of order higher than r is zero.

Non-zero row is that row in which all the elements are not zero.

The rank of the product matrix 4B of two matrices 4 and B is less than the rank of

Corresponding to every matrix 4 of rank r, there exist non-singular matrices P and
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31.15 NORMAL FORM (CANONICAL FORM)

By performing elementary transformation, any non-zero matrix 4 can be reduced to one
of the following four forms, called the Normal form of 4 :

I I, 0
01 (i) [, 0] (iii) {o} (iv) [ 0 0}

1
The number 7 so obtained is called the rank of 4 and we write p(4) = r. The form { Or O}

is called first canonical form of 4. Since both row and column transformations may be
used here, the element 1 of the first row obtained can be moved in the first column. Then
both the first row and first column can be cleared of other non-zero elements. Similarly,
the element 1 of the second row can be brought into the second column, and so on.

Example 1. Find the rank of the following matrix by reducing it to normal form

I 2 -1 3
4 1 21
S PR
I 2 0 1
1 2 -13 1 2 -1 3
‘ 4 1 2 1| |0 =7 6 —11|R,>R —4R
Solution. 3 -1 12! lo =7 4 _7 R,—>R,-3R
1 2 01 [0 0 1 -2]R—>R-R

1 2 -1 3] 1 2 -1 3
0 -7 6 —11 0 -7 6 —11
0 -7 4 -7 0 0 -2 4|R, >R —R
0o 0 1 -2/ [0 0 1 -2

C, > C,~-2C,, Cy> C,+ C,, €= C, - 3C,
1 0 0 o] [t 0 0 0
0 -7 6 11| |0 -7 6 11
“lo 0 -2 4| |o o0 -2 4
0 0 1 -2 [0 0o o0 0R4—>R4+%R3
11
€5 G2 G GGG,
1 0 00] [t0O0O
0 -7 00| [0 10 0/R->-1/7R
GGG 0 2o 0l o 0 1 0|R>-1/2R
0 0 00| (0000

Rank of 4 =3 Ans.
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Example 2. For which value of ‘b’ the rank of the matrix

1 5 4
A=10 3 2| is2, (U.P. I Semester 2016)
b 13 10
Solution. Here, we have
1 5 4 1 5 4
A=10 3 2|=10 3 2
b 13 10 0 13-5b 10-4b|R, >R, —-bR,
1 0 0 1 0 0
~ 10 3 2 C,—»>C,-5C, ~|0 3 2
0 13-5b 10-4b| C,—>C, -4C, 0 0 2(237b) R3—>R371375bR2
. 2(2 -
If rank of 4 is 2, then must be zero.
22-b
ie; %:0 —=2-b=0 —=bh=2 Ans.
31.16 RANK OF MATRIX BY TRIANGULAR FORM
Rank = Number of non-zero row in upper triangular matrix.
Note. Non-zero row is that row which does not contain all the elements as zero.
Example 1. Find the rank of the matrix
(1 2 3 2]
2 3 5 1
|1 3 4 5]
(1 2 3 2] 1 2 3 2
Solution. 2 35 1{~|0 -1 -1 -3|R,>R,-2R
|1 3 4 5] |0 1 1 3]R, >R, — R
1 2 3 2
~/0 -1 -1 -3
0 0 0 O|RR—>R+R,
Rank = Number of non zero rows = 2. Ans.

Example 2. Find the rank of the matrix
-1 2 3 =2
2 -5 1 2
3 -8 S5 2
5 =12 -1 o6
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-1 2 3 =27 [-1 2 3 -2
. 2 5 1 2 0 -1 7 —2| RR,>R,+2R,
Solution. 3 -8 5 21710 -2 14 —4| R>R +3R
5 -12 -1 6 0 -2 14 —4| R,>R,+5R
-1 2 3 -2

0 -1 7 -2| R,>R —2R,
0O 00 O|R—>R-2R,
0 00 0

Here the 4th order and 3rd order minors are zero. But a minor of second order

3 -2
=—6+14 =8%0
7 =2
Rank = Number of non-zero rows = 2. Ans.

Example 3. Use elementary transformation to reduce the following matrix A to triangular
from and hence find the rank of A.

2 3 -1 -1
1 -1 -2 —4
3 1 3 =2
6 3 0 -7
(R.G.PV. Bhopal June 2018, U.P. I Semester Dec. 2018)

Solution. We have,

2 3 -1 -1 1 -1 -2 -4
1 -1 -2 -4 2 3 -1 -1

~ R < R,
3 1 3 -2 3 1 3 -2
6

30 -7 6 3 0 -7

1 -1 -2 —4 1 -1 -2 —4
0 5 3 7| R, >R, -2R 0 5 3 7

“lo 4 9 10| R>R_3R |0 0 33/5 22/5|R >R -4/5R,
0 9 12 17/R >R, —6R |0 0 33/5 22/5|R,—>R,-9/5R,
| -1 -2 -4
o 5 3 7

“lo 0 33/5 22/5

0 0 0 OJR,>R,—R,
R(A) = Number of non-zero rows.

R(A)=3 Ans.
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EXERCISE 31.5

Find the rank of the following matrices:

(1 2 3
1. |2 4 7
13 6 10
2 4
4. |-3 -2
| 6 -1

3 -2
-1 4
7 2

12 1
-1 0 2
| 2 1 -3
3 4 1 1
2 43 6
-1 -2 6
|1 -1 2 -3

[0 1 =
3. |40 6
12 1
1 4 3 -2 1
-2 -3 -1 4 3
611 6 7 2 9
-3 3 6 6 12

Reduce the following matrices to Echelon form and find out the rank

11
7. |1 2
12 2
3 2
9. 1 1
13 3

2
2

N N

7 12
3 5
9 15

1 2 3 0
2 4 3 2
5 3213
6 8 7 5
2 -4 3 1
1 -2 1 -4
10. 0 =i 3
4 -7 4 -4

Using elementary transformations, reduce the following matrices to the canonical form

(or row-reduced Echelon form):

1. A=

S © O O

W N = O

A W NN O

0
3
4
1

N = B~ O

0 ) 319
0 2 -6
12. 4= 0 1h =3
0 -8 24

W N N
—_ A W O

Using elementary transformations, reduce the following matrices to the normal form:

(1 2 3 4
341 2
14 3 1 2

14. 4=

Obtain a matrix N in the normal form equivalent to

0 O
0 O

1 2 0 —1]
13. A=| 3 4 1 2
-2 3 2 5]
0 00
0 4 5
15.A=091_1
0 10 0 1

Hence find non-singular matrices P and Q such that PAQ = N.
1 -3

16. |0
3

1
4

1 2
2 3
1 -2
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Find the rank of the following matrix by reducing it into normal form:

1 3 25 1 1 2 3 1
L A= 2 2 -1 6 3 YR 1 3 3 2
1 1 2 3 -1 2 4 33
02 5 2 -3 1 1 1 1
Choose the correct answer:
1 2 3
19. Rank of matrix 4= 1 4 2] is
2 6 5
(a) O )1 ()3 d)2 D.U. 2018)
ANSWERS
1. 2 2. 3 3
4. 3 .4 6
1 00
7. {0 1 0|, Rank =3 8. {13 0},Rank3
0 0 1 00
9, {12 0},Rank:2 10. {13 0},Rank=3
0 0 0 0
1 000 1 0 00
13. A4={0 1 0 O 14. A=/ 0 1 0 O
0010 0010
17. 3 18. 4
19. (d)

31.17 SOLUTION OF SIMULTANEOUS EQUATIONS

The matrix of the coefficients of x, y, z is reduced into Echelon form by elementary row
transformations. At the end of the row transformation the value of z is calculated from the
last equation and value of y and the value of x are calculated by the backward substitution.

Solve with the help of matrices, the simultaneous equations.
(Vidyasagar Univercity 2018)
Example 1. Solve:x+y+z=3
x+2y+3z=4
x+4y+9z=6
Solution. Above equations written in matrix form

1 11
R, >R, - R

- o |[BoR R
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0 1 2| y|=|1|R —>R -2R,

11 3
01 2|y|=lt
10 0 2)z] |0}
X+ty+z=3 (1)
y+2z=1 ..(2)
2z=0=2z=0
putting z = 0 in (2), we get
y=1
putting the value of y and z in (1), we get
x=2
Hencex=2,y=1,z=0 Ans

Example 2. Find the general solution of the system of equations:
3x, + 2x, +2x,=0
—x; v 7x, +4x, + 9x,=0
7x,—7x,—5x,=0

Solution. The system of equations in the matrix form is expressed as

- - X%
3.0 2 0
x2
-1 7 4 9 =10
X3
7 -7 0 -5 0
L Iy,
- -1 X%
-1 7 4 9 0
xz
0 2 =|0|R &R,
X
-7 -5 0
L Iy,
xl
-1 7 4 9 0
ol 14 2ol | [o|RRA3R
0 28 sgll® o| B RATR,
L X,
- X
-1 7 4 9 0
X
0 21 14 29| | =|0|R —>R,-2R,
X
0 0 0 0" 0
L X,
—xt7x,+4x,+9x,=0 .. (1)

21 x, + 14 x,+29x,=0 Q)
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Let X, = a, X, =b
2b 29a
From (2), 2l x,+14b+29a=0orx, = 3o
From (1), —xl+7(—? —229—1aj+4b+9a =0
_ 2a 2b
NI Y
2 1
X, = —g(a+b),x2: —5(29(1*—141))
X, = b,x,=a Ans.

31.18 TYPES OF LINEAR EQUATIONS
(1) Consistent. A system of equations is said to be consistent, if they have one or more
solution i.e.

x+2y=4 x+2y=4
3x+2y=2 3x+ 6y =12
Unique solution Infinite solution

(2) Inconsistent. If a system of equation has no solution, it is said to be inconsistent i.e.
x+2y=4
3x +6y=>5

31.19 CONSISTENCY OF A SYSTEM OF LINEAR EQUATIONS
ayx;tapx,t..oa,x =b
Ay X;tay X, +ooay x, = b,

D x1+a 2X2+.. amnx:bm
O A a, S A a, b
X b
R A a,, Ay Oy e a,, b,
x2 b2
S | = and C=[A4, B] = | ccevererereieieieeeeenn,
Ay Ay oo a,, b Ay Ay e a, b,
xm m
= AX =B

is called the augmented matrix.

[4:B]=C
(a) Consistent equations. If Rank 4 = Rank C
(i) Unique solution: Rank 4 = Rank C = n [where n = number of unknown. ]
(if) Infinite solution: Rank A =Rank C =7, r <n
(b) Inconsistent equations. If Rank 4 # Rank C.
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In Brief:
A system of non-homogeneous linear equations
AX=B
Find R (A) and R (C)
y
R(A)=R(C) R (A)#R (C)
v
Solution exists, system No solution, system
is consistent is inconsistent
R(A)=R(C)
=n (no. of unknowns) R (A) = R (C) < n (no. of unknowns)
v
Unique Infinite no. of
solution solutions

Example 1. Show that the equations
2x+6y=—11,6x+20y—6z=-3, 6y —18z=—1
are not consistent.
Solution. Augmented matrix C = [4, B]
2 6 0 : -11 2 6 0 : -11
=16 20 -6 : -3|~|0 2 -6 : 30|R,—>R,-3R
0 6 -18 : -1 0 6 —-18 : -1
2 6 0 : -11
~0 2 -6 : 30| R, >R,-3R,
00 0 :-91
The rank of C is 3 and the rank of 4 is 2.
Rank of 4 # Rank of C. The equations are not consistent. Ans.
Example 2. Test the consistency and hence solve the following set of equations.
X, +2x, +x;=2

3x1+x2—2x3=1

4x]f3x27x3=3
2x1 +4x2+2x3:4

Solution. The given set of equations is written in the matrix form:

1 2 1 2
xl

3 1 -2 1
x| =

4 -3 -1 3
x3

2 4 2 4

AX = B



26 <+ Mathematical Physics

1 2 1 2
1 =2 1
Here, we have augmented matrix C = [4, B] ~ B 1 3
2 2 4
1 2 1 2 1 2 1 2
o -5 -5 os| ROR-3R o 1 1R2—>—%R2
0 —11 -5 -5| R, >R —-4R |0 —11 -5 -5
0 0 0 0 R-R-2R |0 0 0 0
(1 2 1 2 12 1 2
01 1 1 01 11
100 6 6|R>R+1IR, |0 0 1 1R3—>%R3
00 0 0 0000
Number of non-zero rows = Rank of matrix.
- R(C) = R(4) =3

Hence, the given system is consistent and possesses a unique solution. In matrix form
the system reduces to

1 21 2
o 1 1|7 |1
oo 1|[™]
00 o™ Jo
X, +2x, tx; =2 . (D
x, tx, =1 .. (2
x3=1
From (2), n+tl=1 = x,=0
From (1), x, +0+1=2 = x =1
Hence, x,=1L,x,=0 and x;=1 Ans.

Example 3. Investigate the values of \ and |\ so that the equations:
2x+3y+5z=9
7x+3y—-2z=238
2x+ 3y +hz=p
have (i) no solution  (ii)a unique solution
(iii) an infinite number of solutions.  (R.G.P.V. Bhopal I Semester June 2007)
Solution. Here, we have,
2x+3y+5z=9
Tx+3y—-2z=38
2x+3y+Az=p
The above equations are written in the matrix form
2 3 5||x 9
7 3 2||ly|=18
2 3 Allz n
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AX = B
23 5 i 9] |2
C=[4:B]=|7 3 =2 ! 8[=|0
2 3 A :u 0

@) No solution. Rank (4) # Rank (C)
A=5=0orA=5 and p—-9=0
(ii) A unique solution.
A-5#0 = A#Sandp=#9
(iif) An infinite number of solutions.
A=5=0 and p-9=0
A=5 and pu=9

31.20 HOMOGENEOUS EQUATIONS

3 5 9
1 4
ERE R 1 P
2 2 2
0 A=5 : u-9|R, >R -R

= u=9

Rank (4) = R (C) = Number of unknowns

Rank (4) = Rank (C) =2

Ans.

For a system of homogeneous linear equations AX = O

@

X = O is always a solution. This solution in which each unknown has the value zero

is called the Null Solution or the Trivial solution. Thus a homogeneous system is

always consistent.

A system of homogeneous linear equations has either the trivial solution or an

infinite number of solutions.
(1)
(iii)

solutions.

If R (4) = number of unknowns, the system has only the trivial solution.
If R (4) < number of unknowns, the system has an infinite number of non-trivial

AX=0

A system of homogeneous linear equations

y

Always has a
solution

Find R (A)

R (A) = n (no. of unknowns)
A4

R (A) < n (no. of unknowns)

A 4

Unique or trivial
solution
(each unknown equal to zero)

Infinite no. of non-trivial
solutions

Example 1. Determine ‘b’ such that the system of homogeneous equations

2x+y+2z =10
x+y+3z=20
Idx +3y + bz =0

has (i) Trivial solution

(i) Non-Trivial solution. Find the Non-Trivial solution using matrix method.

Solution. Here, we have
2x+y+2z=0

(U.P. I Sem Dec 2008)
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x+y+3z=0
4x+3y+bz=0

(/) For trivial solution: We know that x = 0, y = 0 and z = 0. So, b can have any
value.
(if) For non-trivial solution: The given equations are written in the matrix form as :

2 1 2(|x| |O

11 3||yl=|0
4 3 bf|z 0
AX =B
R, R, R,—>R,—2R,R,—>R,—4R, R,>R,~R,
2 1 2 :0] (1 1 3 :0f (|1 1 3 :0] |1 1 3:0
c=|113:0(~2 12 :0|~|0 -1 -4 :0[~[0 -1 -4 :0

4 3 b :0 4 3 b :0 0 -1 5-12 :0 0 0 -8 :0
For non trivial solution or infinite solutions R (C) = R (4) = 2 < Number of unknowns
b-8=0, b=28 Ans.

31.21 CRAMER’S RULE
ax+tby+cz=d,
ayx +by+cz=d,

ax +by+cz=d,

al bl cl dl bl cl
then D =l|a, b, ¢, D, =\, b ¢
a b ¢ d; by ¢
a d, ¢ a b d
D, =la, d, ¢, D, =|a, b, d,
a, dy ¢ a; by d,
D D D
P ]
D D D

Equations with three unknowns

v !
D=0 D=0
Consistent with unique |

solution l l

D1=Dy=D3=0 D, orD, orD;#0
Consistent with infinitely Inconsistent
many solutions

EXERCISE 31.6

Test the consistency of the following equations and solve them if possible.
1. 3x+3y+2z=1, x+2y=4, 10p+3z=-2, 2x-3y—-z=5
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10.

11.

12.

13.

14.

15.

16.

xl—x2+x3—x4+x5:1, 2x1—x2+3x3+4x5:2,
3x1—2x2+2x3+x4+x5:1, xl+x3+2x4+x5:0
Find the value of & for which the following system of equations is consistent.
3%, = 2x, + 2%, =3, x; +hx, = 3%, =0, 4x +x,+ 20, =7
Find the value of A for which the system of equations
x+tyt+tdz=1,x+2y-2z=1, x +ty+z=1
will have a unique solution.
3 -2 1f[«x b
Determine the values of @ and b for which the system |5 -8 9| y|=| 3
2 1 al|lz -1

(7) has a unique solution, (i7) has no solution and, (iii) has infinitely many solutions.

Choose A that makes the following system of linear equations consistent and find the general
solution of the system for that A.

X+ty—z+t=2,2y+4z+2t =3, x+2p+z+2=1

Show that the equations

3x+4y+5z=a,4x+ S5y +6z=b,5x+ 6y +Tz=c

don’t have a solution unless a + ¢ = 2b.

Solve the equations whena = b =c¢ =—1

Find the values of %, such that the system of equations
4x, +9x, +x, =0, kx; +3x, +kx; =0, x, +4x, +2x, =0
has non-trivial solution. Hence, find the solution of the system.
Find values of A for which the following system of equations has a non-trivial solution.
3%, +x,—Axy =0, 2x, +4x, + Ax; = 0, 8x; —4x,— 6x, =0 (U.U. Odisha 2016)
Find value of A so that the following system of homogeneous equations have exactly two linearly
independent solutions
=y = (w7 SRVEE —Ray= (1), 2o B g, S0
Find the values of k& for which the following system of equations has a non-trivial solution.
Bk—8)x+3y+3z=0,3x+B3k—8) y+3z=0, 3x+3y+Bk—8)z=0
(AMIETE June 2010)

—X,— X

Solve the homogeneous system of equations :
4x+3y-z=0,3x+4y+z=0,x—-y—-2z=0,5x+y—-4z=0

-1 2 1
Ifa=| 3 -1 2
0 1 A

find the values of A for which equation 4X = 0 has (i) a unique solution, (i7) more than one
solution.

Show that the following system of equations:

x+2y-2u=0, 2x—-y-u=0, x+2z2—-u=0, 4x—-y+3z—u=0

do not have a non-trivial solution.

Determine the values of A and p such that the following system has (7) no solution (i7) a unique
solution (7i7) infinite number of solutions:

2x -5y +2z=8, 2x+4y+6z=5 x+2yt+tiz=p

Test the following system of equations for consistency. If possible, solve for non-trivial solutions.
3x +4y—z-6t=0, 2x +3y +2z-3t=0, 2x +y—14z—-9t=0, x+3y + 132+ 3t=0
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17. Given the following system of equations
2x—2y+52+32=0, &x—-y+z+w=0, 3x-2p+3z2+4w=0,x-3y+7z+ 6w=0
Reduce the coefficient matrix A into Echelon form and find the rank utilising the property of
rank, test the given system of equation for consistency and if possible find the solution of the
given system.

18. Find the values of A for which the equations
Q2Q-Mx+2y+3=0, 2x+@4-1)y+7=0, 2x+5y+(6-1)=0
are consistent and find the values of x and y corresponding to each of these values of A.

ANSWERS

1. Consistent, x =2, y=1, z=-4
2. x =3k k- 1,x,= 3k, - L,x;=k -2k, + 1, x, =k, x, =k, x; =k,

7
3 k=7 AT

1 1
5. (Ya#-3,(Gi))a=-3,b+# g,(iii)a=f3,b= 3

6. L %,x:%+3kz,y:%—Zkz—kl,z:k2,t:k1
7. x=k+1,y=-2k-1z=k 8.k=1,x1=27»,x2=77\,x3=7\
9. A=1 10. L =-1
11. k:z,E 12. x=ky=-kz=k
3°3

13 Or=1, @) r-1
. 5 . 5
15. (z)k=3,u¢5 (i) A #3, (m)?»=3,u=§

16. x = llk1 +6k2,y=—8k] —31{2,z=kl t=k2

17. x =5k y =36k z="Tk w= 9% 18. A=1,- 1, 12.




Eigen Values And
Eigen Vectors

32.1 INTRODUCTION

Eigen values and eigen vectors are used in the study of ordinary differential equations,
analysing population growth and finding powers of matrices.

32.2 EIGEN VALUES

Ay G Gz o 4y || X b4

Ay Ay Gyz3 "t dyy || X %)

Let Ay Ay Gy Ay, || X3 | = | )3
_anl ayy Quz " ann_ _xn_ _yn_

AX =Y (1)
Where A is the matrix, X is the column vector and Y is also column vector.

Here column vector X is transformed into the column vector Y by means of the square
matrix 4.

Let X be a such vector which transforms into AX by means of the transformation (1). Sup-
pose the linear transformation ¥ = AX transforms X into a scalar multiple of itselfi.e. A.X.

AX=Y =0 X
AX - N IX =0
A-M)X=0 (2)

Thus the unknown scalar A is known as an eigen value of the matrix 4 and the
corresponding non zero vector X as eigen vector.

The eigen values are also called characteristic values or proper values or latent values.

2 21
Let A=|1 3 1
1 2 2
2 21 1 0 0 2—-h 2 1
A-M=|1 3 1|-A|0 1 0|=|1 3-A 1 is characteristic matrix
1 2 2 0 0 1 1 2 2—-A
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(a) Characteristic Polynomial: The determinant | 4 — A/ | when expanded will give a
polynomial, which we call as characteristic polynomial of matrix 4.

2-% 2 1
For example; |1 3-4 1
1 2 2-%x
=(2-M(6-51+2*-2)-2Q2-A-1D+1(2-3+2)
=-M+TAM-11Aa+5

(b) Characteristic Equation: The equation | 4 — AI| = 0 is called the characteristic
equation of the matrix 4 e.g.

W72 +11A-5=0

(¢) Characteristic Roots or Eigen Values: The roots of characteristic equation
| A—A\I| =0 are called characteristic roots of matrix 4. e.g.

BTN +11A-5=0
= A-DR-1DA-5=0..r2=1,1,5
Characteristic roots are 1, 1, 5.

Some Important Properties of Eigen Values (Gawhati 2018, PTU. 2017)

(1) Any square matrix 4 and its transpose A’ have the same eigen values.
(2) The sum of the eigen values of a matrix is equal to the trace of the matrix.
(3) The product of the eigen values of a matrix 4 is equal to the determinant of 4.

(4) If A, A, ... A are the eigen values of 4, then the eigen values of
(i) kAarekh,, kh, .. , ki, (if) A" are A", AY ey A
(iii) A" are L, L, . L
Moy Ay
Note. The sum of the elements on the principal diagonal of a matrix is called the trace
of the matrix.

6 2 2
Example 1. Find the characteristic roots of the matrix | =2 3 -1
2 -1 3
Solution. The characteristic equation of the given matrix is (M.U. 2018)
6-1 2 2
-2 3-X -1 =0
2 -1 3-X
= 6-HRO-6A+X-1)+2(6+2L+2)+22-6+21)=0
= A3+ 1207 361 +32=0
By trial, A = 2 is a root of this equation.
= A=2)AM-10A+16)=0 = A-2)(A-2)(A—-8)=0
= A =2, 2, 8 are the characteristic roots or Eigen values. Ans.
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Example 2. Find the eigen values of the matrix:

2 1 1
1 21 (R.G.P.V. Bhopal, I Semester, June 2007)
0 01
2 1 1
Solution. Let 4=|1 2 1
0 01
The characteristic equation of 4 is
|A-A|=0
2-2 1 1

1 2-A 1 =0
0 0 1-A

Expanding the determinant with the help of third row, we have

= (1-M)[(2=2)-1]=0 = (1-2)(*-4r+4-1)=0
= (1—x)(x2—4x+3)=0 = (1=-1)(r=3)(r-1)=0
= A=1,1,3
The eigen values of the given matrix are 1, 1 and 3. Ans.
1 2 -3
Example 3. The matrix A is defined as A={0 3 2
0 0 2
Find the eigen values of 3 A*> +5 A> — 64 + 2I.
Solution. |A—Al]=0
I-A 2 -3
0 3-2 2 =0
0 0 —2-A
= 1-2@-A)EF2-A)=0 o A=1,3,-2
Eigen values of 4° = 1, 27, -8; Eigen values of 4>=1,9, 4
Eigen values of 4 =1, 3, -2; Eigen values of /=1, 1, 1

. Eigen values of 3 43 + 54% — 64 + 21

First eigen value =3 (1> +5(1)° -6 (1)+2(1) =4
Second eigen value =3 27) +5(9) -6 (3) +2(1) =110
Third eigen value =3 (-8)+54)-6(-2)+2(1) =10

Required eigen values are 4, 110, 10 Ans.
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Example 4. Show that for any square matrix A, the product of all the eigen values of 4
is equal to det (4), and the sum of all the eigen values of A is equal to the sum of the
diagonal elements.

a4 4 43 ay—h  ap ags
Solution. Let 4 = | ay; ay  ay || A=A | =|ay Ay =\ ay;
a3 a3 A4z asy as as; —h

|4 — |
= (ay; = M) [(ay, = 1) (ay3 = A) = a5, ay] = ay, [ay, (a3 = A) —ay ay] +
ay [ay) ay, — ay) (a5, = M)
= (ay, = 1) [ay, a3 = (ay, + az) A+ 02— ayy ay] —ay, [ay @53 — ay h—ay a,] +
ay3 (ay) a3y — ayay, + ay; 1)
=ay ay ayy (- ay @y —ay a) bt ay M oay ay ay + (- ay ay tay a) Mt
(ay, T ay) M2 =2 —ay, ay ays +ay, ay aytay, ay kot
ay3 @y Ay = a3y Gy +ayy Ay A
== N1 (a), T aytay) Y M- ay ay—ay aytay, ay - ay, ay tay a5+ ayy ay)
—lay (ay, ay3 = a5y a3) = ay, (ay) ag3 = ayy ay) + a5 (ay, a3y — ay a)] (1)
If &,, &,, A, be the roots of the equation (1) then
Sum of the roots = A, + &, + A, = a;, + a,, + a;; = Sum of the diagonal elements.
Product of the roots
= Mgy = layy (ay, a3y — a5 a3y) = @y, (ay) G35 — a5y a3)) + ay5 (a5, a3y — a3 ay))]
= Determinant 4. Proved.
Example 5. Let A be an eigen value of a matrix A. Then prove that
(/) A+ kis an eigen value of 4 + il
(if) kA is an eigen value of k4. (Gujarat II Semester June 2009)
Solution. Here, A has eigen value .. = |[A-A[|=0 (1)
(/) Adding and subtracting k/ from (1) we get
| A+k —M—K|=0

= |(A+k)—(Atk)I|=0 = A+ klhas )\ + k eigen value.
(if) Multiplying (1), by &, we get
k|A-AI1]=0 = |kA-krI]=0
= kA has eigen value kh. Proved.

Example 6. [f X, A, .... A are the eigen values of 4, find the eigen values of the martrix
(A — M),

Solution. (A — A T2 = A2~ AT+ )2 P =A% —20A + )21
Eigen values of 42 are A{, A3, A3 ... A2
Eigen values of 2 4 are 2 A, 2\ Ay, 20 A

Eigen values of A% [ are A2,

s 20,
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. Eigen values of 42 - 20 A4 + A> [
AF =200 + A5 A3 =20, A%, AT —2M, + A
= (=2 (=), (A=) Oy =) Ans.
Example 7. Prove that a matrix A and its transpose A’ have the same characteristic roots.

Solution. Characteristic equation of matrix 4 is

|A-M|=0 . (D)
Characteristic equation of matrix 4’ is
|A"— M |=0 (2)
Clearly both (1) and (2) are same, as we know that
|4 ]=14"]
i.e., a determinant remains unchanged when rows be changed into columns and columns
into rows. Proved.

Example 8. If 4 and P be square matrices of the same type and if P be invertible, show
that the matrices A and P~ AP have the same characteristic roots.
Solution. Let us put B = P! AP and we will show that characteristic equations for both
A and B are the same and hence they have the same characteristic roots.
B-M=P'"AP - M=P'AP - P'AMP=P"'(4- L) P
|B=M|=|PTA-M)P|[=|P"[|A-1M|P|
=A-M[|P"||P|=]4-M]| PP
=lA-M||I|=|A-Mas|I|=1
Thus the matrices 4 and B have the same characteristic equations and hence the same
characteristic roots. Proved.

Example 9. If A and B be two square invertible matrices, then prove that AB and BA
have  the same characteristic roots.

Solution. Now AB=IAB=B"' B(4B)=B ' (BA) B (1)
But by Ex. 8, matrices BA and B~' (BA) B have same characteristic roots or matrices B4
and 4B by (1) have same characteristic roots. Proved.

Example 10. If 4 and B be n rowed square matrices and if A be invertible, show that
the matrices A™' B and BA™" have the same characteristics roots.

Solution. A'B=A4"BI=4"BA'4)=4" (BA) A. (1)
But by Ex. 8, matrices BA™' and 47! (BA™)4 have same characteristic roots or matrices
BA™" and 47! B by (1) have same characteristic roots. Proved.

Example 11. Show that 0 is a characteristic root of a matrix, if and only if, the matrix
is singular.
Solution. Characteristic equation of matrix 4 is given by
|[A-A|=0

If L = 0, then from above it follows that | 4 | = 0 i.e. Matrix A4 is singular.
Again if Matrix A4 is singular i.e., | 4 | = 0 then

|A-=AM|=0 = |A|-A|[]=0,0-A-1=0 = A=0. Proved.
Example 12. Show that characteristic roots of a triangular matrix are just the diagonal
elements of the matrix.
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Solution. Let us consider the triangular matrix.

A=
Characteristic equation is |4 — /] =0
a; -\ 0 0 0
ay, ay—A 0 0
or =0
a3 a3 a3 =h 0
ay %) ay3 Ay —h

On expansion it gives

(@, = M) (a,, =) (a3 =) (ayy —A) =0

k:a“, a

Aypr G330 Gy
which are diagonal elements of matrix 4. Proved.

1
Question [f 1 is an eigen value of an orthogonal matrix, then o is also eigen value.

[Try Yourself]
1
[Hint: A4’ = I if X is the eigen value of 4, then A =1, A= z]

Example 13. Find the eigen values of the orthogonal matrix.

; 1 2 2
B=—|2 1 22
3
2 =2 1
Solution. The characteristic equation of
1 2 2 1-» 2 2
A=12 1 2| is |2 1-» 2 |=0
2 =2 1 2 -2 1-A

= (1=A)[(1=A)(1-21)-4]-2[2(1-1)+4]+2[-4-2(1-2)]=0
= (N1 -20+22-4) 22 -2L+4) +2(-4-2+20)=0
= A -32-9n+27=0 =  (A-3(r+3)=0

1
The eigen values of 4 are 3, 3, -3, so the eigen values B = EA are 1, 1, —1.

1 1
Note. If A = 1 is an eigen value of B then its reciprocx =1 =1 is also an eigen value

of B. Ans.
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EXERCISE 32.1

A
1. If A be an eigen value of a non singular matrix A, show that % is an eigen value of
matrix adj 4.
2. There are infinitely many eigen vectors corresponding to a single eigen value.
2 3 1
3. Find the eigen values of the matrix | 3 1 3
-5 2 4
4 2 2
4. Find the eigen value | =5 3 2
-2 4 1
3 33
5. Find the product of the eigen value of the matrix |2 1 1
1 56
3 2
6. Find the sum of the eigen values of the matrix | 1 3 2
4 15
4 6 6
7. Find the eigen value of the inverse of the matrix | 1 3 2
-1 4 -3
1 0 -1
8. Find the eigen value of the square of the matrix | 1 2 1
2 2 3
31 47
9. Find the eigen values of the matrix [0 2 6
00 5
2 2 1
10. The sum and product of the eigen values of the matrix 4=| 1 3 1| are respectively
1 2 2
(a) 7 and 7 (b) 7 and 5 (¢) 7 and 6 (d)7and 8 (AMIETE June 2010)
ANSWERS
3. Eigen values are 0, 1, -2 4. 1,2,5 5.18
1
6. 11 7. -1, — 8.1,4,9
"4

9. 8,27,125 10. (b)
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32.3 CAYLEY-HAMILTON THEOREM

Satement. Every square matrix satisfies its own characteristic equation.

If | A=A |=(-1)" (k” +a )" " et a,,) be the characteristic polynomial of
n x n matrix 4 = (aij), then the matrix equation

X"+a X" +a,X"*+...+a,] =0 is satisfied by X=A4 i.e

A" +a A" +a, A"+ a,l =0

Proof. Since the elements of the matrix 4 — A [ are at most of the first degree in A, the
elements of adj. (4 — AJ) are at most degree (n —1) in A. Thus, adj. (4 — L) may be
written as a matrix polynomial in A, given by

Adj(A=M)= B\ + BA"? +...+ B,
where By, B,...,B,_; are n x n matrices, their elements being polynomial in A.
We know that (A—I)Adj(A-M)=|A-A |1
(A=) B+ BA 2+ By = (<1) (W + "+ a, )1
Equating coefficient of like power of A on both sides, we get
—IBy=(-1)"1
ABy— 1B, =(-1)" a1

On multiplying the equation 4", 4" ",....I respectively and adding, we obtain
0=(-1)"[ 4" +a a4 +. +a,1]
Thus A" +a A" ¥ +a =0

for example, Let 4 be square matrix and if A’ =207 +33 -4 =0 e

be its characteristic equation, then according to Cayley Hamilton Theorem (1) is satisfied
by A.

A3 —24>+34-41=0 ..(2)
We can find can 47! from equation (2). On premultiplying equation (2) by 4~!, we get
A —24+31-447"=0

A7 = %[A2 —24+3I]

Example 1. Verify Cayley-Hamilton theorem for the matrix
(Vidyasagar University 2018)

1 2
A= (2 B j and hence find A”'.  (U.P.I Sem. Dec 2008)
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Solution. The characteristic equation of the matrix is [A — A I| =0
1-» 2 ‘

2 —1-n
(-2 (~1-0)-4=0=-1+22-4=0=22-5=0

By Cayley-Hamilton Theorem, A% —5/=10 (1)

N N TR
2 1|2 -1 0 5
/12—51—{5 0}—5{1 0}{5 0}[_5 0}{0 0}:0 (2
05 0 1 05 0 -5 00
From (1) and (2), Cayley-Hamilton theorem is verified.

Again from (1), we have

A?-51=0
Multiplying by 47/, we get
L
1 {1 2
A*5A_1203A_1=5A = A_1=g|:2 _1:|= ; 51 Ans.
5 5
Example 2. Verify Cayley-Hamilton Theorem for the following matrix:
2 -1 1]
A=1-1 2 -1
| 1 -1 2]
and use the theorem to find A~ (Delhi University April 2010)
2 -1 1]
Solution. We have A=1-1 2 -1
| 1 -1 2]

Characteristic equation
|A-A1]=0

2-r -1 1

-1 2-L -1|=0

1 -1 2-2
SQ2-VN@+XM—4-D+A-2+D+A+1-2)=0
= 22 -8L+6-A+4N2-31+21-2=0
= M +6A-9h+4=0
= M-6A2+9-4=0
By Cayley-Hamilton theorem

A3 —642+94-41=0 . (1)
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2 -1 1]} 2 -1 1 6 -5 5
A2=|-1 2 -1||-1 2 -l|=|-5 6 -5
1 -1 2|1 1 -1 2 5 =5 6
6 -5 5| 2 -1 1 22 21 21
B=424=|-5 6 -5||-1 2 -1
5 -5 6|1 -1 2 21 21 22

I

|
[\S]
—_—
N
[\

|
[\
—

From equation (1), we get

2 21 21 6 -5 5 2 -1 1] [-4 0 o0

LHS. =|-21 22 -21|-6|-5 6 -5|+9|-1 2 —l|+| 0 -4 0

21 =21 22 5 -5 6 1 -1 2] [0 o —4
22-36+18-4  -21+30-9 21-30+9] [0 0 0

—| -21+30-9 22-36+18-4  -21+30-9(=|0 0 O0|=RH.S
21-30+9  —21+30-9 22-36+18-4| [0 0 0

Verity Cayley-Hamilton Theorem.
From (1), A3—64>+94—-41=0

= A2 =64 +91— 447" =0
= A*1=%[A2—6A+9I]
| 6 -5 5 2 -1 11 [9 0 0
=Zl|-5 6 -5|-6[-1 2 -1]+]0 9 0
15 -5 6 1 -1 2| (009
(31 -1
s g Ans.
4
-1 1 3

32.4 POWER OF MATRIX (by Cayley Hamilton Theorem)

Any positive integral power 4™ of matrix A4 is linearly expressible in terms of those of
lower degree, where m is a positive integer and # is the degree of characteristic equa-

tion such that m > n.
Example 1. Find A? with the help of Cayley Hamilton Theorem, if
1 0 -1
A=|1 2
2.2 3

1 0 -1
Solution. Here, we have 4=|1 2 1
2 2 3

Characteristic equation of the matrix A4 is
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1-% 0 -1 s
R I A 602114 -6=0
. s = (A-1)(A-2)(r=3)=0
Eigen values of 4 are 1, 2, 3.
Let A =(A> =602 =11 —6) Q(1) +(an> +br+¢) = 0 (1)
(where Q (M) is quotient)
Puta=1in (1), ()*=a+b+c = atb+c=1 (2)
PutA=2in (1), 2Q)*=4a+2b+c = 4a+2b+c=16 .. (3)
Put A =3 in (1), (3)*=9a +3b + ¢ = 9a +3b + ¢ = 81 .. (4

Solving (2), (3) and (4), we get
a=25b=-60, c=36
Replacing A by matrix A in (1), we get
A =(A4* —642 +114-6)O(4) +(ad> + bd+c|
=0+ ad*+bA+cl

1 0 -1|j1 0 -1 1 0 -1 1 00
251 2 1|1 2 1 |+(-60)|1 2 1{+36/0 1 0

2 2 342 2 3 2 2 3 0 0 1

-25 -50 -100 —60 0 60| (36 0 O
125 150 100|+| -60 -120 —60|+| O 36 O
250 250 225 -120 -120 -180 0 0 36

-25-60+36 -50+0+0 -100+60+0 -49 50 -40
125-60+0 150-120+36 100-60+0|=| 65 66 40
250-120+0 250-120+0 225-180+36 130 130 81

Ans.

EXERCISE 32.2

1. Find the characteristic polynomial of the matrix
3 1 1

Verify Cayley-Hamilton Theorem for this matrix. Hence find A4~

2. Use Cayley-Hamilton Theorem to find the inverse of the matrix
cos® sin6
—sin® cosO

3. Using Cayley-Hamilton Theorem, find 4!, given that
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2 -1 3
A=|1 0 2
4 2 1

. Find the characteristic equation of the matrix

3 7]
2 3
2 1]

and show that the equation is also satisfied by 4.

1
A=|4
1

. Using, Cayley-Hamilton Theorem obtain the inverse of the matrix

1 1 3]

1 3 -3

-2 -4 -4]
=2

. Show that the matrix 4=|1 2 3

0 -1 2

satisfies its characteristic equation. Hence find A4~'.

7. Verify Cayley-Hamilton Theorem for the matrix
(11 2
A =13 1 1| Hence evaluate A~
2 31
8. Verify Cayley-Hamilton theorem for the matrix
[1 -2 3
A=]|2 4 2
-1 1 2
9. Find adj. 4 by using Cayley-Hamilton thmeorem where 4 is given by
[1 2 1
A =10 1 -1| (RG.P.V., Bhopal, April 2010)
13 -1 1
1 0 0
10. If a matrix 4=|0 -1 0|, find the matrix 432, using Cayley Hamilton Theorem.
1 0 1
ANSWERS
7 -2 -3 . 4 5 2
4 1 cos® —sinb 1
1. 4 =—| 1 4 1 . 3. —| 7 =10 -1
20 sin® cos6 5
-2 8 -2 0 1
. 12 4 6 7 2 -10
4. 27 —4r* -200-35=0. 5. 4]-5 -1 =3 6. —|2 2 -1
-1 -1 -1 -1 1 4
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| -2 5 -1 0 -3 3 1 0 0
7. T -1 -3 5 9. |3 -2 1 10.| 0 1 O
7 -1 =2 -3 7 1 32 0 1

32.5 CHARACTERISTIC VECTORS OR EIGEN VECTORS

A column vector X is transformed into column vector ¥ by means of a square matrix A.

Now we want to multiply the column vector X by a scalar quantity A so that we can find
the same transformed column vector Y.

ie., AX =2X
X is known as eigen vector.

Example. Show that the vector (1, 1, 2) is an eigen vector of the matrix

31 -1
A=12 2 -1| corresponding to the eigen value 2.
2 2 0

Solution. Let X = (1, 1, 2).
31 1)1 3+1-2 2 1
Now, AX=|2 2 1|1 |=|2+2-2|=|2|=2|1|=2X
2 2 02 2+2+0 4 2
Corresponding to each characteristic root A, we have a corresponding non-zero vector X

which satisfies the equation [4 — AI] X = 0. The non-zero vector X is called characteristic
vector or Eigen vector.

32.6 PROPERTIES OF EIGEN VECTORS

(1)The eigen vector X of a matrix 4 is not unique.

(DI A, Ay, ..., A, be distinct eigen values of an n X n matrix then corresponding eigen
vectors X, X, ....... , X, form a linearly independent set.

(3)If two or more eigen values are equal it may or may not be possible to get linearly
independent eigen vectors corresponding to the equal roots.

(4)Two eigen vectors X, and X, are called orthogonal vectors if X 1 X=0.

(5)Eigen vectors of a symmetric matrix corresponding to different eigen values are

orthogonal.
a

Normalised form of vectors. To find normalised form of | # |, we divide each element
by Va? +b> +c2. ¢
1 1/3

For example, normalised form of |2 | is |2/3 [\llz +22 422 = 3]
2 2/3
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32.7 ORTHOGONAL VECTORS

Two vectors X and Y are said to be orthogonal if X IT X,=X 2T X, =0.

Example. Determine whether the eigen vectors of the matrix

1 0 -1
A=|1 2 1| are orthogonal.
2 2 3
Solution. Characteristic equation is | 4 — A/ | =0
I-» 0 -1
1 Y| =0

2 2 3-2

= (1-MIQ2-MB-1)-2]-0-1[12-2(2-1)]=0

= (1=W)(6-5A+22=2)—(2-4+20)=0 = L-1)(2-5L+4)+2(A-1)=0
-

-

1-2) A2 =5L+4)-2(A-1)=0 = (A=D[A*=50+4+2]=0
-1 (A =5L+6)=0 = A-H(A-2)(A-3)=0

So, A =1, 2, 3 are three distinct eigen values of 4.
For A =1

I-2 0 -1 X 0

1 2-n 1 X =10

2 2 3-% || x3 0

1I-1 0 -1 X 0 0 0 -1}x 0
= 1 2-1 1 X |=0] = 1 1 x |=|0

2 2 3-1 x5 0 2 2 2||x 0
= x; =0

Xt tx=0=>x, =X, —x
Letx, = kthenx,=0-k=—k
k 1]
X =|-k| = X =kl-1
0 0]

For A =2

1-2 0 -1 x| [0 -1 0 ~1][x] [0

1 2-2 1 x|=|0] = 1 0 1flx(=|0

2 2 3-2 |[x;] |O 2 2 1|x 0
= x, +0x,+x;=0

2x1 +2x2+x3=0
X _ X % _x
0-2 2-1 2-0
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= x =2k, x,=-k, x3=-2k

2
X, =k| -1
-2
For A =3
1-3 0 -1 X 0 2 0 -1l x 0
1 2-3 1 X [=]0] = 1 -1 1f|x|=|0
2 2 3-3] | x 0 2 2 0]|x 0
_2x1+0x2—x3:0} N X X i
X=X +x;=0 0-1 -1+2 2-0
X k 1
= x =k x,=-k x;=-2k Xy=|x|=| —k| = k|-1
X3 -2k -2
2 1 1
X X =[1,-1, | -111=3, X, X, [2,-L-2]| -1|=7,= X3X, =[l,-1,-2]| -1| =2
-2 -2 0

Since X[ X,=3#0, X1 X;=7#0, X3 X;=2%0

Thus, there are three distinct eigen vectors. So X}, X, X are not orthogonal eigen vectors.

32.8 NON-SYMMETRIC MATRICES WITH NON-REPEATED EIGEN VALUES

Example 1. Show that if M, Xy, ....., A, be the eigen values of the matrix A, then A" has
the eigen values 7»"1, Ay, A

Solution. Let A be an eigen value of the matrix 4.

Therefore, AX = )\X (D)
By premultiplying both sides of (1) by 4™, we get
AN Ax) = A" (v X) =X A"X = (4" X) ~(Q2)
But A’X = A(AX)= A\ X)
=A(AX) =ML X) =X (From (AX = )X))
ABX=AAX) =00 X)=1X
Similarly, A X =0\ X
A" X = WX

= A" is an eigen value of A4”.
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Hence, if Ay, Agymenenee A, be the eigen values of 4, then A, A5, A% ceincenen. Ao be the
eigen values of A”. Proved.

Example 2. If A be an eigen value of matrix A (non-zero matrix), show that X" is an
eigen value of A

Solution. We hav 2, is an eigen value of matrix A.
AX =)\X - (1)
where X is eigen vector

Premultiplying both sides of (1) by 47!, we get

A4 =4"'0x) = (A7) X =047 X)
= IX=M4"'%) = X =nM47'X)
= %X =A'x = A x=2'x
Henc A7!, is an eigen value of 47!, Proved.

Example 3. Find the eigen value and corresponding eigen vectors of the matrix

A= (_25 _2j (U.P.I Sem. Dec. 2008)
Solution. |4— Al =0
o [P 2 ‘=0 = (5-2)(2-0)-4=0
2 2.0

= M+A+10-4=0=>A2+7AL+6=0
A+tDHAr+6)=0 =r=-1,-6
The eigen values of the given matrix are —1 and —6.

(7)) When A = —1, the corresponding eigen vectors are given by
—5+1 2 X 0 -4 2| x 0
= = =
2 2+1|| x, 0 2 -1l x 0
B 1
= 2x-x,=0=>x —Exz

k
Let x, = k, then x, = 2k. Hence, eigen vector X, = { ) k}

(if) When A = -6 , the corresponding eigen vectors are given by

-5+6 2 X 0 1 2| x 0
= = =
2 2+6|| x, 0 2 4]|x, 0
= x1+2x2=0 :>x1=—2x

2

1
Let x, = k,, then x, = _Ekl
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ky
. 2k
Hence eigen vector X, = k| or

- —k,
Hence eigen vectors are { § } and {Zkl} Ans.
2k —k
31 4
Example 4. Find the eigen values and eigen vectors of matrix A=|0 2 6
0 0 5
(Mumbai University 2018, AMIETE June 2010, 2009)
3-2 1 4
Solution. |A-AI|=|0 2-1 6 =GB-M)2-1M(G-2)

0 0 5-X
Hence the characteristic equation of matrix 4 is given by
|A-Al|=0 = B-A)2-1)(B-1)=0
A=2,3,5.
Thus the eigen values of matrix 4 are 2, 3, 5.

The eigen vectors of the matrix 4 corresponding to the eigen value A is given by the
non-zero solution of the equati (4 — Al) X = 0.

3-% 1 4 0
or 0 2-1 6 X [=]0 (D)
0 0 5-1)lx| |0

When A = 2, the corresponding eigen vector is given by

3-2 1 4 TJ[x] [o
0 2-2 6 X, |=|0
10 0 5-21|x 0
1 1 4| x 0
= 0 0 6x(=|0
0 0 3| x 0
X +x,+4x;=0
= 0x; +0x, + 6x3 =0
X X ) N _X_ X
= = =k —=t===f =k, x,=—k, x;3=0
6-0 0-6 0-0 ~ 1 -1 0 -oaTh R .
k 1
Hence X = | —k |=k| —1| can be taken as an eigen vector of A corresponding to the
0 0| eigen value A =2

When A = 3, substituting in (1), the corresponding eigen vector is given by
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3-3 1 4 X 0 0 1 4|lx 0
0 2-3 6 X =0 = 0 -1 6|lx,|=|0
0 0 5-3]| x; 0 0 0 2]x 0
Ox, +x, +4x; =0
Ox, —x, +6x;=0
N % X% o8 Mm%k
6+4 0-0 0-0 10 0 0 10
x, =k, x,=0, x3:0
k 1
Hence, X, =|0| =k|0| can be taken as an eigen vector of A corresponding to the
0 0
eigen value A = 3.
When A =5.
Again, when A = 5, substituting in (1), the corresponding eigen vector is given by
3-5 1 4 X 0 -2 1 4| x 0
0 2-5 6 X, =10 = 0 3 6{|x,|=|0
0 0 5-5] | x 0 0 0 0]]x 0
—2x, tx, +4x,=0
—3x, + 6x; =0
By cross-multiplication method, we have
X X, X3 X Xy X3 X Xy X
= = A2 —S=====f
6+12 0+12 6.0 ~ 18 12 .6 3 2 1
x, =3k, x,=2k x;=k
3k 3
Hence, X5 =|2k |=k|2| can be taken as an eigen vector of A corresponding to the
k 1
eigen value A = 5. Ans.

EXERCISE 32.3

Non-symmetric matrix with different eigen values:

Find the eigen values and the corresponding eigen vectors for the following matrices:

(4 2 2 (2 2 3
1. |-5 3 2 2.1 1 1
|2 4 1 |1 3 -1
[ -9 2 6 (4 6 6
3. 50 -3 4. | 1 3 2
|-16 4 11 -1 -4 -3
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ANSWERS
27170 1] [-1][1
1. 1,251 1,1 ,{1 2. 2,13 1, 11,1
4211 4| 1|1
2171 2 6] 0o][ 3
3. -LL2;-11,|-1],|-1 4. -1,1, 4 -2, 1,
311 2] 4 7] -1 | -1

32,9 NON-SYMMETRIC MATRIX WITH REPEATED EIGEN VALUES

Example. Find the eigen values and eigen vectors of the matrix:
2 11
1 21
0 01

2 11

Solution. We have, A=|1 2 1|
0 01

Characteristic equation of 4is |4 — Al | =0
2-% 1 1
1 2-2 1 |[=0
0 0 -\
On expanding the determinant by the third row, we get
= 1-2){2-MNR2-1)-13=0 =  (1-M{2-1*-1}=0
= 1-M)C2-2+D2-A-D)=0 = (A-2)EB-1)(A-21)=0

= A=1,1,3
when A =1
2-1 1 1 X 0 (1 1 1][«x 0
1 2-1 1 y|=l0] = (1 1 1|ly|=|0
0 0 1-1|| z 0 10 0 0]z 0
11 1][x] [0
{O 0 0|y|=|0|Ry,>R,-R = x+y+z=0
0 0 0]z |0
Letx =k andy =k,
ki +ky,+z=0 = z=—(k +k)
k 1
X, = k, =k| 1 [If k, = k, = k]

—(ky + ) -2
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1

Againi =1, X,=| 0 [Again if k, =1, k,=0, — (k, + k,) = 1]
-1
when A =3
2-3 1 1 x1 [o -1 1 1x 0
1 2-3 1 =0 = 1 -1 1 y|= 0
0 0 1-3]|z] [0 0 0 2|z 0
-1 1 1x] [o
00 2 =|0| R,> R, +R,
0 0 -2)lz] |0
—xty+tz=0

22=0 = z=0

—x+ty+0=0 = x=y=k(say)

K] 1
Xy =|k|=k[1 Ans.
o] o

EXERCISE 32.4

Non-symmetric matrices with repeated eigen values:

Find the eigen values and eigen vectors of the following matrices:

2 2 2 2 2 1 2 1 1
1.(1 1 1 2. 31 3. |2 3 2
1 3 -1 1 2 2 13 3 4
[ -9 4 4] [1 -3 3 [1 -3 3
4. | -8 3 4 5.3 =5 3 6. |3 -5 3
-16 8 7] LU S0 s |6 6 4
ANSWERS
-4770 01l 1 o]l 171
1.-2,2,2; |-1,]1 2.1,1,5; ] 1,] 0 3. LL7; 1, 0,2
7] 1 2| -1 -1 -1
o] [1] 1 1 (171771
4. -1,-1,3;| 1[,]1],]1 5. 1L,1L,1{0 6. —2,-2,4,|1||-1],1
-1 1] ]2 1 0] [-2][2
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32.10 SYMMETRIC MATRICES WITH NON REPEATED EIGEN VALUES

Example 29. Find the eigen values and the corresponding eigen vectors of the matrix
-2 5 4
5 75
4 5 =2
Solution. | 4 — Al | =0
-2-1 5 4
5 7-% 5 |=0 = A’-317-90A-216=0
4 5 2-A
By trial: Take A =-3,then-27-27+270-216=0
By synthetic division
=3 1 -3 -90 -216
=3 18 216

1 6 - 0
M —6A-72=0 = (A-12)(A+6)=0 = A=-3,-6, 12

Matrix equation for eigen vectors [4 — /] X =0

-1 5 4 7 [o
5 7-» 5 ||y|=|0 (1)
4 5 —2-allz]| |o

Eigen Vector
On putting A = -3 in (1), it will become

1 5 4||x 0
x+5y+4z=0
5 10 5{|ly|=]0 =
5x+10y+5z=0
4 5 1]||z 0
X y z X y z
= = or —=—=—
25-40 5-20 10-25 I -1 1
1
Eigen vector X, =|-1]|.
1
Eigen vector corresponding to eigen value A = 6.
Equation (1) becomes
4 5 4||x 0
4x+5y+4z=0
5 13 5||y|=|0 or
S5x+13y+5z=0
4 5 4|z 0
X y z X y z
= = or —_——= =
25-52 20-20 52-25 I 0 -1
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1
eigen vector X, =| 0
-1

Eigen vector corresponding to eigen value A = 12.

Equation (1) becomes

14 5 4][x] [o
5 =5 5||y|=]0
4 5 -14(|z| |o
X y z

25420 20+70 70-25
1
Eigen vector X5 =12
1

or

{

—14x+5y+4z=0
5x=5y+5z=0

Ans.

EXERCISE 32.5

Symmetric matrices with non-repeated eigen values:
Find the eigen values and eigen vectors of the following matrices:

5 0 1 (3 -1 1 8 -6 2
1. [0 2 0 2. |-1 5 -1 3..-6 7 4| (U.P., I Semester Jan 2011)
1 05 1 -1 3 2 4 3
2 4 -6 1 13
4. 4 2 -6 5 5 4l
-6 -6 -I5 3 11
ANSWERS
o] 171 -1 11 1 21T 2
1. —2,4,6;[1/,| 0/,|0 2. 2,36 0f,|11,]-2 3. 0,3,15(21,| 1],|-2
of[-1][1 Lp[] 1 20 (=2]1] 1
1 2111 -1 111
4, 2,9, -18; |-1|,| 2|,|1 5. —2,3,6;] Of,|—-1],]2
o -1]14 1 1 1
32.11 SYMMETRIC MATRICES WITH REPEATED EIGEN VALUES
2 -1 1
Example. Find all the eigen values and eigen vectors of the matrix | =1 2 -1
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Solution. The characteristic equation | -1  2-% -1 =0

Q-M[Q2=A)? =1]+1[2+A+1]+1[1-2+A]=0
Q-0 (@4—4r+2>=D)+A-D+r-1=0
8—8L+20% —2—4h+40> - AP +A+20-2=0
AP+ 60T 9N +4=0
A —60 2+ —4=0 (D

On putting A = 1 in (1), the equation (1) is satisfied. So A = —1 is one factor of the
equation (1). The other factor (A> — 5\ + 4) is got on dividing (1) A — 1.

= (k—l)(k2—5k+4)20 or A-D)(A-D(A-4)=0 = Ar=1,1,4
The eigen values are 1, 1, 4.

((2-4 -1 1 \(x) (-2 -1 1\(x) [0
When x=4£—1 2.4 JL)@J: 0] = L—l 2 —1“sz: 0
1 -1 2-4 )\x,) |0 1 -1 2){x) |0

—2xl—x2+x3:0

R

(=)

xl—x2—2x3:0
Yo_ X X5 N N_M_ B
2+1 1-4 2+1 1 -1 1
= xi=k, x=—k, x3=k
k 1 1
X =|-k|=k|-1 or X, =|-1
k 1 1
[ 2-1 -1 1L\ (x)
When A =1 L -1 2-1 -1 sz:O
1 -1 2-1 X
(1 -1 1)(x) (1 -1 1D (x)
= L—l 1 —H@J:O = LO 0 O||x|=0,R >R, +R
1 -1 Dlx 0 0 0/\x Ry > R, — R,
X =X, tx;=0
Let x, = k, and x, = k,
kl—k2+x3:0 or x3:k2—kl
k 1
X, =k = X,=|1 f=l1
2 2 2 k=1
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[
Let X;=|m

n
As X is orthogonal to X, since the given matrix is symmetric

/
[L-1L1]|m|=0 orl-m+n=0 .. (2)

n

As X; is orthogonal to X, since the given matrix is symmetric

/
[,L,0]|m|=0 or/l+m+0=0 .. (3
n
Solving (2) and (3), we get i -2 -2 = L:ﬂ:ﬁ
0-1 1-0 1+1 -1 1 2
-1
X3=| 1 Ans.
2

EXERCISE 32.6

Symmetric matrices with repeated eigen values
Find the eigen values and the corresponding eigen vectors of the following matrices:

(1 2 3 (2 0 1
1. |2 4 6 2. |10 30
3 6 9 1 0 2
[ 6 2 2 (6 3 3
3.2 3 -1 4. |3 6 -3
|2 -1 3 |3 3 6
ANSWERS
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32.12 MATRIX HAVING ONLY ONE LINEARLY INDEPENDENT EIGEN VECTOR

Example. Find the eigen values and eigen vectors of

-3 -7 =5
A= 2 4 3
1 2 2

has less than three linearly independent eigen vectors. It is possible to obtain a similarity
transformation that will diagonalise this matrix.

Solution. The characteristic equation of the given matrix is

|A-M|=0
3-% -7 -5

= 2 4-% 3 |=0
1 2 2-1

= (SB-M[E-L)Q2-1)=6]+7[22-1)=3]-5[4—(4-1)]=0
= AP -1=0 =  (-1P=1 = r=1,1,1

Eigen values of the given matrix 4 are 1, 1, 1. Eigen vector when A = 1

-3-1 -7 -5 X 0 -4 -7 =5 ||x 0
2 4-1 3 X =0 = 2 3 3 ||x,|=]0
1 2 2-1 || x; 0 1 2 1 || x 0
= —4x, = Tx, = 5%, =0 (1)
2x, +3x, +3x,=0 - (2)
M _EE Wl
- 21+15 —10+12 —12+14
X Xy X3
—_—= === k
= 62 (say)
Thus, x, =-6k, x, = 2k and Xy = 2k
X —6k -3
X=|x,|=| 2k|=2k| 1
X3 2k 1
All the eigen vectors are same and hence linearly independent. Ans.
32.13 MATRIX HAVING ONLY TWO EIGEN VECTORS
3 10 5
Example. Find the eigen values and eigen vectors of A=|-2 -3 —4
3 5 7

has less than three linearly independent eigen vectors. Is it possible to obtain a similarity
transformation that will diagonalise this matrix?

Solution. The characteristic equation of the given matrix A4 is
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|A-M|=0
3-% 10 5
-2 3-% -4 =0
3 5 72

B=M)[(=3=2) (T=A)+20]-10[-2(7 —=A) +12]+5[-10—3(-3—A)] =0
(B=M)[-21+3L=Th+ A% +20]-10[—14+ 21 +12]+5[-10+9+31] =0
B-A) (A2 —4rL-1)-10(2L-2)+5(BAL-1)=0

M- 4160 -12=0 =  (A-3)(A-2)(A-2)=0 = A=3,2,2

Eigen values of the given matrix 4 are 3, 2, 2.

Uy Ul

Eigen vector, when A =3

3-3 10 50 x 0 0 10 5||x 0
-2 3-3 HA4|x|[=|0] = |2 -6 —4||x,[=|0
3 5 7-3]||x 0 305 4|xg 0
2%, —6x, —4x, =0 .. (D)
3x, 4+ 5%, +4x;, =0 .. (2)
Solving (1) and (2) by cross multiplication method, we have
XXX
24420 -12+8 -10+18
= %:%:%:k (say)
Thus, x, = — 4k, x, = — 4k and x; = 8k
X -4k -1
X=|x,|=|—-4k|=4k| -1
X3 8k 2
Eigen vector when A =2
3-2 10 511 x 0 1 10 5||x 0
-2 3-2 4||x|=|0 = -2 =5 —4||x,|=|0
3 5 7-2]]|x 0 35 5]|x 0
= X +10x, +5x; =0 .. (3)
—2x,—5x, —4x; =0 .. (@)
Solving (3) and (4) by cross multiplication method, we have
X X X X X, X
0425 C1074 5420 © 15 6 15 K (W)
= x, =15k, x, =—6k, x;=15k
x| —15k -5
X=|x,|=|—-6k |=3k| 2

x| | 15k 5
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We get one eigen vector corresponding to repeated root A, =2 = A,.

Eigen vectors corresponding to A, = 2 = A, are not linearly independent. Similarity
transformation is not possible. Ans.

32.14 COMPLEX EIGEN VALUES

cos® —sin0O

Example 1. Show that if 0 < 0 < &, then A=|
sin® cosO

} has no real eigen values

and consequently no eigen vector. (Gujarat II Semester June 2009)

cosO—A —sin6 B

Solution. The characteristic equation of 4 is

sin® cosO—A

= (cos O — L) +sin> 0 =0

= cos2 @ —2L cos B+ A2 +sin>0=0

= A2 —2kcosO+1=0

N - 2cos0 + \l;cosze—4 v 2 cosf * 2i2\/1—cos20 — cos 84 i sin 0

Hence, the given matrix A has no real eigen values and consequently no eigen vector.
Proved.

Example 2. If a matrix A is non-singular. Then h = 0 is not its eigen value.

Solution. Since matrix A is non-singular then | 4 | # 0

= |A—-0[]|#0

Hence A = 0 is not its eigen value. Proved.

32.15 ALGEBRAIC MULTIPLICITY

Algebraic multiplicity of an eigen value is the number of times of repetition of an
eigen value.

It is denoted by mult, (A).

-2 2 -3
For example, the eigen values of a matrix | 21 —6| are-3,-3, 5.
The mult, (-3) = 2 and mult, (5) =1 -1 =20

32.16 GEOMETRIC MULTIPLICITY

Geometric multiplicity of an eigen value is the number of linearly independent eigen
vectors corresponding to A. It is denoted by Multg()»)

In previous example two linearly independent eigen vectors corresponding to

0 3
A=-3are|3|and |O].
2 1

so the multg -3)=2
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1
And the eigen vector corresponding to A =51is | 2| so the multg ) =1.
-1
32.17 REGULAR EIGEN VALUE

If the algebraic multiplicity and geometric multiplicity of an eigen value are equal, then
the eigen value is called regular.

Example. Find the algebraic multiplicity and geometric multiplicity of an eigen value

3 10 5
of the matrix A=|-2 =3 4| and show geometric multiplicity cannot be
3 5 7

greater than algebraic multiplicity.

Solution. The characteristic equation of the given matrix is

3-% 10 5
-2 3-%1 -4 |=0
3 5 T
= A —TA% +160-12=0
= A-2)(L=2)(L-3)=0
= A=2,2,3

Therefore 2 is a multiple eigen value repeating 2 times. So Algebraic Multiplicity of 2 is 2.

Mult, (2) = 2. ..(A)
We shall find the eigen vector corresponding to the eigen value 2.
3-2 10 5 X 0
X=|-2 -3-2 -4 X |=|0
3 5 7-2 || x; 0
I 10 5 ||x 0
= -2 -5 —4||x,|=|0
35 5|x 0
x, +10x, + 5x, =0 (1)
= 2x, = 5x,—4x; =0 .(2)

Solving (1) and (2) by cross multiplication method, we have

X _ X X
-40+25 -10+4 -5+20

X X X
—_—— == k
= 156 15 " )
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Thus x, =15 &, X, =6k, x, =15 k.

X -15k =5
X=|x,|=| —0k|=3k|2
X, 15k 5

Here the linearly independent eigen vector is 1.
So the, geometric multiplicity of eigen value 2 is 1

Mult, (2) = 1 ..(B)
Hence from (4) and (B) Ans.
Geometric multiplicity < Algebraic multiplicity

Notes: (1) If the values of x,, x,, x; are in terms of k (one independent value), then there is
only one linearly independent eigen vector. So the geometric multiplicity is 1.

(2) If the values of x,, x,, x, are in terms of &, k, two independent values, then there
are two linearly independent eigen vectors. So the geometric multiplicity is 2.

EXERCISE 32.7

From the following matrices; find eigen value, Algebraic multiplicity and Geometric multiplicity.

_ 1 11
L7 _1} 2. 00 11
s 4 .
- 0 0 1
K 1 (1 2 3
3./1 0 =3 4. |0 2 3
0 1 3 0 0 2
2 2 1 Filh 2
501 3 6. | 0 2 1
1 2 2 -1 2 2
_ (1 0 0 0
5 4 —4
7.1 4 5 —4 8 0100 M.U. 2018
. 1o o 1 1 M.U. )
-1 -1 2
- 0 0 0 1
ANSWERS
LA =—1, Mult, (-1) = 1, Mult, (-1) = 1 2. A=1,Mult, (1) =3, Mult, (1) = 1

% =3, Mult, (3) = 1, Mult, (3) = 1
3. %=1, Mult, (1) = 3, Mult, (1) = 1
. =5, Mult, (5) = 1, Mult, (5) = 1

>

%=2, Mult, (2) =2, Mult, (2) = |
%=1, Mult, (1) = 2, Mult, (1) = 1

N
a

A =2, Mult, (2) = 2, Mult, (2) = 1
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7. %=1, Mult, (1) = 2, Mult_(1) =2 8. A=1,Mult(l) =4, Mult(1)=3
A =10, Mult, (10) = 1, Mult, (10) = 1

32.18 SIMILARITY TRANSFORMATION

Let 4 and B be two square matrices of order n. Then B is said to be similar to 4 if there
exists a non-singular matrix P such that

B=P' 4P (1)

Equation (1) is called a similar transformation.

32.19 DIAGONALISATION OF A MATRIX

Diagonalisation of a matrix A4 is the process of reduction of 4 to a diagonal form ‘D’. If
A is related to D by a similarity transformation such that D = P~' AP then 4 is reduced
to the diagonal matrix D through modal matrix P. D is also called spectral matrix of A.

32.20 ORTHOGONAL TRANSFORMATION OF A SYMMETRIC MATRIX TO
DIAGONAL FORM

Let A be a symmetric matrix, then

A-A4 =1 (1)
and A-A"=1 (2
From (1) and (2), we have Al =4
We know that, diagonalisation transformation of a symmetric matrix is

Pl'AP=D

If we normalize each eigen vector and use them to form the normalized modal matirx
N then N is an orthogonal matrix.

Then, N AN=D
Transforming 4 into D by means of the transformation N' AN = D is called as orthogonal
transformation.

Note. To normalize eigen vector divide each element of the vector by the square root
of the sum of the squares of all the elements of the vector.

Example. Show that similar matrices have same trace. (D.U. April 2010)
Solution. As we know that similar matrices have eigen value.

Trace of matrices is sum of all eigen value. Hence similar matrices have same trace.
Proved.

32.21 THEOREM ON DIAGONALIZATION OF A MATRIX
Theorem. If a square matrix A of order n has n linearly independent eigen vectors, then a
matrix P can be found such that P! AP is a diagonal matrix.

Proof. We shall prove the theorem for a matrix of order 3. The proof can be easily
extended to matrices of higher order.
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a b g
Let A=|a, b ¢
a; by

and let &, A, A, be its eigen values and X|, X, X the corresponding eigen vectors, where

X X X3
Xi=\nl Xy =>2 |, X3=|»;
Z Z | Z3

For the eigen value A, the eigen vector is given by
(@ =A)x +by +6z =0
ayx+(by = Ay +¢,2=0 (1)
asx; +byy +(c3 =)z =0
.. We have

ax +by+ezi=hx
X +byy+cyz =AY ..(2)
ayx +byy +eyz =)z

Similarly, for A, and A,, we have
A Xy +b Y, +c1zy =hy X,y
Ay Xy +byy,+c2=hy y, -(3)
Ay Xy +byyy +c3zy =, 2
X3 +b vy +cz3=h3 x5

and Ay X3 +by y3+cy23 =h3 3 (4

Ay X3+ by v+ 2y = Ay 2,

X X X3
We consider the matrix P=\nw »mn »
Zl 22 Z3

whose columns are the eigen vectors of 4.

a b ooqllm X x
Then AP=\a, by, o ||» y»

a by |z oz z
ax+b oz aXtbhy, ez x4y ez )
=\ ayx,+byy+cyz Ay X +byyy+cyzy Ay x3+by Y346,z
ayx;+byy+ciz ayx, +byyy,teyzy  ayxy+byyy ez,
(X ApXy  Aaxy)
= M» Ay, A3y | [Using results (2), (3) and (4)]
Mz Apzy hsz
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(xl X, x3\ (kl 0 0)
=n ¥ »||0 A& 0|=PD
zi oz z3)\0 0 Ay

(v, 0 0)
where D is the Diagonal matrix L 0 %, O J .
0 0 24
AP = PD

= P'4P=P'PD=D
Notes (1) The square matrix P, which diagonalises 4, is found by grouping the eigen vectors

of A4 into square-matrix and the resulting diagonal matrix has the eigen values of 4
as its diagonal elements.

(2) The transformation of a matrix 4 to P~' AP is known as a similarity transformation.

(3) The reduction of 4 to a diagonal matrix is, obviously, a particular case of similarity
transformation.

(4) The matrix P which diagonalises 4 is called the modal matrix of A and the resulting
diagonal matrix D is known as the spectra matrix of A.

Example. Find the eigen values, eigen vectors the modal matrix and diagonalise the
matrix given below.

1 0 0
0 3 -1
0 -1 3
Solution. The characteristic equation of the given matrix is
I-» 0 0
0 3-2 -1 =0
0 -1 3-A

= 1-0){B-1)*-1}=0 = 1-M)@B-A+)B-r2-1)=0
= 1-2)@E-M)2-1)=0 = r=1,2,4

Eigen vectors

When A =1,

0 0 o][x] o] To o o]x] [o 1
0 2 -1 x2:0~02—1 x2:0 R3_)R3+ER2

0 -1 2||x 0 0 0 3% 0
= 2x,=x,=0 (1)
3
X% =0 = x,=0 .. (2)

2
Putting x,= 0 from (2) in (1), we get 2x, —-0=0=x,=0



Eigen Values Eigen Vectors« 33

Eigen Vector = | 0

0
When A =2,
-1 0 0f|x 0 1 0 0flxy 0
0 1 -l||x|=[0] = ~1| x, o B> h
Ry, > R;+R,
0 -1 1]|x 0 0 0 O0ffx 0
x, =0
0
x, —x; =0=x,=x, , Eigen vector = |1
1
When A =4,
-3 0 0f|x 0
0 -1 —1||x,|=|0
0 -1 —1]|x 0
-3x,=0
—x2—x3:0
Eigen Vector = ]
10
Modal matrix = {0 1 1 Ans.
0 1 -1
Let us diagonalise the given matrix:
-2 0 O0f|1 0 oOof1 0 o0
P’IAP:—% 0 -1 -1{|0 3 -1{{0 1 1
0 -1 1]j]0 -1 30 1 -1
-2 0 Ooff1 0 O -2 0 0| |1 0O
:—%0—1—102 :—50—40:020
0 -1 1)/l0 2 -4 0 0 -8 0 0 4

EXERCISE 32.8

1. Find the matrix B which transforms the matrix
8 8 2
A=|4 -3 -2/ to a diagonal matrix.
3 4 1
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4 1 0
2. For the matrix 4=|1 4 1|, determine a matrix P such that P"'AP is diagonal matrix.
01 4
3. Determine the eigen values and the corresponding eigen vectors of the matrix
5 7 =5
A=|0 4 -1
2 8 -3

Hence find the matrix P such that P'4P is diagonal matrix.

4. Reduce the following matrix 4 into a diagonal matrix

8 6 2
A=|-6 7 -4
2 4 3
ANSWERS
(4 3 2 -1 1 1
1. B=[3 2 2. P=| 0 V2 V2
2 11 1 11
2 1 -1 00 0
3. P=[1 1 1 4.10 3 0
32 1 0 0 15

32.22 POWERS OF A MATRIX (By diagonalisation)

We can obtain powers of a matrix by using diagonalisation.
We know that D=P"'4P
Where 4 is the square matrix and P is a non-singular matrix.
D?>=P'AP) (P AP)=P A PP HYAP=P ' 4> P
Similarly D’=pP'AP
In general D'=pP'l4"P
Pre-multiply (1) by P and post-multiply by P!
PD'P'=pP(P"' 4" P)P!
=P PHa(pprP
= gn
Procedure: (1) Find eigen values for a square matrix A.
(2) Find eigen vectors to get the modal matrix P.
(3) Find the diagonal matrix D, by the formula D = P! AP
(4) Obtain A" by the formula 4" = P D" P~'.

(1)
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1 0 -1
Example. Find a matrix P which transform the matrix A=|1 2 1| to diagonal
form. Hence A*. 2 2 3
Solution. Characteristic equation of the matrix A4 is
I-» 0 -1 or A’=6A%+11A-6=0
1 2-% 1 =0 or A-D)(A-2)(A-3)=0
2 2 3-A = A=1,23
For A = 1, eigen vector is given by
[1-1 0 -1 J[x] [0 00 —1][x] [0
1 2-1 1 X [=]0 =1 1 1]||x|=|0
12 2 3-1 | x 0 22 2||x 0
0x; +0x, —x3=0 X X X
T = o_ilz—lio:o orx, =1, x,=-1,x;,=0

Eigen vector is [1, —1, 0].

For A = 2, eigen vector is given by

1-2 0 = X 0 -1 -1|] x 0
1 2-2 1 X (=10 =| 1 0 1fx|=|0
2 2 3-2 || x 0 22 1f|x 0
0 0 0 x 0
= 1 0 1||x|=|0| R —>R +R,
2 2 1||x 0

X +0x, +x3=0
2%+ 2%, +x;=0

N % X
0-2 2-1 2-0
Eigen vector is [-2, 1, 2].

=

For A = 3, eigen vector is given by

1-3 0 -1 X 0 -2 0 -1||x 0
1 2-3 1 5 |[=|0=] 1 -1 1f|x|=|0
2 2 3-3 || x 0 2 2 0]]x 0
2% +0x, —x3=0
X=X +x;=0
= &l 2 as = x,=-1, x,=1, Xy = 2

0-1 —-1+2 2-0
Eigen vector is [-1, 1, 2].
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1 =2 -1 0 2 -1
Modal matrix P={-1 1 1| and Pilz—l 2 2 0
0 2 2 2 -2 -1
0 -1 L
SIft o =11 =2 =17 [1 0 0
Now P'4P=|-1 -1 0|1 2 1{|-1 1 1|=|0 2 0|=D
.o Lz 2 3jlo 2 2] [0 03
2
0 -1 L
1 =2 -1][1 0 o 5| [-49 —50 —40
A*=pPD*P'=|-1 1 1]/0 16 0|[-1 -1 0|=| 65 66 40| Ans.
0 2 2flo 0 s, 1| [130 130 81
2

EXERCISE 32.9

Find a matrix P which transforms the following matrices to diagonal form. Hence calculate the
power matrix.

1 1 3 3 -1 1
1. If4=|1 5 1|, calculate 4% 2. If A=|-1 5 -1/, calculate
31 1 1 -1 3
4%
2 -1 1 1 1 1
3.If A=|-1 2 -1/, calculate A°. 4. If A=| 0 2 1|, calculate 4%,
1 -1 2 -4 4 3
31 -1
5. Show that the matrix 4 is diagonalisable 4=|—-2 1 2|.If so obtain the matrix P such
that P! AP is a diagonal matrix. 01 2 (AMIETE June 2010)
ANSWERS
[251 405 235 [ 251 -405 235
1. |405 891 405 2. | 405 891 -405
1235 405 251 | 235 —405 251
[ 1366 —1365 1365 [-12099 12355 6305
3. |—-1365 1366 -1365 4. | —-12100 12356 6305
| 1365 -1365 1366 | —13120 13120 6561

32.23 COMPLEX MATRICES
Conjugate of a Complex Number

z=x+1iyis called a complex number where J=1 = i, x, y are real numbers. Z = x —iy
is called the conjugate of the complex number z, e.g.,
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Complex number Conjugate number
2+ 3i 2 —3i
-4 -5i -4+ 5]
6i — 6i
2 2

Conjugate of a matrix. The matrix formed by replacing the elements of a matrix by
their respective conjugate numbers is called the conjugate of A and is denoted by 4.

Az(aij)mxny then Zz(al'j)mxn

Example
R A I LR B
S e I T B

THEOREM

If 4 and B be two matrices and their conjugate matrices are Aand B respectively, then
(i) (A)=4 (ii) (A+B)=A+B (iii) (kA)=k A (iv) (AB)=AB
Proof. Let A =1[a] , ,then
ijdm x> S _
A=Jajl,, where aj is the conjugate complex of a;.
The (i, j) th element of (Z) = the conjugate complex of the (7, j)th element of A
= the conjugate complex of ;ij
=a,= the (i, j)th element of 4.
Hence (Z) =A. Proved.
(ii) Let A= [aij]m «pand B = [bij]m ~,
A=[ay,., and B=[bj],,
(i, ) th element of (4+ B) = conjugate complex of (i, j) th element of (4 + B)
= conjugate complex of (al,/. + bl.j)
= (a[j +bij) =Eij +l_)g/
= (7, j)th element of A+ (i, j)th element of B
= (i, j)th element of (A+B)
Hence, (A+B)= A+B Proved.

(iii) Let A= [aij] let k£ be any complex number.

m X n’

The (i, j)th element of (kd) = conjugate complex of the (i, j)th element of k4

conjugate complex of kaij

=ka;,=k-a

ij ij
-(i, ))th element of A= (i, j)th element of k.- A

Hence, kA=k- Proved.
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(iv) Let A=la], . ,B=1[b]l,.,

Then Zz[a_jj]mxyp Ez[l?‘j]nxp

The (i, j)th element of (4B) = conjugate complex of (i, j)th element of AB

n (n N n_
= conjugate complex of Zal-j b_/-k = LZai/-bij = Zai]. by
=1 =1 =1

= (i, /)th element of A-B

Hence, (E) =A4-B Proved.
32.24 TRANSPOSE OF CONJUGATE OF A MATRIX
The transpose of a conjugate of a matrix 4 is denoted by
(4) =4
The (i, j)th element of A° = (J, i)th element of A
= conjugate complex of (j, 7)th element of 4.
2431 1-2i 2+4i
Example. If A=|3-4i 4+3i 2-6i|, find A°
5 5+6i 3
2430 1-2i 244 1 i
Solution. We have A=|3-4i 4+3i 2-6i| = —2 —ﬁ 0
5 5+6i 3 . .
2-3i 3+4 5
Ans.

A=Ay =|1+2i 4-3i 5-6i
2-4i 2+6i 3

EXERCISE 32.10

1+i 3-5i — _
1. If the matrix Az[ 9 5 } find (i) 4 (i) (4)' (iit) A% (iv) (4°)°

Show that
- .
7 "
A= ﬁ _T; 0| is a unifary matrix, find 47!
o 0 1]

(Vidyasagar University 2018)
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ANSWERS
— =i 345 — [1-i -2
1O A{—zi 5 } @) (A)’:{3+5i 5 }
e 1= o2 e [1+i 3-5i
(i) 4 {3+5i 5 } (@) (A7) { 25 }

32.25 HERMITIAN MATRIX
Definition. A square matrix 4 = [al.j.] is said to be Hermitian if the (7, j)th element of A, i.e.,

a; = Zj[ for all 7 and ;.

2 3+4i a b—id
For example {3—4;‘ 1 } L)+id c }
Hence all the elements of the principal diagonal are real.
A necessary and sufficient condition for a matrix 4 to be Hermitian is that 4 = 4°.
Example 1. Prove that the following
() (A =4 (i) (A +B)P°=4%+B° (i) (kA)? =k A°  (iv) (4B)° = BY - 4°
where A° and B® be the transposed conjugates of A and B respectively, A and B being
conformable to multiplication.
Solution.

i) A =[]} =[4]=4 as {(A)] =4
(iiy (A+B)’=(4+B) =(A4+B)

=(A) +(B) = 4"+ B’
(iii)  (kA)° = (kA) = (k A) =k (4) =k A°

(iv) (4B)" =(4B) = (A4-B)' = (B -(4)' = B"- 4" Proved.
1 1-i 2
Example 2. Prove that matrix A=|1+i 3 i | is Hermitian.
2 -i 0
11+ 2 1 1-i 2
Solution. A=|1-i 3 —i| = (A)=|1+i 3 i
2 i 0 2 -i 0
A°=4 = A is Hermitian matrix. Proved.

- 342 -2-i]

Example 3. Show that A=|-3+2i 0 3—-4i| is Skew-Hermitian matrix.

2—i 3-4 2i

i 3-2i —2+i|

3-2i 0 3+d4i
| 2+i  3+4i 20

N
[

Solution.
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i -3-2i  2+i
(Ay=]3-2i 0  —3+4i
—2+4+i 3+4i 2i
i -3-2i 2+i
= A=3-20 0 3+ [+ A% =(4)]
—2+i 3+4i 2i
—i 3+2i -2-i
=—|-3+2i 0 3-4i|=-4
2—i  =3-4i 2i
A%=_4
= A is Skew-Hermitian matrix. Proved.

Example 4. Show that the matrix B® AB is Hermitian or Skew-Hermitian according as
A is Hermitian or Skew-Hermitian.

Solution. (i) Let A4 be Hermitian = 4° = 4
Now (B°4AB)° = (4B)° (B%)°
=B 4°.B
=B 4-B (49 = 4)
Hence, B AB is Hermitian.
(if) Let A be Skew-Hermitian = 4%=—4

Now, (B°4B)° = (4B)® - (B")°

-B%. 4%.B

=-B4-B (4% =—4)
Hence BY 4B is Skew-Hermitian. Proved.

THE CHARACTERISTIC ROOTS OF A HERMITIAN MATRIX ARE ALL REAL

We know that matrix 4 is Hermitian if

A% = A ie., where 4° (4') or (4)

Also (24)° =14 and (4B)° = BA°.
If A is a characteristic root of matrix 4 then AX = A X. ...(1)
- 4X)°=(X)°  or X04° & X0
But 4 is Hermitian. .. 4% = 4.

Xa=2x° - x%ax=2x°x ()
Again from (1) X°4X = XX = ax%x ..(3)

Hence from (2) and (3) we conclude that r=2L showing that A is real.
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Deduction 1. From above we conclude that characteristic roots of real symmetric matrix
are all real, as in this case, real symmetric matrix will be Hermitian.

For symmetric, we know that 4" = 4. (Z') =4

or A= 4 A=A as A is real. Rest as above.

32.26 SKEW-HERMITIAN MATRIX

Definition. A square matrix 4 = (aij) is said to be Skew-Hermitian matrix if the (i, j)th
element of 4 is equal to the negative of the conjugate complex of the (j, i)th element of
A, ie., a;=—a; foralliand ;.
If A is a Skew-Hermitian matrix, then

a; =—a;
a;+a; =0

Obviously, a,, is either a pure imaginary number or must be zero.

0 -3+4i 0 a—ib o )
For example 34 di 0 and - ¥ 0 are Skew-Hermitian matrixes.
A necessary and sufficient condition for a matrix 4 to be Skew-Hermitian is that 4% =— 4.

Deduction 2. Characteristic roots of a skew Hermitian matrix is either zero or a pure
imaginary numbers. (D.U. IIT Sem. 2012, April 2010)

If A is skew Hermitian, then i4 is Hermitian.
Also A be a characteristic root of 4 then AX = AX.
(i.A)X=(()NX

Above shows that iA is characteristic root of matrix i4, which is Hermitian and hence i\
should be real, which will be possible if A is either pure imaginary or zero.

Example 1. Show that every square matrix can be expressed as R + iS uniquely where
R and S are Hermitian matrices.

Solution. Let A be any square matrix. It can be rewritten as
A= l(A+Ae) +i{i,(A—A9) =R+iS
2 2i
1 0 1 0
where R=—(4+A4"),S=—(4-4")
2 2i
Now we have to show that R and S are Hermitian matrices.
R® = l(A+ A% = l[A6 +(4H= l(Ae +A) :l(A+ A% =R
2 2 2 2
Thus R is Hermitian matrix.
1 ¢
Now, §%= [—.(A—A")} =——-(4-4")
2i 2i

R I S N Pl O NN SO N
= 21.[14 (4")7] 2i(A A) 2i(A A47)=8
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Thus S is a Hermitian matrix.
Hence A = R + iS, where R and S are Hermitian matrices.
Now, we have to show its uniqueness.
Let A = P + iQ be another expression, where P and Q are Hermitian matrices, i.e.,
P'=P.0"=0
Then A= P+i0)° =P +(i0)° =P -i0° = P-i0
A=P+iQand A°%=P-iQ

P:%(A+Ae)=R and Q=%(A—Ae)=S
l

Hence 4 = R + iS is the unique expression, where R and S are Hermitian matrices. Proved.
i 2-3i 4+5i
Example 2. Express the matrix A |6+i 0 4-5i| as a sum of Hermitian and
- 2—-i 2+4i
Skew Hermitian matrix. (U.P.I Sem Dec 2009)
Solution. Here, we have
i 2-31 4+5i
A= |6+i 0 4-5i (D)
- 2-i 2+4i
- 2+3i 4-5i
A=|6-i 0 4+5i
i 2+i 2-i
—i 6—i i
(A)=[2+3 0 2+
|4-5i 4+50 2-i
- 6-i i
A°=|2+3i 0  2+i - (2
|4-5i 4+50 2-i|

On adding (1) & (2), we get
0 8-4i 4+6i
A+A4°=|8+4 0 6-4i
|4-6i 6+4i 4

1 0 4-2i 243
Let R:g[A+A9]= 4420 0 3-2i E)
2-3i 3+2i 2

On subtracting (2) from (1), we get
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2i —4-2i 4+4i
A-A%=| 4-2i 0 2-6i
—4+4i -2-6i 2i
i —2-i 2+2i
%(A—Ae) | 2-i 0 1-3i . (4
| —2+2i —-1-3i i
From (3) and (4), we have
0 4-2i 2+3i i —2—-i 242
A=14+2i 0 3-2ij+| 2-i 0 1-3i
2-3i 342 2 —2+2i -1-3i i
Hermitian matrix Skew-Hermitian matrix
1+ 2 5-5i
Example 3. Express the matrix A=| 2i  2+i 4+2i| as the sum of Hermitian
-1+i -4 7
matrix and Skew-Hermitian matrix.
1+ 2 5-5i 1-i 2 5+5i
Solution. A=| 2i 2+i 4+2i = A=| -2 2-i 4-2i e))
-1+i -4 -1-i -4 7
1-i -2i -1-i 1-i =2i -1-i
(4 =| 2 ] = A= 2 2-i -4 2
5+5i 4-2i 5+5i 4-2i 7
On adding (1) and (2), we get
2 2-2i 4-6i
A+ A° = [2+2i 4 2i
4461 2i 14
1 1-i 2-3i
Let :%(A+ AG){ 1+i 2 i (3
243 —i 7
On subtracting (2) from (1), we get
2i 242 6-4i
A-A%=|-2+2i  2i  8+2i
—-6-4i -8+2i 0
i 1+i 3-2i
Let S %(A—Ae)= “1+i i A+i (4
-3-2i -4+i O

From (3) and (4), we have
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1 1-i 2-3i i 1+i 3-2i
A=| 1+i 2 i+ —1+i i 4+i
2+3i  —i 7 -3-2i —4+i 0
Hermitian matrix Skew-Hermitian matrix

Ans.

Example 4. For any square matrix, AA% = I show that A° = I.
Solution. 44°% = I So 4 is invertible. (given)
Let B be another matrix such that
AB=BA=1 (1)

Now B = BI = B(44%) (44° = 1)

= (BA) A°

=I14%= 4° [Using (1)]
We know that BA=1 [From (1)]
Putting the value of B from (2) in (1), we get
= AYA=1 Proved.

CHARACTERISTIC ROOTS OF A SKEW-HERMITIAN MATRIX IS EITHER
ZERO OR PURELY AN IMAGINARY NUMBER

Since 4 is a skew-Hermitian matrix: .. i 4 is Hermitian matrix.

Let A be a characteristic root of 4.

Then, AX =X = (i4) X = (iA) X

= i\ is a characteristic root of matrix i4.

But i\ is a characteristic root of Hermitian matrix.

Therefore, iA should be real.

Hence, A is either zero or purely imaginary. Proved.

32.27 PERIODIC MATRIX

A square matrix is said to be periodic, if 4! = 4, where k is a positive integer. If k is
the least positive integer for which A¥"! = 4, then 4 is said to be of period &.

32.28 IDEMPOTENT MATRIX
A square matrix is said to be idempotent provided 4% = 4.

PROVE THAT THE EIGEN VALUES OF AN IDEMPOTENT MATRIX ARE
EITHER ZERO OR UNITY

(R.G.P.V. Bhopal I Semester June 2007)

Solution. Let 4 be an idempotent matrix
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A% =

A

Let A be a characteristic root of 4 and the corresponding vector be X. Hencce X # 0 and

AX = \X
A(AX) = A(AX) = M(AX)
(AA)X = 1(X)

L N VA

A= X=0
AMA—1)=0

A*X =0\*X
AX =02 X
AX =0%2X

= AM—r=0
= AM=01

(1)

[+ From (1), AX = AX]

[From (1) AX = AX]

[+ X 0]

Hence, the eigen values of an idempotent matrix are either zero or unity.

Example. Determine all the idempotent diagonal matrices of order n.

Solution. Let 4 = diag. [d|, d,, d3,

Here, for the matrix ‘4’ to be idempotent 4> = 4

d 0 0...01[d 0 0..0] [d 0 0...0
0 dy 0..0/[0 d 0...0| [0 d 0...0
0 0 dyn0||0 0 dyn 0| |0 0 d......
0 0 0o, |0 O O, | |0 0 0..d
d? 0 0...0| [d 0 0.0
0 d; 0....0 0 dy 0....0
= 2 -
0 0 df...0| |0 0 d..0
0 0 Oud?| [0 0 0d
dt =d;; d;=d,....d =d,
ie., d=0,1;dy=0,1;d,=0, 1 ooccce. d,

Hence diag. [d|, d,, d, ...

d=dy,=d,=..d =0orl.

d ], is the required idempotent matrix where

Proved.

d,] be an idempotent matrix of order n.

Ans.

EXERCISE 32.11

1. Which of the following matrices are Hermitian:
2+i 3-i
2 4-i

!
(a) |2+i
|3+
[ 4
() | 2+i

4+i

D=
1

|5—-2i 2+5i

3
5+2i
2-5i

2

)

()
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2. Which of the following matrices are Skew-Hermitian:

[2i 3 4 (3 -1 2
(@]| 3 3 -5 B |1 2 -6
-4 5 4 |4 6 -3

0 1-i 2+3i 1 3 7+i

(| -1-i 0 6i d | 3 -i 6
|2+3i 6 4 |7-i 8 0

3. Give an example of a matrix which is Skew-symmetric but not Skew-Hermitian.

4. If A be a Hermitian matrix, show that i4 is Skew-Hermitian. Also show that if B be a
Skew-Hermitian matrix, then iB must be Hermitian.

5. If A and B are Hermitian matrices, then show that AB + BA is Hermitian and 4B — BA is
Skew-Hermitian.

6. If 4 is any square matrix, show that 4 + 4° is Hermitian.

3 5+2i -3
7. If H=|5-2i 7 4i |, show that H is a Hermitian matrix.
-3 —4i 5

Verify that iH is a Skew-Hermitian matrix.
8. Show that for any complex square matrix 4,
(i) (4 + A") is a Hermitian matrix, where A" = 4T
(if) (4 — A”) is Skew-Hermitian matrix.
(iif) A" and A"4 are Hermitian matrices.

9. Show that any complex square matrix can be uniquely expressed as the sum of a Hermitian
matrix and a Skew-Hermitian matrix.

i 2-3i 445
10. Express A=|6+i 0  4-35i| as the sum of Hermitian and Skew-Hermitian matrices.
i  2-i 2+i

11. Prove that the latent roots of a Hermitian matrix are all real.

2+i 3 -1+3i ) . ) i )
12. If4= show that A4* is a Hermitian matrix; where A* is the conjugate

=5 i 4-2i
transpose of 4. (AMIETE June 2010)
ANSWERS
0 2+3i
1. (©) 2. (a), (¢) 3. {_2_ v o }

32.29 UNITARY MATRIX

A square matrix A4 is said to be unitary matrix if
4-4°=44=1

Example 1. If 4 is a unitary matrix, show that AT is also unitary.
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Solution. A-A% = A°A=1, since 4 is a unitary matrix.
(44°)’ = (L4 =1° (1 =1y
(44%)° =(4°4)° =1
(Ae)eAe =A9(A°)e -7
AA® = AP4=1 [since (4%)° = 4]
(A4 =" =)'
(AG)TAT :AT(AG)T:I
(AT)9~AT=AT(AT)921

Hence, A7 is a unitary matrix.

Example 2. If 4 is a unitary matrix, show that A" is also unitary.

Solution. 44° = 4°4=1, since Ais a unitary matrix.
= -A)y" =) taking inverse
(44%)" = (4°- T =) taking

Hence, A™' is a unitary matrix.

Proved.

(DU, III Sem. 2012)

Proved.

Example 3. If A and B are two unitary matrices, show that AB is a unitary matrix.

Solution. 4-4° = 4°4=1 since 4 is a unitary matrix.
Similarly, B-B*=B%B=1
Now, (AB)(AB)° = (AB)(B° - 4%)
= A(BB%)- A°
=A1A4°
=44’ =1
Again, (4B)° -(4B) = (B° - 4°) (4B)
=B%4°4)B
=BIB
= BB
=7

Hence, 4B is a unitary matrix.

1| 1 I1+i
Example 4. Prove that the matrix EL i } is unitary.

S"lut“)“ Let 14—
.
\/_3 1 l 1

[From (2)]
[From (1)]

[From (1)]

[From (2)]

(1)
(2)

Proved.
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1 1 1+
A =—
\/5{1—1' —1}
1| 1 14 1| 1 1+
A a=— X ——=
\/g{l—i —1} \BL—i —1}

1) 1+d+D (A+)-1+)| 1{3 0] (1 0 _
T3l1-i)-10-i) a+h+1 | 3lo 3| o 1|

Hence, 4 is a unitary matrix. Proved.
o+iy —P+id
Example 5. Show that the matrix A= . .| is a unitary matrix if
B+id oa-—iy
al +pr+y? 48t =1 (U.P. I Semester Dec. 2005)
a+iy —P+id
Solution. We have, A= . .
B+id oa-iy
4 oa—iy P-id
—B—-id o+iy

We know that, a square matrix 4 is said to be unitary if 4 4% =1

a+iy —P+d||a-iy p-id| |1 0
B+id o—iy ||-B-i0 a+iy o 1

ol +y7 +p*+ 82 ap —iod + iy + 8 — off — iy +iod — &y _{1 o}
af —iBy +iad + 8 — af —iod + iy — Sy B*+8%+a’ +y° 01
a’ +pr+y2+8° 0 {1 0}
= =
0 o +p2+y? 487 0 1
= o’ +[32 +y2 +8%=1 Proved.

0 1+2i
-1+2i 0
(I - N) (I + Ny is a unitary matrix, where I is an identity matrix.

Example 6. Define a unitary matrix. If N = { } is a matrix, then show that

(D.U. April 2010)
Solution. Unitary matrix: A square matrix ‘4’ is said to be unitary if 4% 4 = I, where
A% = (4" and I'is an identity matrix.

) Vo[ 0 e
we have Tlo1+2i 0

10 0  1+2i 1 —1-2i
I-N= - , = , (1)
0 1| |-1+2i © 1-2i 1

Now we have to find (/ + N)!

10 0 1+2i 1 1+2i
I+N= + =
0 1 -1+2i 0 -1+2i 1
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[I+N|=1-(-1-4)=6

Adj. (I+N) b=
. (I+N)=
! 1-2i 1

(I+N)"!

Adid+N) 1[ 1 —1-2i
:&:_{ ’} (2)

[ I+ N| 6|1-2i 1
For unitary matrix 4% 4 = 1

From (1) and (2), we get

Lol =2 —1=2] 1] 4 2-4
S(-NYT+N)'== =<ly_u = B (say)

6|1-2i 1 1-2i 1 6|2—4i -4
_ 1 —4 2+4i
B ==
Now  (B) 6{—2+4i 4 }
— 7 1 -4 2+4i|| -4 -2-4i 113 0
B B=| . . - -1
36| —2+4i —4 2—4i —4 36| 0 36
Hence the result. Proved.

35.30. THE MODULUS OF EACH CHARACTERISTIC ROOT OF A UNITARY
MATRIX IS UNITY

(D.U. April 2010 U.P.)

Solution. Suppose A4 is a unitary matrix. Then
A4=1

Let A be a characteristic root of 4. Then

AX = X (1)
Taking conjugate transpose of both sides of (1), we get
(4X)° =rx° 2)
= x%4° =2x°

From (1) and (2), we have
X°4% (Aax)=rrxx

-
= X044 x =2 XX
- X = x®x (oA A=1)
= XOx = x’x
- X X(Aa-1)=0 (3

Since X° X # 0 therefore (3) gives
AA=1=0.0or AA=lor|AP=1 = |A|=1 Proved.
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EXERCISE 32.12

1 i

1
1. Show that the matrix 4= T{ B J is unitary.

2| i
2. Prove that a real matrix is unitary if it is orthogonal.

3. Prove that the following matrix is unitary:
1 1
—(1+i) —(-1+i
H U ()
1 1
—(+i) —(1-i
2( ) 2( )
1 1 1
1
4. Show that U =T 1 o o’lisa unitary matrix, where ® is the complex cube root of
1 o o
unity.
5. Prove that the latent roots of a unitary matrix have unit modulus.
6. Verify that the matrix
1+i 1-i
4 l i I
201-i 1+i
has eigen values with unit modulus.

Tick (¥) the correct answer:

7. If X is an eigen value of the matrix ‘A’ then for the matrix (M — AJ) , which of the following
statement (s) is/are coorrect ?

(i) Skew symmetric (it) Non singular (iii) Singular (iv) None of these
(U.P. I Sem. Dec. 2009)
8. A square matrix A is idempotent if :
(@A =4 (i) A'=—A4 (iii) A> = A (iv) 4> =1
(R.G.P.V. Bhopal I Semester June 2007)
9. If a square matrix U such tha U=U"" then U'is
(7) Orthogonal (i) Unitary (7ii) Symmetric (iv) Hermitian
(R.G.P.V. Bhopal I Semester June 2007)

10. If A is an eigen value of a non-singular matrix A then the eigen value of 47! is

(i) 1/ (i) A (iii) -\ (iv) —1/n
(AMIETE June 2010)
ANSWERS
7. (iii) 8. (iii)
9. (ii) 10. (i)




Multiple Integrals

33.1 DOUBLE INTEGRATION Ya f(x;)

We know that
[ £dr = im[f )85 + £ ()8, + £(3) 5, +.

dx—0

+/(x) 8 x,]
Let us consider a function f (x, y) of two variable x
and y defined in the finite region 4 of xy-plane. Divideq
the region 4 into elementary areas.
84,, 64,, 845, ...... 04,

| S Gn) 84+ f(xy,12) Y
)dA =1
Then [ fx.») g}n;iSAz-i- ..... f(x,0,)84,
i~

33.2 EVALUATION OF DOUBLE INTEGRAL

Double integral over region 4 may be evaluated by two
successive integrations. N
If 4 is described as f; (x) <y <f, (x) [y, <y <y,] 0 > X
and a<x<b,

Then [[arceyda=| b [ feepdray

(1) First Method
Jlarcemaa= |7 rocyydy| v

f (x, y) is first integrated with respect to y
treating x as constant between the limits
a and b.

In the region we take an elementary area 6xdy.
Then integration w.r.t y (x keeping constant),
converts small rectangle dxdy into a strip PO
(y &x). While the integration of the result
w.r.t. x corresponding to the sliding to the
strip PQ, from 4D to BC covering the whole
region ABCD.

Second method

d
c

[{ G yydxdy = |

[ Coyyar| dy
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Here f(x,y) is first integrated w.r.t. x keeping y constant between the limits x, and x,
and then the resulting expression is integrated with Y
respect to y between the limits ¢ and d. 4

Take a small area dxdy. The integration w.r.t. x A y=d D
between the limits x,, x, keeping y fixed indicates
that integration is done, along PQ. Then the in-
tegration of result w.r.t y corresponds to sliding

the strips PQ from BC to AD covering the whole
region ABCD.

Note. For constant limits, it does not matter O
whether we first integrate w.r.t. x and then w.r.t.

y or vice versa.

><V

1
Example 1. Evaluate J.o I: (xZ + y2 ) dA, where dA indicates small area in xy-plane.
(Gujarat I Semester Jan. 2009)

X

3
. _ Lex o 2 _ 1 2 y_
Solution. Let 1 = -[0 jo @ +yHdydx = Io {x y+ 3 L dx

1 1 1 x3
T )

Al
= I x3 dx {%L 3 —[1-0] 25 sq units. Ans.

Example 2. Evaluate ‘[_11 Jol_x x!3 y_l/2 (1—x- y)1/2 dy dx .
Solution. Here, we have
7= J‘ J‘ S V2 (1= x— )2 dy dx ()
Putting (1 —x) = ¢ in (1), we get
7= J‘jl 3 de‘OC 2 ()2 gy Q)

Again putting y =ct = dy=cdtin (2), we get
L , L1 !
- 3 2 4 2 (p—cp)2
1 J:lx de.O c 2t ?(c—ct)?cdt
L L VI Vo A Tl 12
= j x dx‘[oc tT e (1=t cdt

-1

I LT LY)) 1 L V% Loz 3/2-1
= I_]cx dx‘[ot (1-1¢) dt—j_lcx dxjot (1-1) dt

- J.llcx; dxp G%} Uolx’—l (1-x)" " dx =B, m):|
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[

1
= .‘-,16 X3 dx 12

N | W

N | —
+
| W

1 T
1
ex3 Zdx =

- Jlenn?

Putting the value of ¢, we get

2

w|3 3 3 3 T
= 5[1(1)—7(1)—2(—1)+7(—1)}=5[

1

1
=J.710 X ayl2 212

2

1
EJ. 3 cdx
241

ml\)‘»—t
|

Tl Tl
_.[_1 2 (1-x) dx:EI—l (3 = x*3) dx =

4/3

| X
2 4
3
91 9nm
%

Ji iz

1
J:l e x3 dx 2

1

) K
7
3

-1

Ans.

Example 3. Evaluate = ”R (x+y)dy dx is the region bounded by x = 0, x = 2, y = x,
(Gujarat I Semester Jan. 2009)

y=x+2
Solution. Let /= ”R (x+y)dydx

Y
The limits are x = 0, x = 2, y = x and “ A
y=x+2 7
5 5 B y2 x+2 Q
X+ x o~
1= J-o dx Jx (x+y)dy—'|-0 |:xy+7:| dx K "
X
2
2 1 2y 2 X
= X(x+2)+—=(x+2)" —x"—— |dx
I, { (x+2)+ (x+2) 2}
2 1 2 I
=I x2+2x+—(x2+4x+4)—x2—x— dx I
0 2 2 X' > X
5 2 -1 0 2
=j0 [2x + 2x + 2] dx
2 2, 2
=2 Qx+dv=2[¥ +xT; =2[4+2] = 12 Ans.

Example 4. Evaluate _UR xy dx dy where R is the quadrant of the circle x> + y° = a

where x >0 and y > 0.

2

Solution. Let the region of integration be the first quadrant of the circle OAB.

2, 2_ 2 _[2 2
”nydxdy (*+y*=a’ = y=\a’-x%)
First we integrate w.r.t. y and then w.r.t. x.
The limits for y are 0 and w/az —x* and for x, 0 to

a.
2_.2

2 a —x
— J‘:xdxﬁ/ﬁydy = J.:xdx{y?}o

o
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a
a5y 71a2x2 x* 7a4
= EJ‘O x(a —X )dx = E|:T— 4 . = Ans.

Example 5. Evaluate J..Lxlxy - y2 dy dx,

where S is a triangle with vertices

(0, 0), (10, 1) and (1, 1).

Solution. Let the verties of a triangle

OBA be (0, 0) (10, 1) and (1, 1).

Equation of OA4 is x = y.

Equation of OB is x = 10 y.

The region of AOBA, given by the limits o > X
y<x<l10yand 0<y<1.

[[ N =y dvax = j; dy fymy(xy - ") dx

= [ 21 oy loyzjl 21 02y gy - 18 2 dv
073y i 03y 0
1
3
y 18
=18/ =—| =—=6 Ans.
MO : s

Example 6. Evaluate ”A X7 dx dy, where A is the region in the first quadrant bounded

by the hyperbola xy = 16 and the lines y = x, y = 0 and x = 8.

Solution. The line OP, y = x and the curve PS, xy = 16 intersect at (4, 4).
The line SN, x = 8 intersects the hyperbola at S (8, 2). y = 0 is x-axis.
The area A is shown shaded. Y4

Divide the area in to two part by PM P(4,4)
perpendicular to OX.

I
I
For the area OMP, y varies from 0 to x, \1//* i 52
and then x varies from 0 to 4. ! T
x
For the area PMNS, y -series from 0 O I\/II N f(

to 16/x and then x varies from 4 to 8.
) (AT 8(16/x 5
”Ax dxdy = -[0 _[Ox dxdy+j4j0 x © dx dxy

4 x 8 16/x 4 8
= .[o x? dx‘[o dy + L x? dxfo dy = Io x? [y]g dx+j4 x* [y]z)élx dx
47 278
_ ij3 dx+jfl6xdx= {’ﬂ + 16{%} = 64 + 8 (82 — 4%) = 64 + 384 = 448. Ans.
0 4
32 2
Example 7. Evaluate ” (x+ y)2 dx dy over the area bounded by the ellipse — + g—z =1
a

(U.P. Ist Semester Compartment 2004)
2 2
Solution. For the ellipse — + 5] =1
a
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A
= =t l-— = ==
b y

S
|
=

i

*. The region of integration can be expressed as

—a<x<aand——\l —x? <y<—\la —x? F

”(x+y)2 dx dy =”(x + % +2xy) dx dy

b/a a? - x?
—I j( b/ﬂ)ﬁ(x +y + 2xy) dx dy

e e wa P e

blaJa® -
—I j e = 22+ ) dydx+0
[Since (x* + y?) is an even function of y and 2xy is an odd function of y]
) (Ghe =
L[5
3
=4 :{éxz Ja* - x* +3b—3(a2 —xz)m} dx
a

a

[On putting x = @ sin 6 and dx = a cos 6 d0]

b 5 B o5 )
= 4J‘2L—.a sin 9.acosG+—3a cos” 0| x acos0dod
0\a

3a
E( 3 ‘\ 3
= 4j2 a’b sin? 0 cos” 6+ﬂcos4 0]do =4 a3b.l.l.£+ﬂ.§.l.E
0| 3 ) 422773 422
= —(a3b+ab3)_ ab (a* +b*) Ans.
Y =2
Example 8. Evaluate ”(xz + y2 )dx dy t (%, 2) C y D{,2)
throughout the area enclosed by n the i |
I
curvesy =4x,x +y =3, y=0and y . i i
=2. B ! i y=3-x
3 1 dy:
Solution. Let OC represent y = 4x; BD, x i ! +
+y=3;08,y=0,and CD, y = 2. The dyi ! AN
given integral is to be evaluated over the I i u
area A of the trapezium OCDB. 0 : . > X
y=0 E y=0 F y=0 B (3,0)

Area OCDB consists of arca OCE, area
ECDF and area FDB.

1
The co-ordinates of C, D and B are [5, 2) (1, 2) and (3, 0) respectively.
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[, v
= HOCE(x2 +y%) dy dx + HECDE(JC2 + ) dyde+ [[ P+ )7)dy dx

S la [Ny [Lae [T e v a6 w0 dy

1)

4x
B[ 2 2 Aoy %76 5
Now, I, = IO dx_[o (x*+y9)dy = J.o {x y+?}o dx=_[ —x dx
4%
76 % 5 76 | x 76{1 1} 19
=—| Xde=—|—| =—|—.—|=—
370 314 0 31416 8
2 1 o
_ Yy _ 2
I, = j dx_[ (F+yHdy = .[‘ {x y+?}0 dx—.[‘z(Zx +§) dx
1
2x° 8 (2 8) [21 8 1] 23
=|Z=—+=x| =||Z+=| |-+ |==
3 3 y 3 3 38 32 12
3.3 2 2 3o P 3 2 G-’
I3:J‘1de.O (x“+y)dy = L xy+? abc:J.1 x*(B-x)+ 3 dx
0

3 4 4
:f 32 P B0 s X G-t [, 81 1 161 22
I 3 4 3x4 | 4 271273

. 19 23 22 463 3l
+ dyde=L+L+I;, = —+—+—=—=9—.
PSSl N E 9 T iv 47

Ans.

EXERCISE 33.1

Evaluate
I2Ixz e% dy dx 2. '[Oaj(;/;xy dx dy
3. I I dx dy 4, .[01 I; 1+ xp*) dx dy
2z Zax—x 2a Dax - x*
5. J J xy dy dx 6. I IO x> dy dx
0 0

i ) e
e —-x" -y~ dyd. 8. —_—
0 0 cor T ee 0 0 1—x2—y2

dx dy F xdxdy
(1+ey)\/az_xz_y2 10. ”

2 2
0oy\VX tY
2

(x* +3xy?)dxdy (A.M.LE.TE. June 2009)

n |
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12

13

14

15

1

(=)

. “.(5—2x—y)dxdy, where 4 is given by y =0, x + 2y = 3, x = 2.
4

: _”xy dx dy, where 4 is given by x*> + 3> — 2x = 0, 3> = 2x, y = x.
A

. _”«[4 x? —y2 dx dy, where A is the triangle given by y =0, y = x and x = 1.
4

o Isz dx dy, where R is the two-dimensional region bounded by the curves y = x and y = x*.
R

b ”\/xy(l+x—y) dx dy where 4 is the area bounded by x =0,y =0 and x + y = 1.
A

ANSWERS
1 -1 2 a 3 na’
. e — . 6 . 4
LA 5 2 6, S
©o210 3 T8
3 a
7 L 8 = 9 Elog 2e
o4 C 4 T2 1+¢€°
a? 14 217
10. 710g(\/§+1) o 2. =
7 1{n 3) 1
13. E 14. gk?-i'TJ 15. E
16. 2T
105
33.3 EVALUATION OF DOUBLE INTEGRALS IN POLAR CO-ORDINATES

0
We have to evalaute J

) 2 I '2(;? f(r,8)dr dB over the region bounded by the straight lines
4

1
0 =0, and 0 = 0, and the curves » = r, (0) and r = 7,
(0). We first integrate with respect to » between the
limits » = r,(0) and r = r,(0) and taking 6 as constant.
Then the resulting expression is integrated with respect
to 6 between the limits 6 = 6, and 0 = 0,.

The area of integration is ABCD. On integrating first
with respect to r, the strip extends from P to O and the
integration with respect to 6 means the rotation of this strip PQ from 4D to BC.

Example 9. Transform the integral to cartesian form and hence evaluate
[ 5] 7+ sin6 cos 0 drdb
0do )

Solution. Here, we have
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_[ nj “+3 sin 0 cos 0 dr d0 (1) T
ol a
Here the region i.e., semicircle ABC of integration is bounded
by r =0, i.e., x-axis. c 5 A
r=aie., circle, 0 = 0 and 6 = 7 i.e., x-axis in the second
quadrant.
[ [ (sin ) (r cos 0) (» d6 dr)
Putting x =r cos 0, y =rsin 0, dx dy = r dO dr in (1), we get
[2 2 [2 2
Ja I e xydy dx = Ia xdx‘[ o ydy
-a J0 -a 0
D) a?—x? D) 2 A
- [’ xd’{y_} =’ xde &%) r=2cosb
—a 2 0 —a
| Since f(x)is odd function | © =% o dr w=2
a 2 3 =
=— a” x—x")dx =0 Ans. 0 > X
2'|.*a( ) Ia f(x)dx=0 U
—da
Example 10. Evaluate J I (x +y?)dy dx
\
ax-a? Y
Solution. J. I (x +y ) dy dx
Limits of y= 2x—x° = 32 =2x - x%
= X+1yP-2x=0 ..(1)
(1) represents a circle whose centre is (1, 0) and radius AY
-1 r=2cos 0
Lower limit of y is 0 i.e., x-axis. n
Region of integration is upper half circle. 0=3 rd 6 dr x=2a
Let us convert (1) into polar co-ordinate by putting o 0=0 »X
x=rcos 0,y =rsin 0
P —2rcos® =0=r=2cos0
Limits of » are 0 to 2 cos 0
- v \
Limits of 0 are 0 to By
2 cosO
2 042x— ¥? 2cos O 2cos O 4
joj (x* +y)dydx—j j rz(rdedr)—jzdej r3dr—j2d9{ }
0
Yy
= 3x1 3
:4.’.0200549d9=4>< ket T Ans.

4><2><2:T

J I\/Zx ¥ xdydx

Example 11. Evaluate
+y

\/7 by changing to polar coordinates.

(A.M.L.E.T.E. 2017)
Solution. In the given integral, y varies from 0 to /2x — x* and x varies from 0 to 2.
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2

y =42x—x
= ¥ =2 X
= x>+ 372 =2x

In polar co-ordinates, we have 72 = 27 cos 0 = r=2cos6.

e
*. For the region of integarion,  varies from 0 to 2 cos 6 and 0 varies from 0 to 3

In the given integral, replacing x by » cos 6, y by r sin 6, dy dx by r dr df, we have
Y

X y=\2x—x2 . 4 r=2cosH
=x
o i =3
X= 1 x=2
o > o 0=0 X
y=0 1 X
I
I
|
v
v

/2 p2cos0r cos 0.7 dr dO /2 ¢ 2cos0
j I . W J.o .[o rcos O dr db
P 2 2cos 6 1 ) 4
.[n cose{ } dezjo" 200s36d9:2.§:§. Ans.
0

EXERCISE 33.2

Evaluate the following:

1- 0
[T[e P 2m02 sin0 d0 dr
0J0

1 (%)
2. _[(:t _[:( e )r2 cos O dr db

dr do
3. ST here disa loop of ? = a? cos 20
Aﬂrz +a2

4. .””2 sin O d0 dr where A is r = 2a cos 0 above initial line.
4

P
5. Calculate the integral J‘J. (x2 y)2 dx dy over the circle x> + > < 1.
x4y
6. ”(xz + y%) x dx dy over the positive quadrant of the circle x> + 1% = & by changing to polar
coordinates.

78 J‘IR \[x2 s y2 dx dy by changing to polar coordinates, R is the region in the xy-plane bounded

by the circles x> + 17 = 4 (AMIETE Dec. 2009)
8. Convert into polar coordinates

I()Zaj()zax = dx dy

9. Hr3 dr d®, over the area bounded between the circles » = 2b cos 0 and » = 2b cos 0.



10 < Mathematical Physics

10. ”r sin O dr d © over the area of the cardiod » = a (1 + cos 0) above the initial line.
11. I ‘[sz dr dO, where A is the area between the circles 7 = a cos 0 and » = 2a cos 0.
1
12. Transform the integral J 0 I; f(x, y)dy dx to the integral in polar co-ordinates.
ANSWERS
3
1. §na3 2 éTca3 3. 2(17M 4 247
3 8 2 3
a’ 38m
5. n-2 6. — 7. —
5 3
n/2 2acos6 In 5
8. [ [ rdoar 9. = (@t-ph 10. 2nd’
2 8
0 0
28(13 n/4 ¢ secH
= [ seeyrdedr
33.4 CHANGE OF ORDER OF INTEGRATION

On changing the order of integration, the limits of integration change. To find the new
limits, we draw the rough sketch of the region of integration.

Some of the problems connected with double integrals, which seem to be complicated,
can be made easy to handle by a change in the order of integration.

X
Example 12. Evaluate jaja ~— dxdy by changing the order of integration.
0°y x“+y
(AMIETE June 2010, Nagpur University Summer 2008)
Solution. Here we have v
A
acra X _
[_Iij 21y dxdy y=a B
Here x=a,x=y,y=0and y=a
The area of integration is OA4B. S
On changing the order of integration Lower limit of ) <=
y=0and yA—
upper limit is y = x.
Lower limit of x = 0 and upper limit is x = a. o v=0 A »>X

I =ngdx I(j):x szlryz dy

1 =
= Ia xdx{— tan”! Z}
0 X x|
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Y
= j £d)c (tanfli—tanf1 Oj 4
0 x X y=a B (a, a)
- .[a dx (Ej I =25 Ans.
0 4 4-70 4
,/+
Example 13. Change the order of integration in 3
1 ¢p2-x X=a
I = j J. , xydxdy and hence evaluate the
0 Jx
same. (A.M.LE.T.E. June 2010, 2009) »X
0 y=0 A "

1 p2-x
Solution. / = jo sz xy dx dy

A

X' X' x=1 ;
The region of integration is shown by shaded portion in the figure bounded by parabola
y = x? and the line y = 2 — x.

The point of intersection of the parabola y = x? and the line y = 2 — x is B (1, 1).
In the figure below (left) we have taken a strip parallel to y-axis and the order of inte-
gration is
j 1x dx I > d
0 2 Yy

In the second figure above we have taken a strip parallel to x-axis in the area OBC and
second strip in the area ABC. The limits of x in the area OBC are 0 and \/; and the
limits of x in the area ABC are 0 and 2 — y.

Vr 272

1 o 2 2=y 1 x> 2 X

= ondyjo xa’x+J~1 ydxjo xdx:_‘-oydy{—} +_‘-1 ydy{—}

0

2 2
0

2|3

472
=l+l 2y2—iy3+y— =l+l{8£+42+il}
6 6 2 3 3 4

1
1, 12 2 LY 12 2, .3
= 2I0y dy+2f1y(2—y) dy = { O+2f1 (4y —4y" +y") dy

2

_ 1, 1[96-128+48-24+16-3] 1 5 _9
6 2 12 6 24 24

é Ans
2 .
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w ox ()
Example 14. Evaluate the integral |~ [ xexp k—x? | dxdy by changing the order of

integration (AMIE.TE., June 2017)
Solution. Limits are given
y=0andy=x
x=0and x =
Here, the elementary strip PO extends from
y=0to y=ux and this vertical strip slides from
x=0tox= oo <
The region of integration is shown by shaded x 3
portion in the figure bounded by y =0, y = x,
x=0and x = o0.
On changing the order of integration, we first
integrate with respect to x along a horizontal P

»
>

. »X
strip RS which extends from x =y to x = o © y=0
and this horizontal strip slides from y = 0 to
y = to cover the given region of integration. AY
New limits :
xX=y and x=o0
y=0 and y=o0
We first integrate with respect to x. Q
+
Thus, 3
X = oo
2 ( 2)
o] o) ’7 _ [ee] OO, Z Y E ’7
jo dyjyxe dx—jodyjy 2{ ye dx ;
o >X
2% 32
N IR B Yo v |22
_J.o dy 2e Io dy 0+2e -.-026 dy
y
. N, I ,
= {% (—e V) (E] (e” )} (Integrating by parts)
0
1 1
_{(0_0)_(0_5}:5 Ans.
Example 15. Change the order of the integration YA B
| :’ | :e—” ydydx (B.P.U.T, I Semester 2008)
Solution. Here, we have
o0 X —xy /+
J- o J- N dy dx N
Here the region OAB of integration is bounded by
y = 0 (x-axis), y = x (a straight line), x = 0, i.e., y
axis. A strip is drawn parallel to y-axis, y varies 0

to x and x varies 0 to oo. o) y=0 A
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On changing the order of integration, first we integrate w.r.t. x and then w.r.t. y.

A strip is drawn parallel to x-axis. On this strip x varies from y to co and y varies from
0 to co.

Hence j: I: e ydydx = I:y dyj.;o e Vdx Y4 A

© (e_xy\w
RIRCd =)

© A
:j y_dy[o_e’yz] + X = oo
o -y
,IOO *)’zd _lf A >
=, e y—2 T ns. o B—X

Example 16. Change the order of integration in the double integral

2a ¢ \Zax A Bax B
y="\2ax =
Io J — V dx dy

Solution. Limits are given as

x=0,x=2a

y = 42ax e
and  y=+2ax-x" = ?=2ax—x’
and (x—ayY+y*=ad° o] A X

The area of integration is the shaded portion OAB. On changing the order of integra-
tion first we have to integrate w.r.t. x, The area of integration has three portions BCE,
ODE and ACD

2a Y,
dx J' V dy A B (2a, 2a)

= Ijady Ij;/zaV dx +j:dy .[“ @

¥y 2/2a

a 2a
+j0 dyfa+m V dx Ans. (x—a)2+ y2= a2

EXERCISE 33.3

Change the order of integration and hence evaluate the following:

COSydy 2a f3a-x » 2
e RS
4a
o A ) - ST

s [

Sf(x,y)dxdy

(=2
—
!
=N

&
| =
\g
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7. [ jy“;‘did’; (M.P. 2003) 8. []"" xdyax

2+ x
0. [0 [ femaxdy
0. [7]7 07D drdy
1 2-y
A fx: [ ¥ (AMLE.T.E. June 2009)

2a-—
12. J.a J- 2a ! xy dx dy (U.P. I Semester Dec. 2007)

13. f I“,—a xy dx dy [Hint: Put x = a sin®> © = dx = 2 a sin 0 cos 0 d 0]

Lpl=y _
14. Iojq APy 20— x— )2 axdy

2
2a x
15. jo dxj04a(x+y)3 dy

1

(=)

: L; _.'Oy(x2 +y2)dxdy+j12 J.027y(x2 + %) dx dy

[2_ 2
I Oa _[ 0 e »? \[xz +y% dxdy by changing into polar coordinates.

(U.P. I Semester Dec. 2007)

17.

|

dxdy _[ I

18]’[

Recognise the region R of integration on the R.H.S. and then evaluate the integral on the right

dx dy :J.RJ.;# dy dx

lx+y )’x+y

in the order indicated.

19. Express as single integral and evaluate :

L X a A az *Xz
Ioﬁ J‘O)cdxdy+'[i Io x dx dy
V2
20. Express as single integral and evaluate :

1y 22—y
J.O -[0 (x2 +y2)abcdy+j.1 JO ()c2 +y2)dxdy
21. If fix, y) dx dy, where R is the circle x* + y*> = @, is R equivalent to the repeated integral.

(AMIE winter 2001)
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ANSWERS

10.

12.

13.

14.

15.

17.

18.

19.

21.

a a  cosydx .
(a) IO dy Iy m (b) 2sin a.

(a)fgdyfoz@(xZ+y2)dx+ja3”dyjo3"’ 32) dx (b)314“
j j*r(x2+y )y 12 ax.

Joax] jmf(x, v+ [ e[ ey

[ dxj Ff(x ) dy

2—
J: d—; Exdxﬁ- .{ d7y -([yxdx; logg

(a)job dyj:y/bx dx (b)éazb
[otr]; feyydee] a[> reemds
]l 0 e a

J; J.(;/Exy dxdy+jozaiy xydxdy,%

[2 2
jzaxdxj - ) ydy,%a4
0 0 3

1

1
1 l-x — = 3n
3 2(1=x—1v)2 _
j_lx de-0 y 2(A-x-y)%dy, ;

a 2a 3 Lof2=x 2, 2y, 5
IO dyjm(x +y)dx 16. jodxjx (x“+y )dy,3
a
20

Region Risx=0,x=y,y=1land y = 2,%105;2.

jo% dyjy“ahyzxdx, 65335 0. [ ac[""

5
(o + ) dy, 3

2na

[ [1@.0)rras.
00
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33.5 CHANGE OF VARIABLES

Sometimes the problems of double integration can be solved easily by change of inde-

pendent variables. Let the double integral as be _” f(x,y)dxdy.Tt is to be changed by
R

the new variables u, v.

The relation of x, y with u, v are given as x = ¢ (u, v), y = ¥(u, v). Then the double

integration is converted into.

[[f @G, v). ¥ )} J | du dv, where

ox

a(xay) ou
dcxdy=Jdudv= ——"—"=dudv=

x dy = |J| du dv a(u’v)”" S

ou

du dv

Example 17. Evaluate J J (x+ y)* dx dy,where R is the parallelogram in the xy-plane
R

with vertices (1, 0), (3, 1), (2, 2), (0, 1), using the transformation u =x + y and v = x — 2y.
Solution. The region of integration is a parallelogram ABCD, where 4 (1, 0), B (3, 1),

C (2,2)and D (0, 1) in xy-plane.

The new region of integration is a rectangle A'B'C'D’ in uv-plane

xy-plane |4 = (x, y) B=(xy) C=(xy) D=(x,y)
A=(1,0) B=(,1) C=(,2) D=(0,1)
A" = (u, v) B =(u,v) C' = (u,v) D'=(u,v)
uv-plane |A'=(x+y,x—=2y) |B'=@x+y x—-2y) C=(x+y,x-2y) |D=x+y x-2)
A=(1+0,1-2%x0)|B=@+1,3-2x1)|C=(2+2,2-2%x2)|D'=(0+1,0-2x 1)
A=(1,1) B'=@4,1) C'=(4,-2) D' =(1,-2)
Ya va A, 1) v=1 B(41)
C(2 2 o >
u
B(3,1) u=1 u=4
D
(0, 1)
RO, > X D(1,-2) v=—2 C'(4,-2)
(xy-plane) (uv-plane)
u:x+y} x=%(2u+v)
and =
v=x-2y and yzé(ufv)
Ox Ox 2 1
oy |aw | |3 3|1
S oww) |y o)L 13
ou ovl 13 3
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dx dy =|J|dudv:%dudv
4
2 _ 1 4 2 1 . 11 T/I3 _ 1 _ 1 _ _
J-‘I[(x+y) dxdy = lej'lu .gdudv = ng{? 1 dV—J.727dV—7[V]2—7><3—21
Ans.

Example 18. Using the transformation x + y = u, y = uv, show that

2
jj[xy (1—x- y)]]/2 dx dy = %, integration being taken over

the area of the tringle bounded by the lines x =0,y =0,x +y = 1.

Solution. _”[xy (-x— )" dxdy
X+ty=uor x=u—y=u-—uv,
o
dx dyz—a(x’ Y) du dv = O OV du dv
0 (u,v) oy oy
ou Ov
dx dy = " ldudv=ududv. (e} y=0 A > X
% u
(xy-plane)
x=0 = u(l-v)=0
= u=0,v=1
y=0 = uv=0 v
= u=0,v=0 P o=
xty=u = u=1 : Q
Hence, the limits of u are from 0 to 1 and the limits of
v are from O to 1. B B
The area of integration is a square OPOR in uv-plane. Y =0 u=1
On putting x = u —uv, y = uv, dx dy = u du dv in (1),
we get R
o’ v=0 P X
[ —un) @)™ (1 - 1)" u du dv (uv-plane)
I 9 172 L2 1/2 3-1 12 3 EX% E;
- _ _ T2 2 (1-p)2 =
jou a-u) dujov -0 av[ #70-42 ¥2 1-b)2, 5 x5
2
3 1’7 1F 1~ 1
2.|= — === —n. =71
_ 2 2122l2_ 2 X2\/_2\/_:2_75 Ans
7533 2 753 2 105 :
22212 222
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EXERCISE 33.4

1. Evaluate I I e SIHL J dx dy by means of the transformation u = x + y, v = y from

(x, ) to (u, v)

1 1-x 1
2. Using the transformation x + y = u, y = uv, show that Io -[0 dy dx = 5 (e-1

X+y

1 .
3. Using the transformation u = x — y, v = x + y, prove that fJCOS — gy dy = Esml where R
+y

is bounded by x =0,y =0, x + y =1

1 1 1
Hint:x=—(u+v),y=—(v—u)sothat|J|=—
[ L A U |/ J

ANSWERS

a

33.6 AREA IN CARTESIAN CO-ORDINATES

Let the curves 4B and CD be y, = f, (x) and y, = f, (x).
Let the ordinates AD and BC be x = a and x = b.

So the area enclosed by the two curves y, = f; (x) and y, = f;(x) and x = a and x = b
is ABCD.

Let P(x, y) and O(x + dx, y + 8y) be two neighbouring points, then the area of the small
rectangle PQ = dx. 6y.

)2 Y
Areaof the vertical strip= lim > 6voy=["dy 4 Yo =f, (X)
oy—0 n N c
Ox the width of the strip is constant throughout. D Q(xl+ 5x, y + 5y)
If we add all the strips from x = a to x = b, we get 8 : oy |x=b
B
b
b
TheareaABCD= lim ZSx I . dy =j dx [y y,=f 00 P
ox—0 P M1 a N o > X

Area = j: I:z dx dy
1

Example 19. Find the area bounded by the parabola y* = 4ax and its latus rectum.

Solution. Required area = 2 [(area (ASL Ya
9 area (ASL) Ny
=2 [ dydx R
0 J0 g X=a
a ©
=2  2Jax d 2 >
.[0 ax ax A y=0£ S(a,O) » X
@
(x3/2 8a” 2 -
B Ls/z )" L
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Example 20. Find the area between the parabolas y* = 4 ax and x* = 4 ay.
Solution. > = 4ax (1)

= 4ay ..(2)
On solving the equations (1) and (2) we get the point of intersection (4a, 4a).

Divide the area into horizontal strips of width dy, x varies

Y
from P, Za to O,+4ay and then y varies from o
07 A(4a 4a)
Oy =0)to 4 (y=4a). \/_ Nig 2 4 ax
4a P -
.. The required area = I dy I ) /4a ~ Q R
X' 0 X
B 4a \/@ _ 4a y_2
- Io dy[x]y2/4a _Io dy{ﬁa _4a}
4a Y’
3/2
- dg2l—_ Y
3 12 a
2 0
4a . 5n (4a)’| 32 5 16 5] 16 ,
= | ——(4a ——|=|—a ——a |=—a Ans.
{ 3 T 3 3 e
Example 21. Find by double integration the area enclosed by the pair of curves
Y
=2- dy =202 - 4 Fs
y=2-xand?=20-x) ‘4 .
Solution. y=2-x

=22 -x)
On solving the equations (1) and (2), we get the points of
intersection (2, 0) and (0, 2).

A=dexdy o) (2,0)'X

Imdy Id[y]m Idx 4-2x —2+x]

2
The required area = Jo dx

2
2 32 x
- (4-2x)P2 —ox 4
3x—2 2 0

52
—{—%(4—2x)3/2—2x+%} :(—4+i]+§=§ Ans.

EXERCISE 33.5

Use double integration in the following questions:
1. Find the area bounded by y = x — 2 and )? = 2x + 4.

2. Find the area between the circle x? + 3 = ¢ and the line x + y = a in the first quadrant.
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Find the area of a plate in the form of quadrant of the ellipse z—z + Z}—j =1
Find the area included between the curves y> = 4a (x + a) and y> = 4bh(h — x).
(A.-M.LE., Summer 2001)
Find the area bounded by (@) y* = 4 — x and y* = x.
b)x-2y+4=0,x+y-5=0,y=0 (A-M.LE., Winter 2001)
Find the area enclosed by the leminscate 7> = a® cos 2 6.
Find the area common to the circles x> + y> = a? and x* + )* = 2ax.
Find the area included between the curves y = x> — 6x + 3 and y = 2x + 9.

(A.-M.LE., Summer 2001)

Determine the area of region bounded by the curves xy = 2, 4y = x%, y = 4.

ANSWERS

T ab
4

18.

1682

@5~

8822

3

2. (n—2)d*4 3.

&

27
@] >

28
——4log?2
3 g

33.7

AREA IN POLAR CO-ORDINATES

Area = Hr do dr

Let us consider the area enclosed by the curve r = f(0).
Let P (r, 0), O(r + dr, 6 + 30) be two neighbouring
points.
Draw ares PL and OM, radii r and r + or.

PL = rd0, PM = or
Area of rectangle PLOM = PL x PM = (r30) (6r) = r
36 or.
The whole arca A is composed of such small rectangles.

Hence,
li 60.0r =

4= Jm, 3 Troos
360 -0

o) »X

O = /2

[[ra0ar

Example 22. Find by double integration, the

area lying inside the cardioid r = a (1 + cos 6)
and outside the circle r = a.
Solution. r=a (1 +cos0) (1)
r=a ..(2)
Solving (1) and (2), by eliminating r, we get
a(l+cos®)=a = 1+cosB=1
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T W
06=0 O0=——or—
cos = )

limits of 7 are a and a(1 + cos 0)
T W

limits of O ——to—

imits of O are )

Required area = Area ABCDA
/2 a(1+cos0)for cardioid /2 a(l+cos0)
=[] rdrdo = [ /zj rdrd 0

—mn/2 J rfor circle a

. ( rz \ a(l+ cos 0)

.[wzk?}a

2
B a_ /2 2
do = = J‘in/z[(1+cos 0)> —1]d0

2
_a w2 a2,
=5 Jlm(COS 0+2cos0)db = a _[0 (cos” 0 +2 cos 0) dO

2
- d [§+2(Sin9)g/2}=a2 Bu} - %(n+8)

a’ J.;I/z(cosz 0+2cos0) dO = a* [J.Oﬂ/zcos2 0do+ ZI;/zcos 0 de}

Ans.

Example 23. Find by double integration, the area lying inside the circle r = a sin 0

and outside the cardioid r = a (I — cos 6).

Solution. We have,

r=asin 0 (1)
r=a(l —cos0) ..(2)
Solving (1) and (2) by eliminating », we have
sin®=1-cos® =sinO+cosb=1
Squaring above, we get
sin’0 + cos?0 + 2 sin 6 cos 6 = 1
= 1+sin29=1:>sin29=0:29=00rn:>9=00rg

The required area is shaded portion in the fig.

Limits of 7 are a(1 — cos 0) and a sin 0, limits of 0 are 0 and g

asin®

T
Required area = Ioz J‘a(licose)r dr do

S

) asin©

_ r _lpw2 509 2

- JO {2} de_zjo a® [sin?0 — (1 cos 0)>]d0
a(l—cos0)

2 cnn
:a—IO (sin29—1—00529+20059)d9
22 . < O)
/2 Yy
= %UO (—200s26+2cose)d9} =°

2

a
2

/2 2 /2
j 2 cos ede+j 2¢0s0d 0
0 0

Y40 =

nja

r=a (1 -cos 0)

r=asin6

XV
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r
a Y /2

= — —2—j+2 in 0
2 [ 4 (sin 0o }
-

-4 —£+2[sin£—sin0)
21 2 2
R i

=—|-=+2 :az(l——) Ans.
21 2 4

Example 24. Find by double integration, the area lying inside a cardioid r = 1 + cos
0 and outside the parabola v (1 + cos 6) = 1.

Solution. We have,

AQ=n/2
r=1+cos0..(1) rde dr
r(l +cos0) =1 -(2) A Q
Solving (1) and (2), we get E
(1+cosB)(l+cosB) =1
(1 +cos 0)? =1 0 D B 0-0
1+cosO =1
cosf=0= 0= i—g Gy
. 1 . W
limits of » are 1 + cos 6 and ———— limits of © are ——to—.
cos 0 2 2

Required area = Area ADCBA (Shaded portion)
T 2 \ 1+ cos6

I e - [ 2 k S

/2 5 1
j (1+cos0)* - ———— | d®
/2 (1+ cos 0)

1+cos®
l+cos6
2
= ljn (1+cos29+20056)7; do
29d-n/2 0 2
(20052 7)
2 .
/2 ]
:2><l (1+00526+200$9)—lsec49 do
240 4 2 |

(1+cosze-i-Zcose)—l[l+tan2 6] sec’ 28 do
4 2 2

/
"2 (1+M+2cos9] 1[1+tan —)sec do
i 2 4 2

[ cos 20
1+—+

+2cos0 —l(sec2 9+ tanzﬁ x sec’ 9) 49
4 2 2 2

a3

sin 20
4

T T | n 1, 3= 3n 11 3n 4
—+—+0+2sin———tan———tan” — | = | —+2—-————|=|—+—=| Ans.
4 2 2 4 6 4 4 2 6

9_,_94. +2sin9—l(2tang+ztan39j
2 4 2 3 2

Il
— — — —
\S] S a
2
N
| —
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EXERCISE 33.6

Find the area of cardioid » = a(1 + cos 0).

Find the area of the curve * = a? cos 20.
Find the area enclosed by the curve » =2 a cos 0

Find the area enclosed by the curve » =3 + 2 cos 0.

o P

Find the area enclosed by the curve
= a? cos*0 + b? sin0.

6. Show that the area of the region included between the cardioides » = a(1 + cos 0) and » = a
2

(1 —cos 0) is %(37: —-8).
7. Find the area outside the circle » = 2 and inside the cardioid » = 2(1 + cos 0).
8. Find the area inside the circle » = 2a cos 0 and outside the circle » = a.

9. Find the area inside the circle » = 4 sin 0 and outside the lemniscate 72 = 8 cos 2 6.

ANSWERS
2
1. 3”2” 2 & 3. nd 4 1l n
(n 3) 8
T 2 2 2T
5. E(a +b%) 7. (m+8) 8. 2a L§+T 9. (§ﬁ+4\/§74]

33.8 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE INTEGRAL)

When the area enclosed by a curve y = f'(x) is revolved about an axis, a solid is generated,
we have to find out the volume of solid generated.

Y 4
Volume of the solid generated about x-axis
b
= J Iyz(x)2n PQ dx dy
ady(x)
Example 25. Find the volume of the torus generated

by revolving the circle x> + y* = 4 about the line x = 3.

Solution. x> +1? = 4
v=[[@rPoydrdy=2n[[G-x)dvdy

) \

) dxff;@—x)dy "
2 -2/ o N

ZnJ':rz dx(3y—xy)j\/17 P(,‘E,)_ _______ Q

By - o > X
- 2n_‘-izdx[3\/4—x2—x\/4—x2 J x=3

+3\/47x2 fx\/4fx2

v
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47cj_22[3\/4—x2 — x4 —x7]dx

2
4n {3§w/4—x2+3x%sin1§+%(4—x2)3/2} =4n[6x§+6xﬂ=24n2 Ans.
-2

Example 26. Calculate by double integration the volume generated by the revolution

of the cardioid r = a (1 — cos 0) about its axis. (AMIETE June 2010)
Solution. » = a (1 — cos 0) _os® N
v=2n| [ yaxdy=Vv=2n] [(a0ar) (=8
y dx dy y ,
= 2n[d0 [rdr(rsin6) d=n 0=0 ,
X ax o) X
a(l—cos 6
=2 [ sin0 a0 [V ar
3 a(1—cos0) )
=2nj smedﬁ{ } b~ a (1— cos 0)* sin 6 dO
0 3
2na [(1-cos®)* ] ZTca 3
-5 7 [16]——na Ans.
0

Example 27. A pyramid is bounded by the three co-ordinate planes and the plane
x + 2y + 3z = 6. Compute this volume by double integration.

Solution. x+2y+3z =6 (1) Ya
x =0,y =0, z=0 are co-ordinate planes.

The line of intersection of plane (1) and xy plane
(z=0)1is

xX+2y=06 -(2)
The base of the pyramid may be taken to be
the triangle bounded by x-axis, y-axis and the

line (2).
. = 6,0
An elementary area on the base is dx dy. ov v 7 0 ©.9

> X

Consider the elementary rod standing on this area and having height z, where

6-x-2y
3z=6-x-2yo0r z= ————
3
. 6-x—-2y
Volume of the rod = dx dy, z, Limits for z are 0 and —

Limits of y are 0 and = and limits of x are 0 and 6.

6x2yd
3
6—x

6-x (o6 _ — )2
:%j;dy(w—xty—yz)oz :%f: 6(62 x)—x(62 x)—(62x)de

Required Volume—J. J 2 zdxdy= I dx J.
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6(36—6x 6x—x* 36+x*—12x)
= —J - - dx
30072 2 4

1 6 2 2
:—J (72 —12x —12x+2x° =36 —x" +12x) dx
1270

6
1 (6 12 1247 1
= — [ 120+36) dv=—| - =4 36x| = —[72-216+216]=6 Ans.
1270 203 2 , 2

EXERCISE 33.7

1. Find the volume of the sphere x*> + )? + z2 = a? by revolving area of the circle x> + y? = a?.
ANSWERS
33.9 CENTRE OF GRAVITY K
__ijxdxdy __ijydxdy G
t J‘J.pdxdy e ijdxdy o| > X

Example 28. Find the position of the C.G. of a semi-circular lamina of radius a if its
density varies as the square of the distance from the diameter. (AMIETE, Dec. 2010)

Solution. Let the bounding diameter be as the x-axis and a line perpendicular to the
diameter and passing through the centre is y-axis. Equation of the circle is x> + y* = a.
By symmetry X =0.

:Hypdxdy

I Ipdxdy
) jj(xﬁ)ydxdy_I”adxfoaz_xzfd
= J. J'(kyz)dXdy _J.j, dx‘[(:/az,xzyzd

o]

37 (@® —x) dx

2 Put x =a sin 0

a ( 3\ a 4.|.a (az _x2)3/2 dx
Ia"’“k 3) ’
0
3'[ En (a2 — a? sin? 6)2 acos 0d0 3'[ En @ cos’ 0d0
-2 T
4"- En (a2 — a? sin? 6)3/2 acos9do 4J En a* cos* 040
2 2
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4x2
GO

4%x22

\

2a
Hence C.G. is LO Ans.

Example 29. Find C.G. of the area in the positive quadrant of the curve
X2 4+ 2= 23,

dexdy
J. Idx dy

Ifydxdy
dexdy

2/3 _ 2/3)3/2

Y=

Solution. For C.G. of area; X =

J-:x dx I;a dy J- xdx[y](a
X = = [Put x = a cos’0]

2/3 2/3 3/2 23 2/3 3/2
R T

0
J'“x dx (a¥® — X3y j acos® 0 (a*? - a*” cos® 0)*? (= 3a cos® 6 sin 0 d6)

2/3 x2/3 )3/2

_[(ja’x(am3 fx2/3)3/2 I (a 23 _ %3 cos? )3/2 (= 3a cos’ B sin 0 4 0)

T T
I023a3 cos>0sin>0 cos>0sin 0 d O aI02sin4900559d6 2E

B P B '5'23
J.23azsin39c0526sin9d9 ‘[ZSin4600526d9 —|=
0 0 212
204
344 ) (©®)a  256a . _ 256a
F’T 797 éé,ln_315ﬁ’ Similarly, y_315n
222222

. CG ofth (256a 2564a)
n rea i
ence, 0 eaeask3157T 31571)

Example 30. Find by double integration, the centre of gravity of the area of the cardioid
r=a(l + cos 0).

Solution. Let (X, ¥) be the C.G. the cardioid

By Symmetry, ¥ =0.

[[xdcay [ [xdxay
A A

J- 'dedy B I .dedy
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[T1 Y cos0) (rd0dr) [ " cosoan [ ar

—-nd 0

a(l 0 = a(l 0
[T do ar [Taof " ar
—T -7
3 a(l+cos0)
In cosede{r} Incosedei(l+cose)3
" 3 1 _Jd-m '3
- ( 2\a(l+cose) - 2
r

[ o0 J_nndB%(l+cos6)2
0

7]‘ [zcos —j(1+200s22—1)3d9
—J [1+2cos 7—1) do
_J (2005 —— j(Scos 9] de

+a—jf 4c0s49d9

_ 8;1 ’ (Zcos g—cos 9) do +2a I cos Qde
_ 28 IR[Zcosgg—cos ej 40 + 40 fcos" 2 do
3 0 5 0 2
3 x n/
- 16361 .[o 2(2 cos® 1 —cos® 1) (2 dt) + 4a* -[o 200841(2 dr)

732a3 2xTx5x3xlm 5x3xlm 2(3><11t\
3 8x6x4x2 2 6x4x22 4x22

324° (357: 5n] 2(37:] 324 15¢ 16 5a
— _ = —_— = X — —2 = AllS.
3 \128 32 16 3 128 8a“x3m 6
33.10 CENTRE OF GRAVITY OF AN ARC
Example 31. Find the C.G. of the arc of the curve
x =a (0 + sin 0), v =a(l — cos 0) in the positive quadrant.

yds
Solution. We know that, X = J

jxds _
_E’y - Ids

dx]2 [dy]z
- AE A2 a0
Now, ds [d@ do

— Jia® (1+cos 0) +a* sin® 0} dO = ay/l + 2 cos 0+ cos> 0 +sin0 d O
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= a41+2cos0+1d0=a 2(1+cos9)d9:a1/4coszgd9:2acos%d9

T T 0 . 0 0
J‘xds_Ioa(9+sin9)2acosgd9_2a2I0 (26cos§+25m500s5d6)

Y= ‘[ds B n 0 - 01"
IOZaCOSEdG {ZSin}
21
:ﬁfn[90059+2singcos2g}dezgj2(2tcost+2sintcoszt)2dt
240 2 2 2 2Jo
cos3t 2 i 1 4
= 2a|tsint+cost — =2a|—--1+—-|=a|n—=
3], 2 3 3
T 0 ” . 29 0
- ~[yds:‘[0a(l—cose)2acosEdG:cz'|-02s1n Ecos5d9
ds T 9 n 9
I Io2acos2d6 Jocoszde

T[
4a|:sin3}
_ 2 o 4a 2a ) 4\ 2a
= [ . eT-f’Xz—T Hence, C.G. of the arc is | a R_E ’T Ans.
3| 2sin —
21

EXERCISE 33.8

. Find the centre of gravity of the area bounded by the parabola y> = x and the line
x+y=2.

. Find the centroid of the tetrahedron bounded by the coordinate planes and the plane
x +y + z =1, the density at any point varying as its distance from the face z = 0.

. Find the centroid of the area enclosed by the parabola y> = 4 ax, the axis of x and latus rectum.

4. Find the centroid of the loop of curve * = a* cos 2 6.
5. Find the centroid of solid formed by revolving about the x-axis that part of the area of the ellipse
2 2
x—2+ y_2 =1 which lies in the first quadrant.
a b
6. Find the average density of the sphere of radius ¢ whose density at a distance » from the centre
. r .
of the sphere is p=py {1 + k—3}.
a
7. The density at a point on a circular lamina varies as the distance from a point O on the
circumference. Show that the C.G. divides the diameter through O in the ratio 3 : 2.
ANSWERS
8 1 112 3a 3a (mav2 )
1. |o.—— 2. |2z K R e o 4. ,0
52 555 2016 8

3a ) ( k)
=) . 1+~
S (8 6. Pol 1+
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33.11 TRIPLE INTEGRATION
Let a function f{x, y, z) be a continuous at every point of a finite region S of three di-
mensional space. Consider 7 sub-spaces 6S,, 35,, 35, ... S, of the space S.

If (x, y, z,) be a point in the rth subspace.
n
The limit of the sum Z S, »,,2,)8S, ,as n — o0, 8S — 0 is known as the triple
r=1
integral of f'(x, y, z) over the space S.
Symbolically, it is denoted by

[ sy, ds

Xyl e . . .
It can be calculated as szjyzj 2 f (x,»,2) dx dy dz. First we integrate with respect
1 1 7

to z treating x, y as constant between the limits z, and z,. The resulting expression (func-
tion of x, y) is integrated with respect to y keeping x as constant between the limits y,
and y,. At the end we integrate the resulting expression (function of x only) within the
limits x, and x,.

x=b y2=02(x) 2= /f2(x,y)
W(x) dx X, y)d
J"‘1:‘1 ) J.}’1:4)1(%) o, y) dy J‘Z1:f1(xyy)

f(x,y,2)dz

First we integrate from inner most integral w.r.t. z, then we integrate with respect to y
and finally the outer most with respect to x.

But the above order of integration is immaterial provided the limits change accordingly.

Example 32. Evaluate IIIR(X +y+2z) dodydz, where R: 0<x<1,1<y<2 2<z<3.

(x+y—i—z)2}3
2

Solution. J;dlezdyjj(x+y+z) dz = j;dx‘[lzdy[ 5

o lgprop2 s P S U
- Ejodle dy[(x+y+3)° —(x+y+2) ]—Ejodle(2x+2y+5).l.dy

2
ot [ Qx+2p 452 1 2 2
- Ejodx{fl—gjodx[(2x+4+5) —(2x+2+5)]

1
11 I x? 1 9
= gj0(4x+16).2dx=j0 (x+4)dx=|:7+4x}0=5+4=5 Ans.

log 2 X X + lo;
Example 33. Evaluate the integral : J.() ¢ J-O jo eyt gz dy dx.

. log 2 x x+logy Xtytz
Solution. jo -[o jo e dz dy dx.

log 2 x x+logy log 2 x 1
_[0 exdxjo eydyfo edz = .[0 e de‘O edy(e )yt

log2 \ ex x+logy _[log2 v logy x
-[0 edxjoe dy (e —1)—.[0 e dxjoe dy (e e’ —1)
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J-(iog xdxj e’ (ye' —1)dy —'[

jlogZ
0

e“dx [(yex -Der -

e“dx [(ye -De —‘[

e’ dy}z

x log 2
e“yl) = Ioog e dx[(xe* —1) " —e* +1+¢"]

log 2 log 2
= Iog edx[xe’ —e* — e +1+e"]= J. ¢ (xe™ — & +e*)dx
|: 3y x} log2 |:x . e3x e3x X:| log 2
= +e =l ———-——+e¢
0 3 9 3 0
_ 10g2 e3log2 ~ e3log2 ~ e3log2 +elog2 | 1 +l_1
3 9 3 3
3 3
_ 10g 2 elOg 23 _ eIOg2 _ elog2 : log 2 -t l -1
3 9 3 3
= §10 2_§_8+2 1+l_1—§1 2—2 Ans.
3 9 3 9 3 9

log 2 X X
Example 34. Evaluate jo ¢ Io I() etz gy dy dz.

Solution. /= jlogzj e“y[e ];Hy

log 2

J,

dx dy

J‘:ex+)/(ex+y l)dxdy _ J-10g2 J.: [eZ(X+y) _e(x+Y):|dxdy

log 2 2y * log 2 4x 2x
_ .[ og |:e2x.e__ex-ey:| dx — J‘ og [e B 2x_e +ex) dx
0 2 0 0 2 2
4x  2x 2x log2 4log2  2log2  2log2
_ |:e__e__e_+ex:| _|e 0g e og K og L glog2 _[1_1_14_1\]
8 2 4 0 8 2 4 8 2 4
(loglé log 4 log 4
_ e e | Jog2 _(l_l_lﬂj
|75 2 4 787273
16 4 4 ] (1 1 1 ) 5
— —_—— 32 —_ 41| == Ans.
(8 2 4 8 2 4 8 s

Example 35. Evaluate IJJR(xz +y? 422 ) dx dy dz where R denotes the region bounded
byx=0,y=0z=0andx+ty+tz=a,(a>0)

Y
. 2, .2, 2 A
Solution. IIIR(x +y +z7)dxdydz
xXt+ty+tz=a or z=a—-x-—Yy
Upper limit of z = a—x—y
On x-y plane, x +y +z = a becomes x +y =a +,
as shown in the figure. " + S,
Upper limit of y = a — x
Upper limit of x = a
o} y=0 X=a > X
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Example 36. Compute III

a

dx
x=0 y=0

J.-

J.(jde-:ﬁdy [xzz+yzz+

A

x=y
0

3

a-x-y
Z]
379

x*+y? +2%)dz

3
:J:ﬁjgXd4}%a_x_”+yaa—x—ﬁ+gtl:1L}

= J.:dx{xz(a -x)y-—

2
= J.:dx{xz(a —x)? - %(a -x)? +(a-x)

a | x? (a—x)4 a |1
= .[0 {?(a—x)2+T}dx:J-0 [E(azxz

5}“
0

2

3

1 2x

_ {_a

3

4
ax

4

5

X

10

x2y2

_(a-x)

30

dx dy dz
(x+y+z+])

3

+(a—x)y——

3

aS

6

_[defo_ {xz(a—x)—x2y+(a—x)y2—y3+

3

w—x—yf}
3 ol

ﬁ_mﬁ—wj”x

4 12 0

(a—m3_w—m4+w—xf}
3 4 12

aS

4

the coordinate planes and the plane x +y +z = 1.

Y
—2ax’ +x4)+%} dx

@ @ @

+—+—=— Ans.

10 30 20

3 if the region of integration is bounded by

(M.U., II Semester 2007, 2006)

Solution. Let the given region be R, then R is expressed as (A.M.LE.TE., June 2017)

0<z<1—-x-y,

1]

1

2

-5la]
R

—lo 2-—
g 16

1

2

o]

dx dy dz
R (x+y+z+1)°

1-x| 1
4

1-x

—%j;dx

(x+y+1)

0<y<1l-u,

Ll
foasf) ]

1—x

IO

0<x<1.

1

Z

(x+y+z+1)

8
5

x+1+1-

1
x x+1

|

l-x—-y
—2(x+y+z+1)2l)

1 1
(x+y+1-x—y+1) (x+y+1)2}

: } =__J { x+y+1}l_x
__I {1_ xil}dx

1
11 1 1
——10g(x+1)} —E{E—log2+—}=—5[§—log2}

8 8

Ans.
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Example 37. Evaluate ”j xX’yz dx dy dz throughout the volume bounded by the planes
x =0,
y=0z=0 +24+% =,
a b c

Solution. Here, we have

1= [[[ ¥yz dxdydz (D)
Putting x = au, y =by, z=cw
dx =adu, dy=>bdv, dz=cdwin(l), we get

I= Iﬂazbcuszabcdudvdw I Y

utv+w=1 X
Limits are for u =0, 1 forv=0, 1 — u and for w =0,
l—u-—v
1 1-u 1-u-v
1= IM:O J-v:O J.w:o a*b>c? uPvw du dv dw
1-u—-v
- 2 3,2 2 -
:J J ua3b202u2v{w—:| dudv = abe I I uuzv(l u—v)? dudv
2 1y
S I IR (s :
= u’v I-u)y -2(1-uyv+v ]dudv
3b2 2 -
= jj I =u)?v=2(1-u) v’ +v*] du dv
3,2 2 I Ll
a’bc vy
=22 - “2(l-uw)—+—| d
2] {( w20 -0 4}0 u
322 4 4 32,2 201 _ 4
:abcju{(l u)_2(lu)+(1 u)} a*b*c Ju(l w'
2 0 2 3 4 2 0 12
_ @b’ [l a-wtau = GBS 5 @b Bls
24 Jo 24 ’ 24 [
B a’b*c? (2!4!]_a3b2c2 An
24 \70) " 2520 >

33.12 INTEGRATION BY CHANGE OF CARTESIAN COORDINATES INTO

SPHERICAL COORDINATES

Sometime it becomes easy to integrate by changing the cartesian coordinates into
spherical coordinates.

The relations between the cartesian and spherical polar co-ordinates of a point are given
by the relations
x= rsin 0 cos ¢
y= rsin 0 sin ¢
z= rcos0
dx dy dz= |J| dr dO do
= 12 in 0 dr do do
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Note. 1. Spherical coordinates are very useful if the expression x*> + y? + z? is involved
in the problem.
2. In a sphere x*> + y* + z2 = ¢? the limits of  are 0 and a and limits of 0 are 0,
and that of ¢ are 0 and 2.

Example 38. Evaluate the integral j” (x2 + y2 + 22) dx dy dz taken over the volume
enclosed by the sphere x> + y° + 27 = 1.

Solution. Let us convert the given integral into spherical polar co-ordinates. By putting

x=rsinBcosd; y=rsinOsind; z=rcosH

([ 2402+ axayaz=[" [ [.r7G* sin0drdodg)

5 1
j; d¢j0 Sinedej.;r“drz_[o2 d¢jo sin@de(%jo = %J.Oz d¢[—cose]g:§J‘02 do

2 21 47[

g ((I))O = ? Ans.
Example 39. Evaluate I” o’ +y° +27) dx dy dz over the first octant of the sphere
¥+ + 2 =d (M.U. II Semester 2007)
Solution. Here, we have

1= J‘J.J‘(x2 + y2 + 22) dx dy dz (D)

Putting x = 7 sin 0 cos ¢, y = r sin 0 sin ¢, z = r cos 0 and dx dy dz = r’sin 0 dr dO
do in (1), we get

Limits of » are 0, a for 0 are 0, g for ¢ are 0, g

I= jog Jog jo"rz_rzsinedrdedq) = j?dq)j(?sinedej;r“dr

(x* + y2 + 2% = r?sin? 0 cos? o+ 7% sin? 0 sin? o+ 2 cos20)

=r%sin? 0+ 1% cos’0 =72

5 [ “ @ a5
- [‘I)]n/ [_ ]n/ [5}0 ==.D. ?: 10 Ans.
Example 40. Evaluate III% throughout the volume of the sphere
X2+ yz + 22 =42
Solution. Here, we have
1= ] = M (1)

X+t z?

Putting x = 7 sin 0 cos ¢, y = r sin 0 sin ¢, z = 7 cos 0 and dx dy dz = 1” sin 0 dr dO
dd in (1), we get

The limits of » are 0 and a, for 6 are 0 and g for ¢ are 0 and g in first octant.
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3 [Sphere x? + y? + 22 lies in 8 quadrants]
r

- 8{3 IOE Jo rsin O dr do d

1= SIOgdd)j(?sinOdOj:dr = 8[0]7* [~ cos O] [r]¢ :8(%—0) (0 +1)(a +0)

:8§.l.a = 4na Ans.

EXERCISE 33.9

Evaluate the following:

1 2 3
1. I J. I dx dy dz (M.U., II Semester 2002)
-1 J-2J-3
4 X x+y
2. j J. I zdz dy dx (R.G.P.V. Bhopal I Sem. 2003)
0 0 0
2 1 1
3. J. J. J. (x2 + y2 + 22) dx dy dz
1 0 -1
1 1 1
a. | . | . | O+ +20) dz dy dx (AMIETE, June 2006)
1 z X+z
5. | y [0 | -yt dvdyde (AMIETE, Summer 2004)
6. III (x—y—2z) dedydz, where R:1<x<2; 2<y<3; 1<z<3
R
2 3 2 2
7. j j I xy°z dx dy dz (AMIETE, Dec. 2007)
0 1 1
1 2 2 )
8. J‘ de. dyJ‘ xX“ yzdz
0 0 1

=

jjszyz dx dy dz throughout the volume bounded by x =0,y =0,z=0,x +y + z = 1.

1 1= 1—)cz—y2

10. I J. I dz dy dx
0 Y0 0
e plogy pef

11. I J. I log z dz dx dy
1 1 1

12. III ydxdydz, where T is the region bounded by the surfaces x = %, x = y + 2, 4z = x> +
T

(M.U. II Semester, 2003)

yYandz =y + 3. (AMIETE Dec. 2008)
2 X 2x+2y
13. I I I et dzdyde (M.U. II Sem., 2003)
0 0 0

1

FN

: ”J- (x+ ¥+ 2) dx dy dz over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and

x+ty+tz=1
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15.

16.

=)

17.

18.

19.

20.

21.

220,

23.

24.

25.

26.

27.

28.

NN
.1

Ja-x)n

J@-x%12

J.)c +3y

x“dxdydz

J-axy2

8x—y

dz dy dx

1

I J I (x+y+z)dzdxdy
-1 40 =7
2 ¥y xX+y

J‘ J J- (x+y+z)dxdydz

J. J.J- ,/ == —b—z - dx dy dz throughout the volume of the elhpsmd

x? y z? X
—2 —2 —2 dx dy dz over the volume of the ellipsoid a2

(M.U. II Semester, 2000, 02)

2

(M.U. II Semester 2004)

J. J.J xl=hym =1t g dy dz throughout the volume of the tetrahedron

the first

_ dxdydz

octant.

T a(l + cos 0) h
J 2d0 I rdr I
0 0 0

]

asin 6 J-
0

-
a(l + cos 0)

(@ —r)la
rdOdrdz

0

] &

x20,y20,z20,x+y+z<1.

JJI \/7 taken throughout the volume of the sphere x> +)? + z? = 1, lying in

I J.J- 22 dxdy dz over the volume common to the sphere x* + 12 + z2 = ¢® and the cylinder

242+ 2= an
dxdydz

J.J‘J. A+l +y2+ 207
[

dx dy dz

x2+y2+22=25.

x2 +y2

> where V' is the volume in the first octant

377 over the volume bounded by the spheres x

(M.U. II Semester, 2001, 03)r log (5/4)
I J.J- 22 dxdydz over the volume bounded by the cylinder x> + 1? = ¢ and the paraboloid
T

= z and the plane z = 0.

2

+ )7

= 16 and

ANSWERS

13.

3.

6

7. 26

11.

1
5(62 —8e+13)

14.

0| —
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5

15 o5 16. 8V2n 17. 0 18. 16
19, = abe 20. 2 abe 21 1 nln_ oy 2
4 ' 3 : (l+m+}’l).|[+m+n © 8
n ™ u X 2 % =
2 64 15 8
8
na
27. 4 log (5/4) 28. —
12
33.13 VOLUME = [ drdy d= 7
The elementary volume dv is dx . 8y . 8z and therefore
the volume of the whole solid is obtained by evaluat- 8z
ing the triple integral. LTI “6y
ox

OV = dx dy oz
V= IH dx dy dz.

/

Note : (/) Mass = volume x density = I” pdxdydz

if p is the density.

(i) In cylindrical co-ordinates, we have

(iii) In spherical polar co-ordinates, we have

V= Hj{/r drdo dz

V= mV r? sin Odr dO do

Example 41. Find the volume of the tetrahedron bounded by the planes x = 0, y = 0,
(A.-M.LLE.T.E. June 2016, M.U. II Semester 2005)

Solution. Here, we have a solid which is bounded by x =0,y =0,z=0and x + y +

z=0andx +y+tz=a

z = a planes.

The limits of z are 0 and a — x — y, the limits of y are 0 and a — x,

the limits of x are 0 and a.

= J.Oa |:a(a—x)—x(a—x)—

j ::_Ox_ydx dy dz

[z]g_x_ydx dy

dx

2
(a —2x) } dx X

X+ty+z=a
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. 2 2 o >
= J‘ [az—ax—ax+x2—a—+ax—x—}dx "
0 2 2
o (42 2) =X =a-x
- j a_—aX-i-x— dx ’ ’
0 Lz 2
& a2 3(1 1 q @’ (a.0.0)
= |—Xx——+—| =a|———+—|=—_. Ans.
2 2 6 2 26/ 6 v
0 X

Example 42. Find the volume of the cylindrical column standing on the area common
to the parabolas y* = x, X’ = y and cut off by the surface z = 12 + y — x°.

(U.P. II Sem. Summer 2001)
Solution. We have,

Y
¥ =x
Xt =y y=*
z =12+y—x?
1 Jx 124y -x? (Y
V:J-de'[xzdyj‘o dz : . X X
X
1 Jx
=j¢kaﬂ2+y—f)@
X Y,
x
v o) 1/ X s , xty)
= [ dx[12y+Z——x = [ v 2 - 12w - x|
L R T )
1
B AR - S SN T S £+£
7 10 5
0
1 2 1 1 1 2 1 1 560+35-40-14+28 569
=8+-———-4-——4+—-=44+—-—=—-—+—-= =—— Ans
4 7 10 5 4 7 10 5 140 140

Example 43. A triangular prism is formed by planes whose equations are ay = bx, y = 0
and x = a. Find the volume of the prism between the planes z = 0 and surface z = ¢ + xy.

(M.U. II Semester 2000, U.P, Ist Semester, 2009 (C.0) 2003)

. a bx c+xy
Solution. Required volume = I 0 j o J. o dz dy dx

bx
= J; J'O;(c—i-xy) dy dx
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_ be (xz\a b? (x4\a
-5, e,
abc ﬁ ab

= —+ =—~(4c+ab) Ans.
2 8 8

33.14 VOLUME OF SOLID BOUNDED BY SPHERE OR BY CYLINDER
We use spherical coordinates (, 6, ¢) and the cylindrical coordinates are (p, ¢, z) and
the relations are x = p cos ¢, y = p sin ¢.

Example 44. Find the volume of a solid bounded by the spherical surface x> + y° + z°
= 4a’ and the cylinder x* + > — 2ay = 0.

Solution. X2+ 32+ 22 =4d? (1)
2+ —2ay=0 Y 2
Considering the section in the positive quadrant of the
xy-plane and taking z to be positive (that is volume ©.2)
above the xy-plane) and changing to polar co-ordinates, i
(1) becomes X © X
2+ 22 = 442 = Z22=44*-2
z= 4 a’ —r* v

(2) becomes 7* —2ar sin @ =0 = r = 2a sin 0

Volume = _” J dx dy dz

(Cylindrical coordinates)

= 4IJ/ZdGISHSiner dr‘[;/mdz
_ 4J-0n/2deJ-OZasinﬁrdr[z]\OMaz,rZ _ 4I:/2deI;a5inerdr.\/m

2asin O

- 4 ”/zde[ 1(4a2—r2)3/2}
0 0

4 cn
-3 = 5'[: 2[— (4a® - 4a” sin? 0)*2 +8a3Jd9

8 x 4a°

_ i n/2 3 3 3 B n/2 3
- 3]0 (- 8a° cos® 0 + 8a) dO = jo (1 - cos’ 0) dO

24° /2 1
= 32a In (1——cos39—§cos9j do
4 4

3 Jo
3 /2 3 3
_ 32a G—LSin39—ESin9 :32_a(£+i_§] _2am 2 Ans.
3 12 4 o 3 \2 12 4 3 12 3

Example 45. Find the volume enclosed by the solid

23 213 \23
BT
a b c
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Solution. The equation of the solid is

23 2/3 \23
2 G- -
a b c

13
. X
Putting [—] = u = x=au? = dx=3au’du
a

1/3
[%j -y = y=bV¥ =  dy=3bhldv

1/3
z 3 >
- = w = z=cw = dz=3cwdw
c

The equation of the solid becomes
W+ +wr=1
V= ”j dx dy dz
On putting the values of dx, dy and dz in (2), we get
V= I” 27abc u*v*wdu dv dw
(1) represents a sphere.
Let us use spherical coordinates.

u = rsin 0 cos ¢, v = rsin 0 sin ¢,
w = rcos 0, du dv dw = r*sin 0 dr dO d¢
On substituting spherical coordinates in (3), we have

()
)

-(3)

1 /2 /2
V= 27abc .8 I S _[ _[ r* sin” 0 cos’ 0. r* sin” 0 sin’ ¢. 2 cos’0.72 sinOdrdd di

$=0 J0=0

/ /
216ach 0r8 dr_[ Zosinzd)coszd)dd)J.:izosinsecoszede

1 T
r= o=
7]
~24gpe.~ 1212 112
S
2

o1 (E E\ (BE\
BB s
2
[C)E Z’E 1 1
= 6abc =, = 6ab T
SROIEH

C.— M
CERE T
2/\2/\2
Example 46. Find the volume bounded above by the sphere x*> + y* + 22 = &’

10

and below by the cone x* + y° = 2°.
Solution. The equation of the sphere is x*> + )? + 22 = @?

and that of the cone is 2 +yr=272

In polar coordinates x = sin 0 cos ¢, y = r sin 0 sin ¢, z = r cos 0

The equation (1) in polar co-ordinates is

4
=—abcm Ans.

(1)
2
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(7 sin O cos ¢)> + (r sin O sin ¢)*> + (r cos 0)? = a° z

= 72 sin? O cos? ¢ + 72 sin” O sin® ¢ + 72 cos® 0 = a? 1
= 2 sin” 0 (cos? ¢ + sin® ) + 72 cos® 0 = a?
= 2 sin? 0 + 2 cos? O = a¢? X2 +y2+ 7%= a2
= 72 (sin? 0 + cos’ 0) = a® .Y
= r=d = r=a 9
The equation (2) in polar co-ordinates is 2 y2= 22
(r sin O cos §)> + (r sin 0 sin ¢p)> = (r cos 0)? N
= % sin® 0 (cos® ¢ + sin? ¢) = 7> cos? 0 =

72 sin? 0 = 2 cos® 0

= tan’0=1 = tan0=1= e:i%
Thus equations (1) and (2) in polar coordinates are respectively,
i
= d 0=1—
r=a an 2

The volume in the first octant is one fourth only.
T T
Limits in the first octant : » varies 0 to @, 6 from 0 to 7 and ¢ from 0 to 5

The required volume lies between x? + 1> + z2 = ¢ and x> + y* = 2%

Vv

4j0§ IOZ [, r*sin0drdody = 4j0§d¢jjsinede [g}

0

LI @ 4d® PR B
) ' @ 4d B _4a o | b
- 4jo2d¢fo431n9d9. 3" 3 -[oqu)[ cosO]O B (¢)0 { \/EJF@
= %mf [1—%} Ans.

33.15 VOLUME OF SOLID BOUNDED BY CYLINDER OR CONE

We use cylindrical coordinates (r, 0, z).

Example 47. Find the volume of the solid bounded by the parabolic y* + z° = 4x and
the plane x = 5.

Solution. y? + 22 =4x, x = 5

T N B =y oy P s

—4xy

4j dx jMdy[ [y’ 4j dxj gy Jax— 2
24x
= 4J.§dx{§\/4x—y2 -+-47xsin71 %}
5

2
4_[ 0+2x( ] dx = 4TCI xdx = 4n l =507 Ans.
2 0 2

0
Example 48. Calculate the volume of the solid bounded by the following surfaces:

z=0, ¥*+y’=1, x+y+z=3

0
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Solution.  x*>+3)? =1 (1)
xtytz=3 -2
=0 -(3)

Required Volume = J.J‘J.dx dydz = ” dx dy[z]3 Y= ” B-x-y)dxdy
On putting x = r cos 0, y = rsin 0, dx dy = r dO dr, we get

. 2n 1 2 o .
= ” (3-7rcosO—rsin®)rdddr = .[o dejo (3r —r“cos® —r-sin 0) dr

x [ 3 Y x
J‘Z do 3'L—r—cose—r—sme jz (z—lcose—lsinejde
L 3 J 2 3

3
3.1 1 o 1 1 1
=|=0-——=sinB+—-cosO =3n—-—sin2n+—cos2n —— =37 Ans.
2 3 3 o 3 3 3
Example 49. Find the volume bounded by the cylinder x> + > = 4 and the planes
yvt+z=4andz=0. (AMIETE Dec 2015)
Solution. x2 + )2 =4 = y = /4 —x’ Z
yt+z= 4 = z=4—-yandz=0 N

x varies from -2 to + 2.

el '

v = [[[ drdydz = j_zzdx

7J. de ﬁdy[z] AN

2 - 7
el sy

) 4-x*
= Iz dx 4y—y— X
- 2 —\[4—):2

2 2 | 2 2 |1 2
J_zdx[4 4-x —5(4—x)+4\/4—x +od =)
2
2 4 .
8J._2 4-x° dx:8[2\14—x2+551nl§} =167 Ans.

-2

Example 50. Find the volume in the first octant bounded i
by the cylinder x> + y> = 2 and the planes z = x + y,
y=x,z=0andx = 0. (M.U. II Semester 2005)

Solution. Here, we have the solid bounded by
x> +3? =2 (cylinder)

(or 2 =2)
z=x+y = z=r(cos0+sin0) (plane) R
y=x = rsin®=rcos6 (plane) Y

—~  tn0=1 = 0=°=
4 X
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x202rcos92030059:039:g

z varies from 0 to r (cos O + sin 0)

r varies from 0 to \/5

. T b
0 varies from Z to —

2
w/2 V2 7(cos 0 + sin 0)
= Ie:n/4 J-,:() IZ:O dz dr d©

n/2 2 r(cos 0 + sin 0) /2 2 ) .

- _[9 n/4 jr 0 [ ]o drdf = j@:ﬂ:/4 .[rzor (cos O + sin 0) dr dO
7/2 . 3 2 2\/7

) I (cosO+sinG)) =) db = 4 (cos 0 +in 0) dO
0=m/4 3 g 3 o

V2 wa 242 1 1 202
——[sin®-cos6]", = {(1 0) - [\f \/_ﬂ = Ans,

Example 51. Show that the volume of the wedge intercepted between the cylinder
x> + ) = 2ax and planes z = mx, z = nx is n(m — n) a.

Solution. The equation of the cylinder is x> + 3> =2 a x

we convert the cartesian coordinates into cylindrical coordinates.
x=rcos 6
y=rsinb
¥*+3?=2ax = r*=2arcosH
= 7 =2a cos 0

7 varies from 0 to 2a cos 0

. e b
0 varies from —— to —
2 2

and z varies from z = nx (z = nr cos 0) to z = m x (z = m r cos 0)

/2 2acos6 mr cos 6
V= 2,[9:0 Ir:O J.z:nrcosGdZdrde
Y
/2 2acos 6 mr cos 0 A
= 2_[ J.r [Z]nrcose dr do
r=2acos 0
= 27 [0 (m - n) r cos O dr dB
N 0=0 Jr=0 Am
/2 2a 0 >
_ 2(m—n)j I, 2 cos 0 dr dO © >X
” 3 2acos6
= 2(m—n)Jn {r} cos 0 d0
0
/2 8a
= 2(m—n)J ~—cos’ 0 cos 0 db
6=0 3
16(m — 16(m — 31
- Ma J' 49d97M,a3.—.— T (m-mnd®  Ans.
3 = 3 4 2 2
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Example 52. A cylindrical hole of radius b is bored through a sphere of radius a. Find

the volume of the remaining solid. ﬁ

Solution. Let the equation of the sphere be

X2+ y2 +z2 =42 1
Now, we will solve this problem using cylindrical
coordinates

x =rcos 0 SEED >y
. z= a

y=rsin0

z=z

Limits of z are 0 and \/az—(x2+y2) ie.,

2 2
a —r

X

Limits of » are a and b.

and the limits of 6 are 0 and r

V= I jab_[ rdrd@dz

r

s j [N rdrdo = 8] [ (@ =) rdrdo

3/2 a 3
-8 @ =y .(—l) a0 = S [ (@ - p?)2 a0
3/2 2|, 300
8 4 3
-3 2(a® b2)2 [e]“/2 = (a2 — b?)?2 Ans.

Example 53. Find the volume cut off from the paraboloid

2
X +y7+ z =1 by the plane z = 0. (M.U. - 2005)

Solution. We have
yZ
x? trz =l (Paraboloid) ...(1)

z =0  (x-y plane) ..(2)
»
4

y varies from — 2 1-x* to 24/1—x?

z varies from 0 to 1 — x% —

x varies from —1 to 1.

( z_ﬁ\
R N
24/1—x ( 2 2\
-[—1 I FL - X —Tjdxdy

oo (0, 2
P I

1-x _TJ dx dy
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I

N

Y
1 3 21— 7 A_yzz =
4]0 (1—x)y—12 .dx ~

I | a=x?).21-x* ——

><l\)
¥
<
1
-

= / dx X'+ 5 — X
(1-x )3 2
= af | 20-27)" S22 |dx L
3 y=-241-x2
\/
On putting x = sin 6, we get Y
yo=4f 2= ax - Ej 21— sin® 0)*2 cos 0 d0
03 370
1 /2 1 1
T R LN AR Ans.
374272
Example 54. Find the volume enclosed between the cylinders x* +y* = ax, and 2> = a x.
Solution. Here, we have x> + ) = ax (1)
22 = ax ..(2)

I vt e = | o[ s e = 2 [ s [ [
RGN dxfmdy@—zj mmm

—axx —axx

2_[0“ x/adx(Zw/ax—x ):4x/;I0x a—xdx

Putting x = a sin®0 so that dx = 2a sin 0 cos 8 dB, we get
_ /2 .2 _ ) |
V= 4\/;JO asin” 0 +/a—asin“0.2asin O cos 6 dO

/2
= 84° I sin® 0 cos? 0 d0O

l—F F 164>
=44 = Ans.
!‘ 5 3!‘ 15
2 27212

v

EXERCISE 33.10

z

X
. Find the volume bounded by the coordinate planes and the plane. — + % = =1

a C
(A.M.LE.TE. Dec. 2017)

. Find the volume bounded by the cylinders y* = x and x> = y between the planes z = 0 and

xX+y+z=2

. Find the volume bounded by the co-ordinate planes and the plane.

Ix+my+nz=1

. Find the volume of the sphere x> + y? + z* = @? by triple integration. ~ (AMIETE June 2009)
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2 2 2
Find the volume of the ellipsoid — + Z—Z + 2—2 =1
a c

Find the volume bounded by the cylinder x> + y*> = a? and the planes y + z = 2a and z = 0.
(M.U. 1I Semester 2000, 02, 06)

Find the volume bounded by the cylinder x> + > = ¢® and the planes z = 0 and y + z = b.

8. Find the volume of the region bounded by z = x> + )%, z=0, x=—a, x=aandy = —a,y = a.

10.
11.

12.

13.

14.

15.

16.
17.

18.
19.

20.

Find the volume enclosed by the cylinder x* + »? = 9 and the planes x + z =5 and z = 0.

Compute the volume of the solid bounded by x> + j? = z, z = 2x.

Find the volume cut from the paraboloid 4 z = x> + )? by plane z = 4.
(U.P. I Semester Dec. 2005)

By using triple integration find the volume cut off from the sphere x? + 3* + z2 = 16 by the plane
z =0 and the cylinder x> + 3? = 4 x.
The sphere x> + y? + z2 = a? is pierced by the cylinder x> + y? = @ (x*> — )?).

s 4\ﬁ2}a3

8
Prove that the volume of the sphere that lies inside the cylinder is —|:— +

3|14 3 3

Find the volume of the solid bounded by the surfaces z = 0, 3 z = x> + y* and x> + y? = 9.
(A.-M.LE.T.E., Summer 2005)

Obtain the volume bounded by the surface z = ¢ (1 = %) (1 = Z] and a quadrant of the elliptic

2 2 g
Y

cylinder — + b_2 =1,z > 0 and where a, b > 0. (A.M.LE.T.E. Dec. 2005)
a

Find the volume of the paraboloid x> + 3? = 4z cut off by the plane z = 4.

Find the volume bounded by the cone z> = x> + ? and the paraboloid z = x> + 2.

Find the volume enclosed by the cylinders x> + y? = 2ax and 2> = 2 a x.

Find the volume of the solid bounded by the plane z = 0, the paraboloid z = x> + »* + 2 and
the cylinder x> + 32 = 4.

The triple integral II dx dy dz gives

(b) Surface area of region T
(d) Density of region T.

(a) Volume of region

(c) Area of region T (A.M.LE.T.E. Dec. 2006)

ANSWERS
1 Lbc 2 H 3 ! 4 i na’
6 © 30 ‘" 6lmn 3
4dnab 8
5. mane 6. 2na’ 7. ma*b 8. a*
3 3
64
9. 457 - 36 10. 2n 11. 32n 12. 5 @Brn-4)
27w i
14, — 15. mabc 16. 321 17. —
2 6
1284°
18. 19. 16¢ 20. (a)

15
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33.16 SURFACE AREA

. 4
Let z = fix,y) be the surface S. Let its
projection on the x-y plane be the region
A. Consider an element dx. dy in the region § Z/N
A. Erect a cylinder on the element 6x. dy P
having its generator parallel to OZ and meet-
ing the surface S in an element of area ds. o X
Ox Oy = ds cos vy,
Where v is the angle between the xy-plane A Sy
and the tangent plane to S at P, i.e., it x
is the angle between the Z-axis and the Y
normal to S at P
The direction cosines of the normal to the surface F (x, y, z) = 0 are proportional to
OF OF OF
ox’ oy’ oz
L ) 0z Oz
*. The direction of the normal to S [F = f (x, y) — z] are proportional to — = o ,1
X Y
and those of the Z-axis are 0, 0, 1
oz 0z
" ox oy 1
Direction cosines = Ox > ) 4 > ) > >
oz\’ oz oz\’ 0z oz’ 0z
—| +| =] +1 —| +| =] +1 —| +| = +1
ox oy Ox oy ox oy
1
Hence cos y= (cos O =11, +m m,+n n,)

(2 +(3)' ]

. N CRCRE CRER

Example 55. Find the surface area of the cylinder x* + z> = 4 inside the cylinder

x2+y2:4.
Solution. x> + 1 = 4
¥+z2=4
2x2:Z g ZoX E
Oox ox z 0y
&) (&) X’ x* 42 4
L +1——+1— T = 3
oy z? z 4 —x

2
V4= X )
Hence, the required surface area = 8.[ j [(8 j + [6—2] + 1} dx dy
X y
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2e4-¥ 2
sl =

dedy =16 W - 16

1 1
Sl Om[w—xz]dx

2 2
= 16.[0 dx =16 (x); =32 Ans.
Example 56. Find the surface area of the sphere x> + y? + z2 = 9 lying inside the cylinder
X2+ 3% =3y.
Solution. ¥+ =9
a2 g E_X
X ox z
aps2: g E__Y
oy oy z
(%j:(%jz“ BEANP AN < Y S N x=reos?
Ox oy 22 22 z? 9-x>—y* 9—4* | y=rsin®
X%+ )2 =3y or?=3rsin® or r=23sin0.

Hence, the required surface area

() (& s T v T 22
/2 /2

12 j dO[—9 2P0 = 12j [—/9 —9sin® 0 + 3] d0

/2

36 j (—cos0+1)dd = 36 (—sin0+0)]* = 36(—1+§) =18 (n—2) Ans.

Example 57. Find the surface area of the section of the cylinder x* + y* = a*> made by
the plane x + y + z = a.

Solution. X%+ y? = a? (1)
x+y+z =a .(2)
The projection of the surface area on xy-plane is a circle
2 =a
1+ 0z 0 oz |
— = or —=-
Ox Ox
I+ L 0 or % -1
oy y

o2\ (azjz _\/ﬁ_
J[aj + > +1 = D2+ (=)2+1 =43

Hence the required surface area

2

a \/az—x2 2 2 a Ja*-x
oz (6z)
_4 = Z| +ldedy = 4 Bdx-d
J. -[ \/((%c] +L6yJ ! g '([ { 4

\/_jiy]o dx—4\/7_‘-\/a —x%dx
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a

—4\/7 \/a —-x +72s1n1—} —4«/7{ +——} 4\/7(1 TEJ 3na® Ans.

Example 58. Find the area of that part of the surface of the paraboloid
V2 + 22 = 2 ax, which lies between the cylinder, v’ = ax and the plane x = a.

Solution. VP +z22 =2ax (1)
¥ =ax ..(2)
) o X =a ..(3)
Differentiating (1), we get
2:E g EE
Ox ox z
2y+22% = ’%:_Z
oy oy z
2 2 2, .2 2, .2
+z°=2
(&) (&) 1 -G d - Pereze
oy z &z z 22 =2ax - y?
_ a’ +y* +1_az+yz+2ax—y2_az+2ax
Zczx—y2 2a)c—y2 2a)c—y2
a Jar 62 62 2 : g a’ +2ax y* =ax
=[] =] = +1dxdy=j [ [ dxay
o _Jm 8x 6 0 _JmV2ax—y y=++Jax
a Vax a+2x Jax 1
:\/;_[ I dxdy-([ a+2xdx J. —Zdy
0 JmV2ax—y lmN2ax-y
¢ % T 1 1
= Ja [Ja+2x dx|sin™ Yy =a a+2xd){sin_l——sin_1 [——]}
{ N 2ax _Jax '([ V2 2

= Jﬁi/aux d{%{%ﬂ - \/Zﬁw/mzx dx = £~£-g[(a+2x)3/2]g
0

2
= ”[ [Ba)? - a*?] = %[3& ~1] Ans.

EXERCISE 33.11

B

. Find the surface area of sphere x> + 2 + z2 = 16.

Find the surface area of the portion of the cylinder x> + »*> = 4 y lying inside the sphere
x2+y2+22= 16.

. Show that the area of surfaces cz = xy intercepted by the cylinder x> + y* = b?

[ 2 2 2
cT+x +
is IIA—y dx dy , where A is the area of the circle x> +)? = b, z=0
c

Find the area of the portion of the sphere x> + ) + 2% = 4 lying inside the cylinder x> + y* = ax.

Find the area of the surface of the cone z2 = 3 (x> + %) cut out by the paraboloid z = x> + y* using
surface integral.
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ANSWERS

1. 647 2. 64.
4. 2(n-2)d* 5. omn

1
i%{(cz +b%)2 - 02]

33.17 CALCULATION OF MASS
We have,
Volume = HJ. , dx dy dz

[Density = Mass per unit volume]

Volume = j” y dx dy dz

Density = p = f(x, y, 2)
Mass = Volume x Density

Mass = JHV f(x,y,z)dx dy dz

Example 59. Find the mass of a plate which is formed by the co-ordinate planes and the

X y z . .
plane _+Z+_:]’ the density is given by p=kx y z.
c

a

(U.P. I Semester Dec. 2003)

Y

Solution. The plate is bounded by the planes x =0, y =0, z = 0 and Ty b +E=1

Mass = J‘”dxdy dzp = I;IS(IZ]I:[I_zi] dx dy dz (k xyz)

= k_[ocz dzf(f[l_z)ydyj.:(l_z_jjxdx = kjgzdzI:(l_i)ydy [%J

efza e 22 )

S SO G R AU

2 0

2 2 2 2 4 2 42
_kaqe | b2 [1_£j P L c[l_ij
2 90 2 4 3 c 2 1270 c/,

242 T
-2 a24b .[02 csin® O (1 -sin” 0)* (2 ¢ sin O cos 0 d0)
k* a* b*c? RN

2 8 .
:—.[o sin” 0 (cos® 0)sin O cos 6 dO =

12 12

a C

ye(1-2-3)

0

_ka j;zdzjb(ljy Kl—%) —%T dy

4
dz [Put z = c sin® 0]

j;”zsnﬁ 0 cos’ 0 40
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3+1(9+1
a3 o |y _kdbd R ka5 kd b s
12 [3+9+2 12 207 12 2x6x5[s 720 '
2

33.18 CENTRE OF GRAVITY

”_[xpdxdydz ;zjffydedde Z:IIIzpdxdydz
[[[paxdya: "~ |[[paxdydz "~ [[[pdxdyd

Example 60. Find the co-ordinates of the centre of gravity of the positive octant of the
sphere x* + y* + 22 = a?, density being given = k xyz.

Solution. T IIIVx pdxdydz _ ”j zpdxdydz _ ”IV x*yz dx dy dz
”IV pdxdydz IH pdxdydz ” J. Xz dx dy dz
Converting into polar co-ordinates, x = 7 sin 6 cos ¢, y = r sin 0 sin ¢, z = r cos 0,
dx dy dz = r* sin 0 dr d® d¢
[ 0"/2 [ 0"/2 [/ sin 0 cos §)? (r sin 05in ) (- cos ) (+* sin 6 dr d6 d§)

X =

X =

n2n/2pa . . . 2
Jo -[0 ‘[0 (7 sin O cos ¢) (» sin O sin ¢) (» cos 0) (»~ sin 6 dr dO dd)
) jo“/z IO“/Z [[7° sin* 0 cos0 sin ¢ cos® ¢ dr d0 d
j“”j“”j“ﬁ sin® 0 cos0 sin ¢ cos ¢ dr d0 dd
j sin ¢ cos’ d)dd)_[ sin Ocosedej r’dr
.[0 s1n¢cos¢d¢f sin Ocosedej rdr
{ cos (q {sin 9} 2{/}0 (1) (lj (i\
5, 70_35L7J_16a
B cos” ¢ w2 sin* 0 w2 i ‘ [l] (lj (i\ 35
2 4 6 2/ \4 L6J
0 0 0
Similar] — p 16 a 0 CG i [16a 16 a 16a) A
=z=—; .G. — ns.
imilarly, y 35 ence, s (55 35 * 33 s

33.19 MOMENT OF INERTIA OF A SOLID

Let the mass of an element of a solid of volume V' be p dx 8y dz.
Perpendicular distance of this element from the x-axis = \lyz +z°

M_I. of this element about the x-axis = p Ox 3y 8z 4/ y2 + 27
M.1. of the solid about x-axis = [[[ P+ 27 dvdy dz

M.I. of the solid about y-axis = I”Vp (x* +z%)dx dy dz
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M.L of the solid about z-axis = [[[ p (" +7) dx dv dz
The Perpendicular Axes Theorem

If I _and I, be the moments of inertia of a lamina about x-axis and y-axis respectively
and / _ be the moment of inertia of the lamina about an axis perpendicular to the lamina
and passing through the point of intersection of the axes OX and OY.

Loz = Lox * Loy
The Parallel Axes Theorem
M.L. of a lamina about an axis in the plane of the a ‘T\Iaz— X
lamina equals the sum of the moment of inertia - X
about a parallel centroidal axis in the plane of lamina X o X
together with the product of the mass of the lamin
a and square of the distance between the two axes.
- 2
Lp=1+ My
Example 61. Find M.I. of a sphere about G
diameter. - x
Solution. Let a circular disc of 6 x thickness be A 7 B
perpendicular to the given diameter XX at
a distance x from it.
The radius of the disc = +/a® — x
Mass of the disc = p 7 (a® — x?)
Moment of inertia of the disc about a diameter perpendicular on it
1 1 1
= SMR? = —[pr(a’ —x)](@’ —x") = —pm(a’ -x")
2 2 2
_ [ 1 2 22 = (1 ] a4 4 2 .2 4
M.L of the sphere = Jlazpn(a x) dx =2 an Io[a 2a° x" +x"]dx
4 2848 X 5 2a° &
=pm|a x— + — =pm|a - 4 —
3 5 3 5
0
8 2(4 2
=—npa5=—(—na3p]a2=—Ma2 Ans.
15 503 5
Example 62. The mass of a solid right circular cyl- X
inder of radius a and height h is M. Find the moment
of inertia of the cylinder about (i) its axis (ii) a line "
through its centre of gravity perpendicular to its axis | B B B
(iii) any diameter through its base. x_% B e T -
Solution. 7o find M.I. about OX. Consider a disc at '[ G D
a distance x from O at the base. h/2 X
2 2 4
b d T d
M.I.OftheaboutOX,:( ? pzx)a = PC; al /l”‘o_\B y

(i) M.L of the cylinder about OX
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0 2 2

(if) M.I. of the disc about a line through C.G. and
perpendicular to OX.

J~hnpa4dxinpa4(x)hinpa4h _ .az M d*

Lox T oy = 1oz

Iox T ox = 1oz

ox— 5 loz

M.L of the disc about a line through
1(Md®) M

C'G':EL > 2

. . (na? p dx ) 2
M.I. of the disc about the diameter = kT a

4 2
d h
M.I. of the disc about line GD = nanx +(n a® pdx) (x - 5)

nma h n?
Hence, M.1. of cylinder about GD = Io % dx + jo (n a® p dx) [x - E]

h
2 2 3 4 2 3 2 3
na p(x)er Ta p[x_ﬁj _na ph+ Ta p[ﬁj L Ta p(ﬁ]
4 4 2 R 4 3 2 3 2
na4ph+na2ph3 7Ma2+Mh2
4 12 4 12

(iif) M. 1. of cylinder about line OB (through) base
(h)z Mda® MK Mh Md MK
=Ilgp+M|—| = = +

1 + + Ans.
08 4 12 4 4 3 e
Example 63. Find the moment of inertia and radius of gyration about z-axis of the region
X z
in the first octant bounded by — + % +—=1.
a ¢

Solution. Let » be the density. M.IL. of tetrahedron about z-axis
[ o dxdydz) o+ y%) = pj:dxjj(‘z)uz +y2)dng[lf§?)dz
x 12X B X
PI:de:(l_“)(xz +y2)dy (2)0[1 a b) _ pJ‘O dx‘[(f(l a] (x2 +y2)dyc(l—§—%j
X 2 3

el 1-3)- 22 (-2)- 2o

a . s (-3
el (1-2)- 52 0-2) -5

0
a X X )C2 X 2
pcjo dx{xz (1——)13[1——) —ﬁb2 [1——)
a a a
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2 2 2 2 4 2
= bpe’ xz(l_zj _x_[l_f _b_[l_ij _b_(l_
0 a a 3 a 4
2 2 2 4
al x X b X
= pbe [ 2 (12 2 (122 a
ch0|:2 a 1 a *
a 1( 2 2X3 x4\ bz( 4 x 6x2 4x
=pbcI —| x +—=|+—=|1-—
0 ZL a azJ 1 L a a? a
B bc_l(£—£+ x5\+_2(x_2x2+6x3 4 x
P25 T2 s Tzl YR
(3 3 3 2
= pbc 1 4. 4,4 +—[a—2a+2a—a+£]
2&3 2 SJ 12 5
3 2
S EN N
|60 60
p“bc(a +5%)
Radius of tion =
adius of gyration = Mass pa o

33.20 CENTRE OF PRESSURE

The centre of pressure of a plane area immersed in a
resultant force acts on the area.

/ (a +b%)

Ans.

fluid is the point at which the

Consider a plane area 4 immersed vertically in a homogeneous liquid. Let x-axis be
the line of intersection of the plane with the free surface. Any line in this plane and

perpendicular to x-axis is the y-axis.

Let P be the pressure at the point (x, y). Then the pressure on elementary area dx dy is

P 5x dy. Let (; ,¥) be the centre of pressure. Taking moment about y-axis.

;-”Adedy = IIAdexdy

_ ”APx dx dy

B ”Ade dy

Similarly, y = M
”Ade dy

O

.y
[]0x dy

X1 X

Y

Example 64. A uniform semi-circular lamina is immersed in a fluid with its plane verti-

cal and its bounding diameter on the free surface. If the

density at any point of the fluid

varies as the depth of the point below the free surface, find the position of the centre of
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pressure of the lamina.
Solution. Let the semi-circular lamina be
2 =a

By symmetry its centre of pressure lies on OY. Let ky be the density of the fluid.
- HAPy dxdy HA(py) ydxdy

y = = :p=hy)
”AP dx dy ”A(py) dx dy
4 =
a Jat —x* 3 a dx L
[[ G yyyardy [ v dxay [ac[™ "y ay [, 4|,
- - 2 - a aZ—XZ - az—xz
jjA(ky.y)dxdy ”Ay dx dy I_adxjod 2 dy o » J
—a 3 o
a /2
; [* dx (@ -y 3 | (acos 0d6) (a* —a” sin” 6)’
= — ;a = — T;/Z (Put x = a sin 0)
P ar@ -x?y? 4 (@cos 0.d0) (a* —a’ sin” )"
—da - T
/2 5 n2 s 4x2
30 ), 0d0 3 2 [Te0s 040 3, 5.3 324 R
= _/2— = _/2— e —— = T ns.
4 In cos* 040 4 2In cos* 040 4 3xlm Isn
/2 0 4x22
EXERCISE 33.12
x2 y2 ZZ
1. Find the mass of the solid bounded by the ellipsoid —+==-+—-=1 and the co-ordinate planes,

where the density at any point P (x, y, z) is k xyz.a ¢

2. If the density at a point varies as the square of the distance of the point from XOY plane, find
the mass of the volume common to the sphere x> + > + z* = a? and cylinder x> + )* = ax.

3. Find the mass of the plate in the form of one loop of leminscate 7> = a? sin 2 0, where p = k

4. Find the mass of the plate which is inside the circle » = 2a cos 0 and outside the circle » = a,
if the density varies as the distance from the pole.

5. Find the mass of a lamina in the form of the cardioid » = a (1 + cos 0) whose density at any
point varies as the square of its distance from the initial line.

X
6. Find the centroid of the region in the first octant bounded by — + % +Z=1 .
a

c
7. Find the centroid of the region bounded by z = 4 — x> — 3* and xy-plane.

8. Find the position of C.G. of the volume intercepted between the parallelepiped x>+y* = a(a — z)
and the plane z = 0.

9. A solid is cut off the cylinder x> + y> = 42 by the plane z = 0 and that part of the olane z = mx
for which z is positive. The density of the solid cut off at any point varies as the height of the
point above plane z = 0. Find C.G. of the solid.

10. If an area is bounded by two concentric semi-circles with their common bounding diameter in

_ 3m (a+b)(@®+b%)
a free surface, prove that the depth of the centre of pressure is ———————
16 a”+ab+b
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11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

2 2
An ellipse — + b—2=1 is immersed vertically in a fluid with its major axis horizontal. If its
a

centre be at depth 4, find the depth of its centre of pressure.

A horizontal boiler has a flat bottom and its ends are plane and semi-circular. If it is just full of
water, show that the depth of centre of pressure of either end is 0.7 x total depth approximately.

A quadrant of a circle of radius a is just immersed vertically in a homogeneous liquid with one
edge in the surface. Determine the co-ordinates of the centre of pressure.

Find the product of inertia of an equilateral triangle about two perpendicular axes in its plane at
a vertex, one of the axes being along a side.

Find the M.I. of a right circular cylinder of radius @ and height 4 about axis if density varies as
distance from the axis.

Compute the moment of inertia of a right circular cone whose altitude is /4 and base radius 7,
about (i) the axis of symmetry (if) the diameter of the base.

Find the moment of inertia for the area of the cardioid » = a (1 — cos 0) relative to the pole.

Find the M.I. about the line 0 = g of the area enclosed by » = a (1 + cos 0).

Find the moment of inertia of the uniform solid in the form of octant of the ellipsoid
2 2 2
x—2+y—2+z—2:1about ox
a b G

Prove that the moment of inertia of the area included between the curves y*> = 4 ax and x> = 4
14
ay about the x-axis is E M a* , Wwhere M is the mass of area included between the curves.

A solid body of density p is the shape of solid formed by revolution of the cardioid » = a
(1 + cos 0) about the initial line. Show that its moment of inertia about a straight line through

) onmm  (ERZ 5
the pole perpendicular to the initial line is 05 nla .

Find the product of inertia of a disc in the form of a quadrant of a circle of radius ‘a’ about
bounding radii.

X
Show that the principal axes at the origin of the triangle enclosed by x = 0, y =0, —+ 21

a b
L. b . 1 1 ( ab \
are inclined at angles o and o + — to the x-axis, where ¢ = — tan T
2 2 a” —b

Choose the correct answer:

24.

25S.

The triple integral II J dx dy dz gives
T

(/) Volume of region T’ (i) Surface area of region T’
(iii) Area of region T (iv) Density of region T.
The volume of the solid under the surface az = x*> + y? and whose base R is the circle x> + )?
= @ is given as
3
g T ., Ta
0 5 @) =

4
(iii) gna3 (iv) None of the above. [U.P., I. Sem. Dec. 2008]
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ANSWERS
4k 5(;; 8] kmat 20 nka*
1. P — | =-= 3. 5, ———
15 2 15 16 32
[E,E,EJ. 7. (0, O,i) 8. [0, O,gj 0. ;:64 ma
4’474 3 3 451
B> 3a 3na 2 5
11. h+— 13. (——j 15. —kma h
4h 8 16 st
nhr4 Tthl"z 2 2 35na4 M 2 2
(i i) ——— (2 h% +3 : . =+
16. () 10 (i) 0 ( ) 17 16 19 . ( c’)
a4
2. p- 24. (i) 25. (i)




Theory of Errors

34.1 NUMBERS

There are two types of numbers
(/) Exact (if) Approximate

For example; Exact numbers are 1, 3, 5, 7, 10, E’ 6.23.

4
Approximate numbers are 3 =1.3333.........

V2 = 1414213,
n=3.141592..........
The value of the left hand side can not be expressed by a finite number of digits.

4
Approximate value of 3 =1.3333

App. value of V2 = 1.4142
and the app. value of n = 3.1416

34.2 SIGNIFICANT FIGURES

The digits used to express a number are called significant digits (figures).

8123, 3.187, 0.8725, contains 4 significant figures. While the numbers 0.0163, 0.00127,
0.000365 and 0.0000345 contain only three significant figures (digits).

Since zeroes before decimal and after decimal only helps to fix the position of
decimal point.

Similarly, the numbers 52000 and 8700.00 have two significant figures only.

34.3 ROUNDING OFF

These are number with larger number of digits.
22
For example; Kl = 3.14285143

In practice it is convenient to limit such number as 3.14 or 3.143.
The dropping of the digits is called rounding off.

Rule: (1) To round of a number to n significant numbers ignore all the digits to the
right of nth digit if there is some digit ignore it.

(2) Less than half a unit leave this unit.
(3) Greater than half unit is taken as full unit.
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(4) Exactly half unit is taken as one unit in the case of odd numbers i.e., increased
the odd number by one. If nth number is even, then nth number should not be
changed.

5.783 to 5.78 7.767 to 7.77
15.976 to 15.9 95767 to 95800
8.4365 to 8.44 87.656 to 87.6

Also the numbers 7.284359, 15.864651,9.464762 rounded off to four places of decimals
at 7.2844, 15.8646, 9.4648 respectively.

34.4 TYPES OF ERRORS

)

(@)

3

“4)

®)

(6)

Absolute Errors

The error is defined as a quantity which is added to true value in order to obtain
the measured value.

True value + Error = Measured value/observed value.
Correction. The error with sign changed is called correction.
Measured value + Correction = True value.

If x is the true value and X’ is approximate value then | X — X | is called the absolute
error.

Relative Error
X-X'

Relative error = | ——— ‘
X

Percentage Error

100| X — X' |

Percentage error = ————
X

Inherent Error

Errors which are already in data for calculation of a problem before its solution are
called inherent error. Such error arrise due to limitation of mathematical tables or
the digital computer.

Rounding off the errors

Such error arrise by the process of rounding off the numbers. Such errors are un
avoidable most of the calculation.

Truncation Error

Truncation error are caused by using approximate result on replacing an infinite
series.

' 23
For example; if ¢* = 1+x+5+¥+z+....oo:X (say)
. 23 '
is replaced by 1+X+2—!+§+T!=X (say)

then the truncation error = X — X’

L,
Notes : (1) If a number is correct to n decimal places then the error is = 5 107"
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For example : If the number is V2 = 1.1414 correct to four decimal
1
places, then the error = > x107*
(2) If the first significant figure of a number is A and the number is correct to n

significant figures, then the relative error is less than W
X

Verification. 974.16 is correct to five significant figure.

Here, A=9,n=5
0.01
Absolute error = T =0.005
0.005 5 1

Relative error < = =
974.16 974160 2x97416

_ 1 _ 1
2x90000 2 x9x10*

1
<—
9x10*

AL
A X 107’171 :

ie.,

Example 1. Round off the numbers 754126 and 16.73117 to four significant figures.
Compute absolute error relative error and percentile error.

Solution. Number rounded off to 4 significant figure equal to 754100
Absolute error=| X — X' | =| 754126 — 754100 | = | 26 | = 26

X-XxX 26 _s
Relati = = =3.45x%x10
elative error e ‘ 54126
X-X
Percentile error = % x 100

=3.45%x 107 x 100 = 3.45 x 103
(if) Number rounded off to four significant figure is 16.73
Absolute error=| X — X" | =] 16.73117 - 16.73 | = 0.00117
X-X' ‘_ 0.00117

= =6.99x107°
X 16.73117

Relative error =

X-X
Percentile error = ‘ — ‘ x100=6.99 x 107> x 100 = 6.99 x 10~° Ans.
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EXERCISE 34.1

Round off the following numbers correct to three significant figures :

1. 0.0031614 2. 16.132102
3. 0.30617 4. 2945567
5. 45.56735 6. 5.26521

1
7. Find the relative error if 3 is approximated to 0.334.

8. Find the percentage error if 625.483 is approximated to three significant figures.

9. /29 =5.385 and 1 = 3.317 correct to four significant figures. Find the relative errors
in their sum and difference.

ANSWERS
1. 0.00316 2. 16.1 3. 0.306
4. 2940000 5. 45.6 6. 5.26
7. 0.002 8. 0.077 9. 1.149 x 1074,4.836 x 10~ *

34.5 ERROR DUE TO APPROXIMATION OF THE FUNCTION

Let z = f(x, y) be a function of two variables x and y.

If &x, Sy be the errors in x and y, then the error in z is given by z + 8z = f(x + dx, y + dy).
Expanding f (x, y) by Taylor’s series, we get

of
oy
If 6x and &y be so small that their squares and higher powers can be neglected, then (1)
can be written as

(Q )
z+8z= f(x,y)+ La—iéix + SyJ + terms involving higher powers of dx and dy. ...(1)

0z 0z
5z = —0Ox+—96 .
2w (app.)
In general, if z = f'(x, x,, ..... x,) and there are errors in x,, X, ..... x,, then
0 0 0 0
82 = 2y + —dy + o dy e+ i,
Ox; Xy X5 Ox,,
3 4
Example 1. If u = s— and errors in x, y, z be 0.001, and compute the relative
z

maximum error when x =1,y =1,z = [.

. _ syt
Solution. = (1)
ox = 8y = 0z = 0.001
and x=y=z=1

Differentiating (1) partially, with respect to ‘x’, we get
du 15x%y* du _ 20x°y° Su B 25x° y*

ox z5 ’ 6y 25 ’ oz 26
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Now, we know that

z° z° 25
The error being maximum
1552 y* 20x°y? 25x°
©u), = | x|+ T8y R
z z z

15(1)(1) 20(1)(1) 25(1)()

‘ 0 (000)‘ ‘ ) (000)‘ ‘ 0 (0001)‘
=0.015 + 0.020 + 0.025 = 0.06

(1) pax 0.06

u 5

Relative error = =0.012 Ans.

Example 2. Find the maximum error in magnitude in the approximation

1
f(xy) =x>—xy+ Eyz +3 over the rectangle R : | x—3 | < 0.0l and |y — 2| < 0.01.
Solution. Here, we have

|
f,y) = xz*xy+5y2+3

o o
— =2x—-y— =-xt)
ox o oy Yy
We know that
0 0
Maximum d f'= ‘ f6x f ‘
Oy

=[(2x = »)dx [+](=x+y)dy|
= 1(2x3-2)(0.0)|+](-3+2)0.01 |
=4 (0.01) +| - 0.01 | = 0.05 Ans.

34.6 ERROR IN A SERIES APPROXIMATION

By Taylor series of one variable

(x— ) (x-a)""'

- I"H @) + R, (x)

f@) = fla+x—a)= f(a)+(x—a)f(a)+

S@+..+

n
xX—a
Here R () = C— 2 1"(0), a <0 <x
n!
For a convergent series R (x) — 0 as n — oo.
Approximate value of series = First n terms of the series.
We can find the number of terms for a particular desired accuracy.
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Example 1. Correct to five places of decimal at x = 1 find the number of terms of
the approximate series of e*.

Solution. We know that
2 3 n-1

X X X
f=1l+x+—+—+..+—+R,(x
21 3! (n-1)! ")
x" 0
Here R (x) = —e ,0<0<x
n:.

n n

X X
Maximum absolute error at (6 = x) = — f(x)= —‘e"
n! n!

1
Maximum error at (x = 1) = - x=1
n!

1 1. -
Maximum error correct to five decimal places == > 1077,
n!

= n!>2 x 103 (8! =40320)
81>2x10° =>n=28
Hence there are 8 terms in order that the sum is correct to five places of decimal. Ans.

EXERCISE 34.2

1. Find the number of term of the approximated series of e* correct to six decimal places.

2. Find the number of terms in the approximated series of log (1 +x) at x = 1, (log 2) to six decimal

places.
. The fractional error in the measurement of x is 0.001. What is the corresponding error in expan-
sion of e*.
4xy” . . :
If R = 3 and errors in x, y, z be 0.001, show that the maximum relative error at

V4

x=y=2z=11is 0.006.

ANSWERS
1. n=10 2.n=0
34.7 ORDER OF APPROXIMATION

Function = f (%)
Approximate value of function = ¢ (x)
Error = E (h")
[ f(h)—¢ (h) | <E|R"]
Order of error = O (h")
S (h) =10 (h)+ O (")



Theory of Errors < 7

1
Example 1. Write down with fifth order of approximation of T
Solution. We know that

1
T—Z:417hy1=1+h+h?+ﬁ+h4+#+hﬁ+W+ .....
=1+h+h+n+h+00)
Example 2. Write down the seventh order of approximation of sin | h |.
Solution. We know that

Powronwon

Sin | h ‘ = h*§+;7?+a
sin | /1 | with seventh order of approximation
3 5

Bk
sin (h) = h—;+§+0(h7) Ans.

34.8 MOST PROBABLE VALUE AND RESIDUAL

Let true value of a quantity be X.

Their approximate values are X, 1 X X, X

and the corresponding probable errors are x|, x,, x5, ..... X,
x, =X =X x, =X —X,x3 :X3 - X,..... , X, :Xn—X
In fact we cannot get true value of a quantity due to random errors. For practical

purposes we take a probable value X ofa quantity in place of true value. The probable

{)_(zX1+X2+X3+...+Xn}

value X is the average of X, X, Xy ..., X .

We define the residual by.
d=X-Xdy=X,-X,dy=X;-X ....d, = X, - X.

d,d

»d

3 e d, are the residual error and x , x,, X5, ..... x, are the probable error.

1°

34.9 GAUSSIAN ERROR

Errors and residuals are neither systematic nor constants but equally likely to be posi-
tive or negative.

Small errors are more frequent than large ones.

Very large errors don’t occur at all.

Under these conditions the errors follow the law of probability given by normal distri-
bution.

_G-w?

Y= 1=0)
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8

o,
o

On putting y = N,

This given the relative number of measurements of N having error x and /4 is called

precision index.
On plotting a graph between N and x, we get the Gaussian error curve.

34.10 THEORETICAL DISTRIBUTIONS

(1) Binomial Distribution (¢ + p)”
P(}") — ncrprqn —r

Mean = np
S.D.= /npg
Variance = npq

Mode = Most probable of success = (n + 1)p
Recurrence relation, P(r + 1) = a : [EJ P(r).
r q

Poisson’ Distribution

(2)
e*m mr
P(r)=
r!

Mean=m

SD.= Jm

Variance = m
[m—1<r<m

Mode = [m] = Integral part of m

Recurrence relation P(r + 1) = Y P(r).
r

(3) Normal distribution

1
fx)= G\/E

Mean = p
Standard deviation = ¢
Medium = 0

1
Modal ordinate = .
o2m
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EXERCISE 34.3

QS N A W

10.

. Assuming that N is large, show that the error in writing o = T is approximately
n

. Explain the meaning of the terms mean and standard deviation of a term.

. Calculate the mean deviation and standard deviation of the series

a,a+d,a+2d, .. ,a+2nd

. Explain what do you mean by binomial distribution. Find its mean and standard deviation.
. Define Poisson’s distribution. Discuss its importance in physics.

. Calculate mean and standard deviation of Poisson’s distribution.

. Define probability density function for the normal distribution.

. Define binomial and normal probability distribution and compare them.

500n-1)

N
percent of the value of o%.

. State and prove the normal law of errors and find an expression of the measure of precision and

the probable error of the arithmetic mean (D.U. May 2010).

Derive the normal law of errors and calculate the probable error of an observation.



Probability and
Distributions

35.1 PROBABILITY

Probability is a concept which numerically measure the degree of uncertainty and
therefore, of certainity of the occurrence of events to happen or Not to happen.

If an event 4 can happen in m ways, and fail in n ways, all these ways being equally
likely to occur, then the probability of the happening of 4 is

Number of favourable cases m

- Total number of mutually exclusive and equally likely cases B m+n

and that of its failing is defined as n
n

If the probability of the Happening = p
and the probability of Not happening = ¢

m n m+n
then ptqg= + =
m+n m+n m+n

=lor p+g=1.

1
For instance, on tossing a coin, the probability of getting a head = >

Some Definitions

1. Exhaustive Events or Sample Space : The set of all possible outcomes of a single perfor-
mance of an experiment is exhaustive events or sample space. Each outcome is called
a sample point. In case of tossing a coin once, S = (H, T) is the sample space. Two
outcomes - Head and Tail - constitute an Exhaustive event because No other out-
come is possible.

2. Random Experiment : There are experiments, in which results may be altogether
different, even though they are performed under identical conditions. They are known
as random experiments. Tossing a coin or throwing a die are random experiments.

3. Trial and Event : Performing a random experiment is called a trial and outcome
is termed as event. Tossing of a coin is a trial and the turning up of head or tail is
an event.

4. Equally likely events : Two events are said to be ‘equally likely’, if one of them
cannot be expected in preference to the other. For instance, if we draw a card from
well-shuffled pack, we may get any card, then the 52 different cases are equally
likely.

5. Independent events : Two events may be independent, when the actual happening
of one does not influence in any way the probability of the happening of the other.

1
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Example. The event of getting head on first coin and the event of getting tail on
the second coin in a simultaneous throw of two coins are independent.

6. Mutually Exclusive events : Two events are known as mutually exclusive, when
the occurrence of one of them excludes the occurrence of the other. For example,
on tossing of a coin, either we get head or tail, but not both.

7. Compound Event : When two or more events occur in composition with each other,
the simultaneous occurrence is called a compound event. When a die is thrown,
getting a 5 or 6 is a compound event.

8. Favourable Events : The events which ensure the required happening, are said to
be favourable events. For example, in throwing a die, to have the even numbers,
2, 4 and 6 are favourable cases.

9. Conditional Probability : The probability of happening an event 4, such that event
B has already happened, is j called conditional probability of happening of 4 on
the condition that B has already happened. It is usually denoted by P (A4/B).

10. Odds in favour of an event and odds against an event:

If number of favourable ways = m, number of not favourable events = n

(/) Odds in favour of the event = —, (ii) Odds against the event = —.

n m
11. Classical Definition of Probability: If there are n equally likely, mutually, exclusive and
exhaustive events of an experiment and m of these are favourable, then the probability of

m
the happening of the event is defined as — .
n

12. Expected value: if p , p,, p, ... p, are the probabilities of events x , x,, x, ... x, respectively
then the expected value

E(X) = pix + pyXy + p3Xs + oo+ PoX, = Zprxr

r=l1

13. Complement of an event. The complement of an event E with respect to the sample space
S is the set of all elements of S; which are not in E. The complement of £ is denoted by £’

or E.
ENnE=¢ o ENE=¢
P(E) =1 - P(E)

Probability of an Event

P(A) = Number of outcomes favourable to A

Total number of possible outcomes

Odds. If an event E occurs in m ways and does not occur in n ways, then

(7) Odds in favour of the event = 2 (i) Odds against the event = 2
n m

(i) P (E)=——

Addition law of probability. If A and B are two events associated with an experiment, then
P(4 U B) = P(A) + P(B) — P(A N B)
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and PAuUBuUC)=PA)+PB)+P(C)—PANB)—PANC)—PBNC)+PANBNCQO).
Multiplication law of probability. If A and B are two events associated with a random
experiment, then

P(A4 N B) = P(A) x P(B)

Combination. Number of combinations of n things taken r at a time is denoted by "C..

|
nCI‘ = n— and nCy — ncnir

r !(n—r)!

35.2 ODDS OF AN EVENT

Odds are closely related to probability.

For example. One card is drawn from a well shuffled deck of 52 cards, find out the
probability of an ace, and also find the probability of not ace.

Here, there are 4 aces in a deck of 52 cards. Therefore

4 1

P(ace)=—=—

(ace) 52 13
AlsoP(notace):H:ﬁzg
52 52 13

Since, the probability of drawing non-ace is 12 times the probability of drawing an ace,
we say the odds in favour of an ace are 1 to 12, or alternatively the odds against an ace
are 12 to 1.

Therefore, If an event £ occurs in m ways and not occur in n ways, then we say that

(7)) Odds in favour of the event = n (i1) Odds against the event = 2
n m

m

(i) P (E) =

m+n

Odds in favour of an event = prob. (Success): prob. (Failure)
Odds against an event = prob. (Failure): prob. (Success).

In general
P(E
Odds in favour of an event £ = # -_P
1-P(E) 1-p
1-P(E) 1-
Odds against event £ = 1-PE) e
P(E) p

Example. 4 card is drawn from a well shuffled deck of 52 cards. What are the odds in
favour of getting a face card? What are the odds against getting a face card?
Solution. There are 12 face cards (kings, queens, and jacks) in a pack of 52 cards. So,
the cards other than face cards are (52 — 12) = 40

.. There are 12 outcomes favourable to the event “a face card” the 40 outcomes are
unfavourable.
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= Odds in favour of getting “a face card”

_ _Number of favourable outcomes 12 3 or 31010
Number of unfavourable outcomes 40 10

.. Odds against getting “a face card”

_ Number of favourable outcomes 40 10 or 1003
Number of unfavourable outcomes 12 3

35.3 CONDITIONAL PROBABILITY

Let 4 and B be two events of a sample space S and let P(B) # 0. Then conditional
probability of the event 4 given B, denoted by P(4/B), is defined by
P4/ By=LAUNB) (D)
P (B)

Theorem. If the events 4 and B defined on a sample space S of a random experiment
are independent then

P (A/By=P (A)and P (B/A) =P (B)
Proof. 4 and B are given to be independent events,

P(Aand B)=P (4).P (B)
P(ANB) P(A).P(B) _

= UG T e

P(4)

_P(BnA) P(B).P(4)
P4 P

= P(B/A)

P(B) Proved

35.4 BAYES’ THEOREM

If B, B,, B,, ..., B, are mutually exclusive events with P(B) # 0, (i =1, 2, ... n) of a
random experiment then for any arbitrary event 4 of the sample space of the above
experiment with P(4) > 0, we have

P(B,]4)= IP(Bi)P(A/Bi)

1

> P(B,)P(4/B;)

i=1

(for n=3)

_ P(B,)P(4/B,)
P(B))P(A/B,)+P(By)P(A/By)+P(By)P(4/B;)

P(B,/4)

Proof. Let S be the sample space of the random experiment.
The events B, B, ..., B, being exhaustive
S=B UB,U...UB, [4cS]
A=4nS=4n (B, VB,L...UB)
=(AnB)VUANB)U...UANB) [Distributive Law]
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= P(A)=P(ANBl)+P(ANB)+ ...+ P(ANB)
= P(B)P(4/ B,)+ P(B))P(A | B,) + .... + P(B)P(4 | B)

=i:P(Bi)P(A/Bi) (D
i=1

Now  P(4 " B)=P()PB,|A)
P(ANB) _ P(B)P(A/B)
S P(B)P(4/B)

i=1

= P(B; /4)= [using (1)]

P(4)

P(AIB) S P(B)-P(AIB)

Note. P (B) is the probability of
occurrence of B. If we are told
that the event 4 has already
occurred. On knowing about the
event 4, P(B) is changed to
P(B | A). With the help of
Bayes’ theorem we can calculate
P(B | 4).

Example 1. /n a certain state,

25 percent Of all cars emit B1 0.99 A(025)(099)=02475
excessive amounts of pollutants.
If the probaility is 0.99 that a car
emitting excessive amounts will fail
the states vehicular emission test,
and the probability is 0.17 that a
car not emitting excessive amounts
of pollutants will nevertheless fail
the test. Whatsis the probability that a car that fails the test actually emits excessive
amounts of pollutants?

P(A|By)

A
® P(By) P (A|By)
etc

S P®)-P(AlIB)

£(0.75) (0.17) = 0.1275

Solution. In the diagram we find that the probabilities associated with the two branches
of the diagram are (0. 25) (0.99) = 0.2475 and (1 — 0.25) (0.17) = 0.1275. Thus, the
probability that a car that fails the test actually emits excessive amounts of pollutants is

_ 02475 66
0.2475+0.1275

This result could also have been obtained without the diagram by substituting directly
into the formula of Bayes’ theorem.
Solution by the formula of Bayes’ theorem

Let A is the event that the car will fail the emission test and B, is the event that the
car emit excessive amount of pollutants and B, is the event hat the cars do not emit
excessive pollutants.

We have PB)=025 .. P@B,)=0.75
P(A|B)=099 ,P(A[B)=0.17
By Bayes’ theorem
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P (B/A) = P (B).P(A/B)) _ (0.25) (0.99)
P (B)).P(A/By)+P (B,).P(A/B,)  (0.25)(0.99)+(0.75) (0.17)
0.2475

T 02475401275

Example 2. The members of a consulting firm rent cars from three rental agencies:
60 percent from agency I, 30 percent from agency 2, and 10 percent from agency 3.
If 9 percent of the cars from agency 1 need a tune-up, 20 percent of the cars from agency
2 need a tune-up, and 6 percent of the cars from agency 3 need a tune-up, what is the
probability that a rental car delivered to the firm will need a tune-up?

If a rental car delivered to the consulting firm needs a tune-up, what is the probability
that it came from rental agency 2?

Solution. If A is the event that the car needs a tune-up, and B, B, and B, are the events
that the car comes from rental agencies 1, 2, or 3, we have P (B)) = 0.60, P (B,) = 0.30,
P (B, =0.10, P (A | B)) = 0.09, P (A | B,) = 0.20, and P (A | B,) = 0.06. Substituting
these values into the formula.

k
P(A)= ZP(Bi).P(A /' B;)
=1

= P(A) = (0.60) (0.09) + (0.30) (0.20) + (0.10) (0.06)
=0.12
Thus, 12% of all the rental cars dilvered to this firm will need a tune - up.

By Bayes' theorem

P(B,)-P(4/B,
P(Ba/4) = P(Bl)-P(A/Bl)+P((BZ))-P((A//Bz))+ P(By)-P(4/By)
L (0.30)(0.20)
~(0.60)(0.09) +(0.30)(0.20) +(0.10)(0.06 )
=0.5 Ans.

Example 3. Three urns contains 6 red, 4 black; 4 red, 6 black; 5 red, 5 black balls
respectively. One of the urns is selected at random and a ball is drawn from it. If the
ball drawn is red find the probability that it is drawn from the first urn.

[D.U. Dec, 2017]

Solution. Let U,: the ball is drawn from wurn 1.

U,: the ball is drawn from wurn II.

U,: the ball is drawn from wurn I11.

R: the ball is red.
We have to find P (U/R).
By Baye’s Theorem,
_ PU)P(RIU))
~ P(U)P(R/U,)+ P(U,)P(R/Uy)+P(U;)P(R/U,)
Since the three urns are equally likely to be selected P(U)) = P (U) = P (U,) =§

P(U,/R)

(D
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6
Also P (R/U)) = P (a red ball is drawn from urn I) =—

10
i 4
P (R/U) = P (a red ball is drawn from urn II) :E
. 5
P (R/U,) = P (a red ball is drawn from urn III) =E
1 6
3710 2
From(l),wehave=P(Ul/R)=1 6 1 4 1 5 3 Ans.
—X—F—X—F—X—
3 10 3 10 3 10

Example 4. /n a bolt factory, machines A, B and C manufacture respectively 25%, 35%
and 40% of the total. If their output 5, 4 and 2 per cent are defective bolts. A bolt is
drawn at random from the product and is found to be defective. What is the probability
that it was manufactured by machine B? [D.U. Dec, 2017]

Solution. A: bolt is manufactured by machine 4.

B: bolt is manufactured by machine B.

C: bolt is manufactured by machine C

P (4)=025,P (B)=0.35 P (C)=040
The probability of drawing a defective bolt manufactured by machin e 4 is P (D/4) = 0.05
Similarly, P (D/B) = 0.04 and P (D/C) = 0.02
By Baye’s theorem

P(B)P(D/B)
P(A)P(D/ A)+P(B)P(D/B)+P(C)P(D/C)
1 0.35%0.04 _ 041
0.25x0.05+0.35%0.04 + 0.40% 0.02

P(B/D)=

EXERCISE 35.1

. If 20% of the bolts produced by a machine are defective, determine the probability that out of
4 bolts chosen at random

(a) 1 () 0 (c) At most 2 bolts will be defective.

. Six dice are thrown 729 times. How many times do you expect at least three dice to show a
five or a six?

. If the chance that any one of the 10 telephone lines is busy at any instant is 0.2, what is the
chance that 5 of the lines are busy ? What is the probability that all the lines are busy?

. An insurance salesman sells policies to 5 men, alt of identical age in good health. According to
the actuarial tables the probability that a man of this particular age will be alive 30 years hence

is % . Find the probability that in 30 years.

(a) All 5 men (b) Atleast3 men (c) Only 2 men (d) Atleast 1 man will be alive.

. Assuming a Binomial distribution, find the probability of obtaining at least two “six” in rolling
a fair die 4 times.
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6. If successive trials are independent and the probability of success on any trial is pt show that
the probability that the first success occurs on the nth trial is

p(l-=p), n=I1,2,3..

7. Consider an urn in which 4 balls have been placed by the following scheme : A fair coin is
tossed; if the coin falls head, a white ball is placed in the urn, and if the coin falls tail, a red
ball is placed in urn. (7) What is the probability that the urn will contain exactly 3 white balls ?
(if) What is the probability that the urn will contain exactly 3 red balls, given that the first ball
placed was red?

8. A box contains 10 screws. 3 of which are defective. Two screws are drawn at random without
replacement. Find the probability that none of the two screws is defective.

9. Out of 800 families with four children each, how many families would be expected to have :
(i) 2 boys and 2 girls; (i7) at least one boy; (iii) no girl; (iv) at most two girls?
Assume equal probabilities for boys and girls.
10. A fair dice is rolled. Consider the events A = {1, 3, 5}, B= {2, 3} And C = {2, 3, 4, 5}. Find

(@ P(A/B)and P (B/A) (@i)) P (A/B) and P (C/A).
@) P(AUB/C)andP(ANnB/C) [D.U. Nov, 2015]
11. If A and B are independent events associated with a random experiment, then prove that
(i) A and Bare independent events (if) A and Bare independent events
(iif) A and Bare also independent events. [D.U. Nov, 2015]
ANSWERS
1. (a) 0.4096 (b) 0.4096 (c) 0.9728. 2.233
3. °C, (0.2)° (0.8), (0.2)"° 4. (a) 32 (b) 192 (c) 40 (d) 242

243 243 243 243

171 1 3
5. —— 7. G) ~ (i) >
1296 @3 @3
8. % 9. (i) 300 (ii) 750 (iii) 50 (iv) 550.

35.5 RANDOM VARIABLES

A random variable is a variable whose possible values are numerical outcomes of a
random phenomenon.

Therefore a Random Variable can be defined as a real number ‘X’ which is associated
with the outcomes of a random experiment. Let us consider the case of single throw of
a die, if X denotes the number obtained, then X is a random variable which can take any
value 1, 2, 3, 4, 5 or 6 with equal probability 1/6.

Further, if we consider the three tosses of a coin then the total number of cases will be
23 = 8. And the sample space is given below:

S = {HHH, HHT, HTH, THH. THT, HTT, TTH, TTT}

Let us consider the case of number of Tails, Then X is a random variable which may
take any value from 0, 1, 2, and 3.

Outcome | HHH | HHT | HTH | THH | THT | HTT | TTH | TTT
Valuesof X | 3 | 2 | 2 | 2 | 1t | 1t [ 1 | o
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35.6 DISCRETE AND CONTINUOUS RANDOM VARIABLES

(a) Discrete Random Variable simply defines a set consisting of finite or countable
set of values. Discrete Random Variable may take only a countable number of distinct
values such as 0,1,2,3,4..... Discrete random variables are usually (but not necessarily)
counts. If a random variable can take only a finite number of distinct values, then it
must be discrete. Examples of discrete random variables include the number of children
playing in park, the number of voters of a particular city, the number of students in a
school etc. are all discrete random variables.

(b) Continuous Random Variable : Defines a set which consists of infinite and un-
countable f set of values. For example, the age, height or weight of students in a class
are all continuous I random variables. Generally, we can say that random variables
represent counted data while continuous random variables represent measured data. For
example, Random Variables like Length, Thickness, Weights and Temperature are called
Continuous Variables.

35.7 PROBABILITY DISTRIBUTION FUNCTION

Definition. Let X be a random variable. The function F defined for all real x by
Fx)=PX<x)=P{o:X(® <x},—o<x<omn, (1)
is called the distribution function (d.f.) of the rv. (X).

Remark. A distribution function is also called the cumulative distribution function.
Sometimes, the notation /', (x) is used to emphasise the fact that the distribution function
is associated with the particular random variable X. Clearly, the domain of the distribution
function is (— o, ) and its range is [0, 1].

35.8 PROPERTIES OF DISTRIBUTION FUNCTION

We now proceed to derive a number of properties common to all distribution functions.
1. If F is the d.f. of the random variable X and if a < b, then P (a < X<b) = F (b) — F (a).

Proof. The events ‘@ < X < b' and ‘X < 4’ are disjoint and their union is the event
‘X < b'., Hence by addition theorem of probability :

Pa<X<b)y+P(X<a)=P(X<h)

= P@<X<bh)=P(X<b)—P(X<a)=F0b)-F (a) )
Cor.l. P@<X<b=P{X=a)u@<X<h)}=PX=a)+P(a<X<b)
=P (X=a)+[F(b) - F (a)] (3

Similarly, we get
Pla<X<b)y=P@<X<b)-PX=b)y=Fb)-F(@-PX=b ..4)
Pa<X<b)y=P(a<X<b)+PX=a)

=F0b)-F@-PX=b+PX=0a) .. (5

Remark. When P (X=a)=0and P (X=5)=0, all four events a < X< b, a <X<b,
a < X<band a <X < b have the same probability F (b) — F (a).

2. If F is d.f- of one-dimensional random variable X, then (i) 0 < F(x) < 1,
(ii) F(x) < F@y) if x < y.
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In other words, all distribution functions are monotonically non-decreasing and lie
between 0 and 1.

3. If F is d.f- of one-dimensional r.v. X, then
F(=x)= lim F(x)=0 and F(x)= lim F(x)=1
xX—>—o0 xX—>00

Proof. Let us express the whole sample space S as a countable union of disjoint events

as follows:
S={&(—n<X§—n+l)}u{& (n<X£n+l)}
n=1 n=0
- P(S):ZP(fn<Xan+1)+ZP(n<X£n+l)
n=1 n=0
a b
- 1= alinwn:I{F(f n+)—F(-n)} + blgw;;{nnﬂ)w(n)}
= lim {F(0)-F(-a)} + lim {F(b+1)- F(0)}
a—>w b—>
={F(0) — F(~ )} +{F(0) — F(0)}
S 1 =F(0)—F (- ) ...(A)
Since — w0 < o0, F' (— o) < F (). Also F (- ©) > 0 and F () < 1
: 0<F(—w)<F(0)<1 ...(B)

From (A) and (B), we get F (—o0)=0 and F () =1.

Remarks 1. Discontinuities of F (x) are at most countable.

2. F(a)-F(a-0)=lim P(a—h<X <a),h<0
h—>0

and F(a+0)—F(a)=lim Pla<X<a+h)=0,h>0
h—>0

35.9 DISCRETE RANDOM VARIABLE

Simply defines a set consisting of finite or countable set of values. Discrete Random
Variable may take only a countable number of distinct values such as 0, 1, 2, 3, 4.....
Discrete random variables are usually (but not necessarily) counts. If a random variable
can take only a finite number of distinct values then it must be discrete. Example of

35.10 PROBABILITY MASS FUNCTION (p.m.f)

Let us consider a random variable X which assumes the values x, x,, ... x,. With each
value of the variable X, we associate a number
P=PX=X);i=1,2,..n
which is known as the probability of x-. and satisfies the following conditions
()P =PX=X)20(=1,2,..n) (i) XP,=P +P,+..P =1

The set of all the possible ordered pairs {x, p(x)}, is called probability distribution of
the random variable X.
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The probability distribution of a discrete random variable is a list of probabilities
associated with each of its possible values. It is also sometimes called the “Probability
Function or Probability Mass Function (p.m.f)”. pmf is usually to define a Discrete
Probability Distribution for either Scalar or Multivariate Random Variables whose
domain is discrete.

35.11 DISCRETE PROBABILITY DISTRIBUTION

A Discrete Probability Distribution describes the Probability of occurrence of each value
of a discrete random variable. Therefore discrete random variable is a random variable
that has countable values, i.c. a list of non-negative integers. When a random variable is
a discrete variable, its probability distribution is called a discrete probability distribution.
With a Discrete Probability Distribution, each possible value of the discrete random
variable can be associated with a non-zero probability. Hence a discrete probability
distribution is usually presented in tabular form.

Suppose a discrete variate X is the outcome of some random experiment. The probability
that X takes the values x, is p, then

P(X=x)=p, orpx)fori=1,2,..,
where (i) p(x)) > 0 for all values of 7, (i) Zp(x) = 1.

The set of values x, with their probabilities p, constitute discrete probability distribution
of the discrete variate X.

Example. 4 random variable X has the following probability function:

X 0 1 2 3 4 5 6 7
p(v): 0 k 2k 2%k 3k 3 2w | TR+ k

(7) Find the value of the k& (i7) Evaluate P (X < 6), P (X > 06) ([ P(0<X<Y)

Solution: (7) If X is a random variable,

;
then D P () =lie 0+k+2k+2k+3k+k> +2k> + 7k +k =1
i=0

) 1
ie. Ok + 10k =1, k= —

10
(i) PX<6)=PX=0)+PX=1)+PX=2)+PX=3)+PX=4)+PX=5)

8§ 1 8l
=0+k+2k+2k+3k+kE=8k+k=—+—=—

10 100 100

9 1 19

PX26)=PX=6)+PX=7)=2+TkF +k=——+—=—"—
100 10 100

(ii)) PO < X< 5)= P(X= 1)+ P(X=2) + P(X=3) + P(X = 4) = k + 2k + 2k + 3k

8 4
=8k=—=— Ans.
10 5
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EXERCISE 35.2

If X be a random variable giving the number of aces in a random draw of 4 cards from an
ordinary deck of 52 cards. Plote a table of the probability distribution of X.

. On the day of rains, a raincoat seller can earn 500 per day. With no rains, he can lose 100 per

day. What is his Expectation if the probability of rains is 0.4?

3. A die is throws at random. Calculate the expectation of the number on it

4. A and B throw one dice for a price of I 11 which is to be won by the player who first throws

6. If A has the first throw, what are their respective expectations?

5. A coin is tossed three times; If X is a random variable giving the number of tails that appear,
make a table showing the probability distribution of X.

6. A random variable X has the following probability distributions:

X: 0 1 2 3 4 5 6 7
PX): 0 k 2k 2k 3k k2 2k Tk* + k
Find each of the following:

@) k (it) P(X < 6) (iit) P(X = 6) (iv) P(0 < x <5)

7. The probability that there is at least one error in an accounts statement prepared by 4 is 0.2 and
for B and C they are 0.25 and 0.4, respectively. 4, B and C prepared 10, 16 and 20 statements,
respectively. Find the expected number of correct statements in all.

8. A box has 5 Blue and 3 Red balls. If 2 balls are to be drawn at random without replacement
and X denotes the number of Blue balls, find the probability distribution for X.

9. The probability of a man hitting target is 1/2. How many times must he fire so that the proba-
bility of hitting the target at least once is more than 90%.

10. Suppose X has a binomial distribution with parameters » and P. For what P is VAR maximized
if n is fixed. Also find the maximum value of variance.
ANSWERS TO SELECTED QUESTIONS
Ly 0 I 2 3 4
1) 194580 69184 6768 192 1
270725 270725 270725 270725 270725
7
2. %140 3. 5 4. 36,35
5. x 0 1 2 3
1 3 3 1
f@ 1 3 3 1
8 8 8 8
1 81 19 4
6. (i) k=— . 81 L4
@) 10 (if) 100 (i) 100 @iv) 5
7. 32
8. X 1 2
3 1s 5
/) 28 28 28
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35.12 BINOMIAL DISTRIBUTION P (r) = "¢ p".q""

To find the probability of the happening of an event once, twice, thrice, ..... r times
exactly in n trials

Let the probability of the happening of an event 4 in one trial be p and its probability of
not happening be 1- p = g. We assume that there are n trials and the happening of the
event A is r times and its not happening is n — » times. This may be shown as follows

r times n — r times (1)

A indicates its happening, A its failure and P(A)=pand P (Z )=¢q
We see that (1) has the probability

7)) qq ...... q=p .q" ...(2)

r times n — r times
Clearly (1) is merely one order of arranging r A's:
The probability of (1) = p'g"” x Number of different arrangements of » A’s and (n — r) A’s.
The number of different arrangements of » 4's and (n — r) A’s = "C.
.. Probability of the happening of an event r times = "C p" ¢"".

= (r + Dth term of (¢ + p)”
r=0,1,2,.....,n).

If r = 0, probability of happening of an event 0 times = "C_ ¢" p° = ¢"

If = 1, probability of happening of an event 1 time = "C ¢"' p

If » = 2, probability of happening of an event 2 times = "C, ¢"~ p*

If r = 3, probability of happening of an event 3 times = "C, ¢"~ p’ and so on.
These terms are clearly the successive terms in the expansion of (¢ + p)".
Hence, it is called Binomial Distribution.

Example 1. Find the probability of getting 4 heads in 6 tosses of a fair coin.

1 1
Solution. P= —, g= —,n=6,r=4.
2 2

We know that P(r) ="Cq"" p" = P (4) = °C 4*“p*
6x5(1 V(1) 1° 15
_ — | |=| =15%x| =| =—= Ans.
1x2\ 2 2 2 64

2o
2f

Mean of Binomial Distribution

Mean = np

Variance and Standard Deviation of Binomial Distribution

Variance = 6> =np g SD.=G=+npgq

Hence for the binomial distribution, Mean = np, and B, = 6> =np g
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Example 2. An urn contains nine balls, two of which are red three blue and four black.
Three balls are drawn from the urn at random. What is the probability that

(i) the three balls are of different colours? (ii) the three balls are of the same colour?
Solution.
Urn contains 2 Red balls, 3 Blue balls and 4 Black balls.

(7) Three balls will be of different colours if one ball is red, one blue and one black ball
are drawn.

, - 20Oy 2x3x4 2
Required probability = = ==

5 Ans.
G 84 7

(if) Three balls will be of the same colour if either 3 blue balls or 3 black balls are drawn.
P (3 Blue balls or 3 Black balls) = P (3 Blue balls) + P (3 Black balls)
e . ‘G 1445
‘c, °c; 84 84

Ans.

Example 3. An urn A contains 2 white and 4 black balls. Another urn B contains 5 white
and 7 black balls. A ball is transferred from the urn A to the urn B, then a ball is drawn
from urn B. Find the probability that it is white:

Solution. Urn 4 contains 2 white and 4 black balls.
Urn B contains 5 white and 7 black balls.
Now there are two cases of transferring a ball from 4 to B.

Case I. When a white ball is transferred from 4 to B

2
P (Transfer of a white ball) = ——=
2+4

1

3

After transfer of a white ball, urn B contains 6 white balls and 7 black balls.
P (Drawing a white ball from urn B after transfer)

= P (Transfer of a white ball) x P (Drawing of a white ball)

(Lo Y 1,6_2
3N\6+7) 3 13 13
Case II. When a black ball is transferred from A4 to B.

4 2
P (Transfer of a black ball) = ——=—
2+4 3
After transfer of a black ball, urn B contains 5 white and 8 black balls.
P (Drawing a white ball from urn B after transfer)
= P (Transfer of a black ball) x P (Drawing of a white ball)
2 10 16

Required probability = B + 39 = 39 Ans.
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Example 4. 4 can hit a target 3 times in 5 shots, B 2 times in 5 shots and C three
times in 4 shots. All of them fire one shot each simultaneously at the target. What is the
probability that

(i) 2 shots hit (ii) At least two shots hit? (D.U. Dec 2017)
3
Solution. Probability of A hitting the target = 35
. o 2
Probability of B hitting the target = 3
. o 3
Probability of C hitting the target = 2

Probability that 2 shots hit the target
=PA)P(B)q(C)+P(A)P(C)q(B)+P(B)P(C)q(4)

3 2 3) 3.3 2 2 3 3
==X—=X|l-=|+=x—=x| 1-— 1-=
5 5 4) 5 4 5 5 4 5
6 1 9 3 6 2 6+27+12 45 9
N S IO I s e e Ans.
25 4 20 5 20 5 100 100 20
(if) Probability of at least two shots hitting the target
= Probability of 2 shots + probability of 3 shots hitting the target
9 3 2 3 63

9
= —+PA)PB)P(C)=—+—%x—X—=— Ans.
20 DA PB) PO =04 0x =100 ns

Example 5. 4 and B throw alternatively a pair of dice. A wins if he throws 6 before B
throws 7 and B wins if he throws 7 before A throws 6. Find their respective chances of
winning, if A begins.

Solution. Number of ways of throwing 6
ie. (1+5,2+4),3+3),@+2),5+D)=5.
31

5
Probability of throwing 6 = —= 36

36 p]s q]:

Number of ways of throwing 7
ie. (1+6),2+5),B3+4),4+3),5+2),6+)=6

6 1
Probability of throwing 6 = 6 6 P, g,=

|

P(A) = p+ @420, + G 3 Py + ..
P(B)=q,p, +4; ¢, P, + 4,95 P> +
Probability of A’s winning = p; + ¢4, + qlzqf Dt

5
P 36 5 36x6_30

:1—‘]1‘12 l—ﬂxé 6 61 6l
36 6
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Probability of B’s winning = ¢;p, + ql2 9, P> +q13 q% Dyt

_ 4P _ 36 6 _ 31  36x6 31 Ans
I-qiqy | (31)(5) 36x6 61 6l '
36 )16

EXERCISE 35.3

1. If 20% of the bolts produced by a machine are defective, determine the probability that out of
4 bolts chosen at random bolts will be defective.

(a) 1 ®)0 (c) At most 2
2. Six dice are thrown 729 times. How many times do you expect at least three dice to show a
five or a six ?

3. If the chance that any one of the 10 telephone lines is busy at any instant is 0.2, what is the
chance that 5 of the lines are busy ? What is the probability that all the lines are busy?

4. An insurance salesman sells policies to 5 men, all of identical age in good health. According to
the actuarial tables the probability that a man of this particular age will be alive 30 years hence

2
is 3 Find the probability that in 30 years.

(a) All 5 men (b) At least 3 men (c) Only 2 men (d) At least 1 man will be alive.
5. Assuming a Binomial distribution, find the probability of obtaining at least two “six” in rolling
a fair die 4 times.

6. If successive trials are independent and the probability of success on any trial is p, show that
the probability that the first success occurs on the nth trial is

p(1—p)y-, n=1,2,3 ..

7. Consider an urn in which 4 balls have been placed by the following scheme : A fair coin is
tossed; if the coin falls head, a white ball is placed in the urn, and if the coin falls tail, a red
ball is placed in urn. (i) What is the probability that the urn will contain exactly 3 white balls ?
(i1) What is the probability that the urn will contain exactly 3 red balls, given that the first ball
placed was red?

8. A box contains 10 screws, 3 of which are defective. Two screws are drawn at random without
replacement. Find the probability that none of the two screws is defective.

9. Out of 800 families with four children each, how many families would be expected to have :
(7) 2 boys and 2 girls; (i7) at least one boy;  (iii) no girl;  (iv) at most two girls?
Assume equal probabilities for boys and girls.

10. In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle
is 5/6. What is the probability that he will knock down less than 2 hurdles ?

11. An electronic component consists of three parts. Each part has probability 0.99 of performing
satisfactorily. The component fails if 2 or more parts do not perform satisfactorily. Assuming
that the parts perform independently, determine the probability that the component does not
perform satisfactorily.

12. Find the binomial distribution whose mean is 5 and variance is 10/3.

13. The probability that, on joining Engineering College, a student will successfully complete the

3
course of studies is 5 Determine the probability that out of 5 students joining the college (i)

none and (ii) at least two will successfully complete the course.
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14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

A carton contains 20 fuses, 5 of which are defective. Three fuses are chosen at random and
inspected. What is the probability that at most one defective fuse is found?

A bag contains three coins, one of which is coined with two heads, while the other two coins
are normal and not biased. A coin is thrown at random from the bag and tossed three times in
succession. If heads turn up each time, what is the probability that this is the two-headed coin?
In sampling a large number of parts manufactured by a machine, the mean number of defectives
in a sample of 20 is 2. Out of 1,000 such samples, how many would be expected to contain at
least 3 defective parts?

The incidence of occupational disease in an industry is such that the workers have 20% chance

of suffering from it. What is the probability that out of 6 workers 4 or more will catch the
disease?

If the probability of hitting a target is 10% and 10 shots are fired independently, what is the
probability that the target will be hit at least once ?

Among 10,000 random digits, find the probability p that the digit 3 appears at most 950 times.

A fair coin is tossed 400 times. Using normal approximation to the binomial, find the
probability that a head will occur (a) more than 180 times and (b) less than 195 times.
Four coins were tossed 200 times. The number of tosses showing 0, 1, 2, 3 and 4 heads were

found to be as under. Fit a binomial distribution to these observed results. Find the expected
frequencies.

No. of heads: 0 1 2 3 4
No. of tosses: 15 35 90 40 20

A firm plans to bid X 300 per tonne for a contract to supply 1000 tonnes of a metal. It has two
competitors A and B and it assumes that the probability that A will bid less than 300/- per
tonne is 0.3 and that B will bid less than ¥ 300 per tonne is 0.7. If the lowest bidder gets all
the business and the firms bid independently, what is the expected value of business in rupees
to the firm. (A.M.LE.T.E. Dec. 2006)
Fill in the blanks :

(a) A coin is biased so that a head is twice as likely to occur as a tail. If the coin is tossed
3 times, the prob. of getting exactly 2 tails, is........

(b) The probability of getting number 5 exactly two times in five throws of an unbiased die
1S...uenne

(c) A die is thrown 6 times. The probability to get greater than 4 appears at least once is ........
(d) For what, one should be?

(7) Obtaining 6 at least once in 4 throws of a die.

or (if) obtaining a double-six at least once in 24 throws with two dice.

(e) The probability of producing a defective bolt is 0.1. The probability that out of 5 bolts one
will be defective is........

(f) If the probability of hitting a target is 5% and 5 shots are fired independently, the probability
that the target will be hit at least once is........

(g) If n and p are the parameters of a binomial distribution the standard deviation is ........
(h) The mean, standard deviation and skewness of Binomial distribution are ..... and .....

(1) If three persons selected at random are stopped on a street, then the probability that all of
them were born on Sunday is ........
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ANSWERS
1. (a) 0.4096, (b) 0.4096, (c) 0.9728. 2. 233
192 242
. 10 . 5 . 5 . 10 . - b - - -
3. 1°C;(0.2)°(0.8)%(0.2) 4 ()243()243()243()243
A Sy L3
" 1296 -3 (”) 8
7
8. 3 9. (i) 300, (ii) 750, (iii) 50, (iv) 550.
10. - = 11. 0.000298
3\6
r 15—r
N (2
1. ®c (—j (—] 13. () =2 iy 283
3) 3 3125 3125
27 4
14. — 15. —
32 5
16. 324 17, 3
. " 3125
1 r 9 10,000—r
10,000
18. 1—(0.9)° = 0.65 nearl 19, %% ¢ (—j (—j
©9) neary 10/ 10

0. @ 1_(3221(1))1_(3195

4
2. (a)g, ()10 () ()()ﬂ ()—(35) ,(e>1(3j L ()1-(095),

1296 210
() \Jnpq (h)np,Wf—o

35.13 POISSON DISTRIBUTION

Poisson distribution is a particular limiting form of the Binomial distribution when p
(or g) is very small, n is indefinitely large and np = m (say) is finite.

Probability function of X is given by

m'e”

r!

P(X=r)=

where m is the mean of the distribution.

Mean of Poisson Distribution
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Successes r Frequency f fr
0 e "m’ 0
0!
e"m
1 e m
1!
-m_ 2
2 e m e m?
2!
3 e "m’ e m’
3! 2!
e "m" e".m"
p
r! (r=1!
3 r
Xfr=0+e". m+e . —+ . 1
2! (r—1)
m m2 mr—l
=e"m|l+—+—+. . 4——+...|=m.e "["]=m
o2 (r=1n!
m
Mean —é—j; = 1 Mean = m. Ans.

Standard Deviation of Poisson Distribution S.D.= \/m
.. Mean and variance of a Poisson distribution are each equal to m.
W, =m, W, =3m*+m
Hence the coefficients of skewness and Kurtosis are

1 1
B=—2 By=3+—
m m

1 1
Y =ﬁ, Y2 =;

Example 1. In a certain factory producing cycle tyres, there is a small chance of 1 in
500 tyres to be defective. The tyres are supplied in lots of 10. Using Poisson distribution,
calculate the approximate number of lots containing no defective, one defective and two
defective tyres, respectively, in a consignment of 10,000 lots.

Solution. P=—— n=10

e"m"

m=np=10.L=%=O.O?_, P(r)=
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S.No. Probability of defective Number of lots containing defective
-0.02 0
1 P(0)= e 7(0.02)° =¢ %92 _ 9802 10,000 x 0.9802 = 9802 lots
0!
P ()= e %92(0.02)!
2 1! 10,000 x 0.019604 = 196 lots

=0.9802x0.02 = 0.019604

3 Q== 10,000 x 0.000196 = 2 lots

=0.9802x0.0002 = 0.00019604

Ans.

Example 2. 4 car hire firm has two cars which it hires out day by day. The number of
demands for a car on each day is distributed as a Poisson distribution with mean 1.5.
Calculate the number of days in a year on which

(7) neither car is on demand (i) a car demand is refused. (e1° =0.2231)
(MDU Dec. 2010)

Solution. m=15

(i) If the car is not used, then demand (r) = 0

e".m" e 19(1.5)° 3

P(r)= , P0)= e =0.2231
r! 0!

Number of days in a year when the demand is zero = 365 x 0.2231 ~ 81 Ans.
(if) Some demand is refused if the number of demands is more than two i.e. » > 2.
Pr>2)=P3)+P@+..=1-[PO)+P(1)+P(22)]
-15 0 -5 1 15 2
e (L5 L (1.5) L (1.5)
0! 1! 2!

:1—

=l-[e+e! x 1.5+ ¢! x1.125]
— ] e[+ 15+ 1.125] =1 — ' x 3.625
=1-0.2231 x 3.625 =1 — 0.8087375

=0.1912625
Number of days in a year when some demand of car is refused
=365 x 0.1912625 = 69.81 ~ 70 days Ans.

Example 3. If the probability that an individual suffers a bad reaction from a certain
injection is 0.001, determine the probability that out of2000 individuals

(a) exactly 3 (b) more than 2 individuals (c¢) None (d) More than one individual will
suffer a bad reaction.

Solution. p=0.001, »=2000
m =np =2000 x 0.001 =2
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T m” 201 2
P(I’)Ze ” =e_2—:—2><—
7! et 7!

3
(a) P (Exactly3)=P (3) = LZZ_ 1 ><§ =
e

4
=% =(0.135)x~ = 0.18
3 (27182 6 3

(b) P (more than 2) =P (3) + P (4) + P (5) + ... + P (2000)
=1-[PO)+P(1)+P((2)]
e2(2)" +€72(2)1 . e2(2)?

—=1-
o T 2
e [14242]=1-2
=l-e[1+2+2]=1-—=
e
—1-5x0.135=1—-0.675 = 0.325 Ans.
-2 0
2
©) P(none)zP(O)=%=O.l35

(d) P (more than 1) = P (2) + P (3) + P (4) + ... + P (2000) = 1 — [P (0) + P (1)]

-2 0 -2 1
:1{%+%} —1-3¢ 2 =1-3%0.135 = 1—0.405 = 0.595 Ans.

Example 4. 4 manufacturer knows that the razor blades he makes contain on an average
0.5% of defectives. He packs them in packets of 5. What is the probability that a packet
picked at random will contain 3 or more faulty blades ?

Solution. p=0.5%=0.005n=35
m=np =15 x0.005=0.025

—m r —0.025 r
e”".m e 0.025
pin=t=t o Q)
r r.
—0.025 3 —0.025 —0.025 5
PGormore) =P ()+P (P 5= Q¢ CIBR, ¢ QO

—0.025 3

_ %[20 +5(0.025)+(0.025)*]

~0.975x0.000015625%20.125625

120
= 0.000002555. Ans.

Example 5. An insurance company found that only 0.01% of the population is involved
in a certain type of accident each year. If its 1000 policy holders were randomly selected
from the population, what is the probability that not more than two of its clients are
involved in such an accident next year? (given that ¢! = 0.9048)
(D.U. Dec 2017)

1 1

1
Solution. p=0.01%=—x—=——, n=1000
100 100 1000
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1

1000 10

m = np = (1000) x

e m"

p(n=""0
r!
P (not more than 2) =P (0, 1 and 2) =P (0) + P (1) + P (2)
0.1 0 -0l 1 01 2
_e 0.1 L€ 0.1 L€ 0.1
0! 1! 2!

0.01 Ans.
=e ! (1 + 0.1+'Tj =0.9048x1.105 = 0.9998

EXERCISE 35.4

1. Find the probability that at most 5 defective fuses will be found in a box of 200 fuses if expe-
rience shows that 2 per cent of such fuses are defective.

2. The number of accidents during a year in a factory has the Poisson distribution with mean 1.5.
The accidents during different years are assumed independent. Find the probability that only 2
accidents take place during 2 years time.

3. A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins
in boxes of 100 and guarantee that not more than 10 pins will be defective, what is the approx-
imate probability that a box will fail to meet the guaranteed quality. [e °=0.006738]

4. Suppose the number of telephone calls on an operator received form 9.00 to 9.05 follow a
poisson distribution with mean 3. Find the probability that

(i) the operator will receive no calls in that time interval tomorrow,
(i) in the next three days the operator will receive a total of 1 call in that time interval.
[e = 0.04978]

5. On the basis of past record it has been found that there is a 70% chance of power-cut in a city
on any particular day. What is the probability that from the first to the 10™ day of the month,
there are 5 or more days without power cut.

6. The distribution of typing mistakes committed by a typist is given below. Assuming a Poisson
model, find out the expected frequencies:

Mistakes per pages 0 1 2 3 4 5

No. of pages 142 156 69 27 5 1

7. Let x be the number of cars per minute passing a certain crossing of roads between 5.00 P.M. and
7.00 PM. on a holiday. Assume x has a Poisson distribution with mean 4. Find the probability of
observing atmost 3 cars during any given minute between 5.00 P.M. and 7 PM. (given ¢ * = 0.0183)

8. Let x be the number of cars, passing a certain point, per minute at a particular time. Assuming
that x has a poisson distribution with mean 0.5, find the probability of observing 3 or fewer
cars during any given minute.

9. Number of customers arriving at a service counter during a day has a Poisson distribution with
mean 100. Find the probability that at least one customer will arrive on each day during a period
of five days. Also find the probability that exactly 3 customers will arrive during two days.

10. The random variable X has a Poisson distribution. If
P (X =1)=0.01487, P (X =2) = 0.04461. Then find P (X = 3).
11. A source of water is known to contain bacteria with mean number of bacteria per cc equal to

2. Five 1 cc test tubes were filled with water. Assuming that Poisson distribution is applicable,
calculate the probability that exactly 2 test tubes contain at least 1 bacterium each.
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12. In a normal summer, a truck driver gets on an average one puncture in 1000 km. Applying
Poisson distribution, find the probability that he will have
(f) no puncture (it) two punctures in a journey of 3000 kms.

13. Wireless sets are manufactured with 25 soldered joints each. On the average, 1 joint in 500 is
defective. How many sets can be expected to be free from defective joints in a consignment of
10000 sets ?

14. In a certain factory turning out razor blades, there is small chance % for any blade to be
defective. The blades are supplied in packets of 10. Using Poisson’s distribution, calculate the
approximate number of packets containing (i) no defective (ii) one defective and (iii) two
defective blades respectively in a consignment of 10,000 packets. (e 2 =10.9802).

15. If m and p_ denote by the mean and central rth moment of a Poisson distribution, then prove
that

du . 2 re"m* du
=rm +m—2—| Hint.p = x—m , find—=
M1 M1 i l: M, nzz(;( ) X! A
ANSWERS
1. 0.785 2. 0224 3. 0.0136875
. 3 3 30 37 3% 39 310
4. (1) e? (i) 3 x (e?)*(e?. 3 5 |4 42 42 42 17 |3
e (e ) (5! 6! 7! 8 9! 10!
6. 147,147, 74, 25, 6, 1 pages. 7. 04331 8. 0.998
3
9. (1 —e'0), 200 x@ 10. 0.08922
11. %(lfe’z) =0.3459 12. (i) e’ (i) 45 ¢€?
13. 9512 14. (i) 9802 (ii) 196 (iii) 2

35.14 CONTINUOUS DISTRIBUTION

So far we have dealt with discrete distributions where the variate takes only the integral
values. But the variates like temperature, heights and weights can take all values in a
given interval. Such variables are called continuous variables.

Distribution function

If F(x)=P(X <x)= J‘ f(x)dx , then £ (x) is defined as the Distribution Function.

Let f(x) be a continuous function, then Mean =I xf (x)dx

—00

+

Variance = '[rw (x— )_c)z. £ (x)dx. (X = mean)

Notes. f'(x) is called probability density function if

(1) f(x) > G for every value of x. (2) .[jo fdx=1. (3) jbf(x)dx =P,(a<x<b).
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Example 1. 4 function f (x) is defined as follows
0, x<2

f(x)= é(2x+3), 2<x<4

0, x>4
Show that it is a probability density function.
0, x<2

1
Solution. f(x)= E(Zx +3), 2<x<4

0, x>4
If f (x) is a probability density function, then

0 ] re=
41 R )
Here jzﬁ(2x+3)dx—ﬁ[x +3x] = (16+12-4-6)=1

() f(x)>0for2<x<4
Hence, the given function is a probability density function.

Example 2. The probability density function f (x) of a continuous random variable x is

defined by (Calcutta 2018, 2013)
13, 5<x<10
Sx)=1x
0, otherwise

Find the value of A.

A
Solution. Here, f(x)= —> 5<x<10
x
Since f(x) is probability density function, so
10
J- iabc =
5 x3
4 o
= PR =
[ 2X2 :L
Al L U
- 2| 100 25
Al 3 200
——|=1 = A=—o
= 2 [100) 3 Ans.

Example 3. The diameter of an electric cable is assumed to be continuous random
variate with probability density function:

f(x)=6x(1—-x),0<x<1
(i) verify that above is a p.d.f (ii) find the mean and variance.
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Solution. (i) f f(x)dx = jol 6x(1— x)dx = I 01 (6x — 632 )dx

- (3x2—2x3)10 =3-2=1

Secondly f(x) >0 for 0 <x < 1.
Hence the given function is a probability density function.

) 1
(if) Mean=I x.f(x)dxzjoxﬁx(lfx)dx
1
1
:J. (6x2—6x3)abc:(2x3 —§x4) :2—ézl Ans.
0 27 )y 2 2
© ) 1 1 2
Variance = J' (=) f (x)dx = Io(x_Ej 6x(1—x) dx
1 1
=J. (xz —x+lj (6x—6x2)dx=J- [12):3 —6x* —Ex2 +Ex)dx
0 4 0 2 2
65 55 32 6 5 3) 1
=t 20 202 =(3————+—):— Ans.
5 2 4 . 5 2 4 20

EXERCISE 35.5

. The distribution function of a random variable X is given by
ox® ,0<x<3
Fx)=41, x23
0, x<O0
If P(X = 3) = 0, Find (a) the constant ¢, (b) the density function, (¢) P(X > 1), (d) Pl <X <2).
. If a random variable X has density function
ce ™, x>0
0

f(x)={’ Y

Than calculate (a) the constant ¢, (b) P (1 <X <2), (¢c) P(X=3), (d) P(X<1)
. If a random variable X has density function

3x

cxz, 1<x<2
f(x)=9cx, 2<x<3
0, otherwise

Than calculate (a) the constant ¢, (b) P (X > 2), (¢) P (1/2 < X < 3/2).

ANSWERS
1 x*/9, 0<x<3 26 7
. —, (» = ’ , =, -
@ 27 ®) S {O, otherwise © 27 @ 27
5 6 9 5 6 15 19
2. (@3 (b)e*—e(c)e?(d)1-e 3. (a) 59° (b) 59 (C)—116
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35.15 NORMAL DISTRIBUTION

Normal distribution is a continuous distribution. It is derived as the limiting form of the
Binomial distribution for large values of n where neither p nor ¢ is very small.

The normal distribution is given by the equation

(x-w)’

f(x) = e 20 (1
oV2m O
where |l = mean, G = standard deviation, 7T = 3.14159..., [e =2.71828...]

| (x-m)

e 2 dx
o\2n

X3
P (x <x<x2)=I
X

—u. 1 ——z
On substitution z=2"Hin (1), weget f(z)= e? .(2)
o

Here mean = 0, standard deviation = 1.
(2) is known as standard form of Normal Distribution.

Theorem. To derive Normal Distribution as a limiting case of Binomial distribution
where p # g but p = q. (U.P. I1I Semester Dec. 2006)

Statement. The limiting case of Binomial Distribution (p + ¢)", as n — o and neither
p nor. g are very small, generates the Normal Distribution.

Proof. The frequencies for » and (» + 1) successes in binomial distribution are
f(’,.):N ncrprqnfr and f(r+1):Nn r+1pr+lqnf(r+l)

The frequency of r successes > frequency of (» + 1) successes if

S()
N> fr+l) =»> ——>
f(r)y>fr+l) o))
n! R
7.Pl, n—r
N."C. Pq"" ri(n—r)! 7
= n r+1 n-r—1 >1 = ! >1
N. Cr+l P+q n: Pr+l n—r—1
q
(r+1)!(n7r71)!
n! P g" " (r+1)(n—1-1)!
R ey
ri(n—r)lnl P g""
q.(r+1)
= _— 7 >] = r+qg > np— pr
TEEY: qr+q>np—p
= g>np—r({p+q)
= r>=np-—q (1)

Again, similarly the frequency of » successes > the frequency of ( — 1) successes if

. 1)
f0> 1= =
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N, VIC Pr n—-r
= " - r—lqnf(rfl) > =
N."C.., P ¢q
n P g" " (r=1)Y(n—r+1)!
= r—1 _n—r+l
r!(n—r)!.n!P q
= Pn—pr+p>rg
= pntp>r(p+q)

from (1) and (2), we have
pn+tp>r>np—q
pn+tp+q>r>np

np+1>r>np

n! -

— P g
r!(n—r)! 4
p >1
. Pr71 n—r+l
(r—l)!(n—r+1)!
P(n—-r+1
L-r+l) 4
rq
= pn+p>pr+qr
= pn +p>r (2)
[ ptqg=1]

Since a possible value of 7 is np, therefore, without loss of generality we can assume that

np is an integer as n — co. Hence the frequency of np successes can be assumed to be

maximum frequency. Let y0 be the frequency of np successes and yx be the frequency

of (np + x) successes.

Then
Yo=f(np)=N."C p"7q" "’
n!
=N pnpqnfnp
(np)t(ngq)!
n! [
_N ' 'p[’ q
(np)!(nq)!
|
and Y. =N T

'(np+x)!(n q—x)!
Dividing (4) by (3), we get

_ (nptg)t .
_N'(np+x)!(n q—x)!p 1

Ix
Yo

[from (1), for » = n p]

np+x_ng—x

(5

For n being large, then according to James Stirling’s approximation formula for facto-

rials, we have

n+ |
n=e"h %1/(27:),

n l n 1
e (n p)' "2 am e (ng)" 2o g

From (5) ¥ _
Yo

e """ (n p+x) rrechy 2ne " (ng—x)" ) N2n
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n p+1/2 ng+1/2

(np) (nq) (ng/ nq)"*

n p+x+1/2 ng—x+1/2
(np)n p+x+1/2 {1 + X} (np)nq—x+l/2 {1 _ x}
np nq

1

n p+x+1/2 nqg—x+1/2
{HX} {1_X}
np nq
Yy 2 X 1 X
log| =~ |=—| np+x+—|log| 1+— |—| ng—x+— |log| | ——
Yo 2 np 2 ng

1 1 o 1 1 1 1 1 1
x|l —tl— x| —
2np 2np 2np np  4n*p* 2nq ng  4n*q?

P 1 1 1 1 1 N 1 B
3n2 2 6n3 i 2n2 2 Zn2 2 3n2 2 6n3p3
2

o P2+2612x B
2npq 4n"p-q 2npq

+.... + terms of higher orders.

Neglecting terms containing 1/n%, we have

k,g[y_xj:_ux_ x
Yo 2npq  2npq
Since p <1, ¢ < 1 and so ¢ — p is very small as compared with n. Therefore Ist term
may be neglected, (g — p = 0).

2 2
X X
log RET =——75 [ 0 = npq, the variance of Binomial distribution]
Yo 2npg 20
2 2
= y. =y e ' Proved.

Example 1. In a normal distribution, 31% of the items are under 45 and 8% are over

64. Find the mean and standard deviation of the distribution. (D.U. 2016)
Solution. Let X be the mean and G the S.D.
If x = 45, _A5ox
c
If x =064, z:647x 31%
° -0.496 o +1
45-Xx
Area between 0 and z= =0.50-0.31=0.19
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[From the table, for the area 0.19, z = 0.496]
45-Xx
c

=-0.496 (1)

64—x

Area between z =0 and z = =0.5-0.08 =0.42.

(From the table, for area 0.42, z =1 .405)
64—

c
Solving (1) and (2) we get [L = 50, © = 10. Ans.

Example 2. The income of a group of 10,000 persons was found to be normally distributed
with mean . 750 p.m. and standard deviation of X. 50. Show that, of this group, about
95% had income exceeding X. 668 and only 5% had income exceeding . 832. Also find
the lowest income among the richest 100.

= 1.405 -(2)

f(2)
Solution. Mean = L = 750
Standard deviation = ¢ = 50
and =R 95%
c
668550 z,=-164 0
(i) If x, = 668, then zy=———=-1.64
50
P (x, > 668) =P (z, <—1.64)
=05+P(-1.64<z<0)
=0.5+P0<z<1.64)
= 0.5 + 0.4495
=0.9495
.. Percentage of persons having income exceeding . 668 = 94.95% ~ 95% (approx.)
_ f(2)
(ii) 1 x =832, then (=820 6
50
P (x,> 832) = P(z, > 1.64)
=0.5-0.4495
_ 5%
=0.0505 ——

.. Percentage of persons having income exceeding . 832 = 5.05% = 5% (approx.)
(iii) Let x be the lowest income among the richest 100 persons.
100 persons =1% of 10,000

100 persons represents 1% area under the curve
on the right hand side.

Thus the area between 0 and z
=0.5-0.01=0.49
From the table z for area 0.49 is 2.33
X—u 0.01

z= 0 . z
G X = 866.5

f(2)
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x—=750
50
= x—750=1165 = x=28606.5

Hence, the minimum income among the 100 richest persons is equal to . 866.5. Ans.

= 233= x—750=50x%x2.33

35.16 NORMAL CURVE

A Normal Curve shows binomial distribution graphically of a continuous Random
Variable. The probabilities of heads in 10 tosses are ,'°’C, ¢'° p°, '°C, ¢’ p', '°C, ¢* p*,
10(/"3 q7 p3’ IOC'4 qé p4’ IOC‘5 qS pS’ IOC() q4 pé’ IOC'7 q3 p7’ IOCg qZ pS’ IOCE) ql p9’ ]0C10 qO pIO.

1 1
p= 2 q= 5 It is shown in the figure given below.

y

0.26
0.241
0.22[
0.20
0.18
0.16
0.141
0.12[
0.10[
0.08
0.06
0.04
0.02

0}

Probabilities

01 2345678910
Number of heads
If the variates (heads here) are treated as if they were continuous, the required probability
curve will be a normal curve as shown in the above figure by dotted line.
(x-n)’
267

1 _
e

Properties of the normal curve, y =
oV2n

(1) The curve is symmetrical about the line. x = L.
(2) The mean, median and mode coincide.

(3) y decreases rapidly as x increases numerically. The curve extends to infinity on either
side of the origin.

4) (@P(p—-oc<x<p+0o)=0.6826
bP)P(pn-20c<x<p+20)=0.9544
)Pu-30c<x<u+30)=0.9973

Hence (@) About 68% of the values lie between (L — G) and p + G
(b) About 95% of the values lie between (u — 2s) and (u + 2s).
(c) About 99.7 % of the values will be between (1 — 3 &) and (u + 3G).
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(5) B,=0and B, =3.
(6) x-axis is an asymptote to the curve. No portion of the curve lies below the x-axis.

(7) The points of inflexion are x = pu + s.
4 2
(8) Mean deviation about mean =~ gG and quartile deviation = EG.
35.17 MEDIAN OF THE NORMAL DISTRIBUTION

If a is the median, then it divides the total area into two equal halves so that
(Vidyasagar University 2018)

j S (x)dx =

—00

%= Tf(x)dx

1 2
where f(x)= e
o 2T

Suppose Median @ > mean [L  then

i a u
[ reoaes [ o= [but [ reac= %}
—© u —o0
%+If(x)dx =% (1 = mean)
n

jf(x)dx =0
i

Thus a=LuU
Similarly, when a < mean, we have a = [L.
Thus, median = mean = [L.

Mode of the normal distribution

We know that mode is the value of the variate x for which f'(x) is maximum. Thus, by
differential 1 calculus f(x) is maximum if /'(x) =0 and f¢ (x) <O

()’
e 267

where S(x)=
o227

Clearly f'(x) will be maximum when the exponent will be maximum which will be the case

(x—p
2

=0 = (xfu)2=0 = x—U
20

1
Thus mode is u, and modal ordinate =
H ov2mn
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35.18 AREA UNDER THE NORMAL CURVE

. x—X .
By taking z =—— the standard normal curve is formed.
c

The total area under this curve is 1. The area under the curve is divided into two equal
parts by z = 0. Left hand side area and right hand side area to z = 0 is 0.5. The area
between the ordinate z = 0 and any other ordinate can be noted from the table:- 1 on
last page 34 of the chapter.

Example 1. In mathematics final examination, if the mean was 72, and the standard
deviation was 15. Determine the standard scores of students receiving grades:

(a) 60 (b) 93 (c) 72

Solution. Here, ¥ =72, 6 =15

@z=2-0"72_ 45 =214 (=20 ans
c 15 15 15

Example 2. Find the area under the normal curve in each of the cases

(@)z=0andz=12; (b)z=-0.68and z =0;

(c)z=—-046andz = 2.21; (¢)z=10.381 and z = 1.94;

(e) To the left of z = 0.6, (f) Right of z = — 1.28.

Solution.

See table —1, last page of the chapter.

(a) Area between z=0 and z = 1.2 (b) Area between z =0 and z = — 0.68

= 3849  Ans. =0.2518 Ans.

0 12 —068 0
(c) Required area = (Area between z = 0 and z = 2.21)
+ (Area between z = 0 and z = — 0.46)

= (Area between z = 0 and z = 2.21)
+ (Area between z = 0 and z = 0.46)

=0.4865 + 0.1772 = 0.6637. Ans.

-046 0 2.21

(d) Required area = (Area between z = 0 and z = 1.94)
— (Area between z — 0 and z = 0.81)

=0.4738 — 0.2910 = 0.1828 Ans.

0 0.81 1.94
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(e) Required area = 0.5 — (Area between z = 0 and z = — 0.6)
=0.5-0.2257=0.2743. Ans.

-06 0

(f) Required area = (Area between z = 0 and z = —1.28) + 0.5
=0.3997 + 0.5

=0.8997. Ans.

Example 3. Find the value of z in each of the cases

(a) Area between 0 and z is 03770 128 0
(b) Area to the left of z is 0.8621

Solution.

(a)z==1.16

(b) Since the area is greater than 0.5.

0.3770

Area between 0 and z.
=0.8621 — 0.5 =0.3621
from the table —1 z=1+0.09=1.09 Ans.

0 z

Example 4. Students of a class were given an aptitude test Their marks were found to
be normally distributed with mean 60 and standard deviation 5. What percentage of
students scored more than 60 marks ?

Solution. x=60,x =60,0=5
x-x 60-60
c 5

z =

0

if x> 60 thenz> 0 0
Area lying to the right of z = 0 is 0.5.
The percentage of students getting more than 60 marks = 50 %

Example 5. Assume mean height of soldiers to be 68.22 inches with a variance of 1.0.8
inches square. How many soldiers in a regiment of 1,000 would you expect to be over 6
feet tall, given that the area under the standard normal curve between x = 0 and x = 0.35
is 0.1368 and between x = 0 and x = 1.15 is 0.3746.

Solution. Mean = X = 68.22 inch

variance = 6% = 10.8 inches squares
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If x = 72 inches then sz—x =72_68'22=1.15

c VJ10.8
P(x>172)=P (z>1.15)
=0.5-P(0<z<1.15)

125
=0.5-0.3746 = 0.1254 PR
Number of soldiers = 1000 x 0.1254 = 125.4 = 125 (app.) Ans.
Area right to z =2 is 0.5 — 0.4772 = 0.0228
Number of workers getting ¥ more than 160 = 0.0228 x 1000 = 22.8 ~ 23 Ans.

EXERCISE 35.6

. In a regiment of 1000, the mean height of the soldiers is 68.12 units and the standard deviation
is 3.374 units. Assuming a normal distribution, how many soldiers could be expected to be more
than 72 units? It is given that

P (z=1.00) = 0.3413, P (z = 1.15) = 0.3749 and
P (z = 1.25) = 0.3944, where z is the standard normal variable.

. The lifetime of radio rubes manufactured in a factory is known to have an average value of 10
years. Find the probability that the lifetime of a tube taken randomly (7) exceeds 15 years, (ii)
is less than 5 years, assuming that the exponential probability law is followed.

. Analysis of past data shows that hub thickness of a particular type of gear is normally distributed
about a main thickness of 2.00 cm with a standard deviation of 0.04 cm.

(/) What is the probability that a gear chosen at random will have a thickness greater than
2.06 cm?

(if) How many gears in a production run of 600 such gears will have a thickness between 1.89
and 1.95 cm? Given ¢ (1.5) = 0.4332, ¢ (2.75) = 0.4970, ¢ (1.25) = 0.3944

. The breaking strength X of a cotton fabric is normally distributed with £ (x) = 16 and s (x) = 1.
The fabric is said to be good if X > 14. What is the probability that a fabric chosen at random
is good. Given that ¢ (2) = 0.9772

. A manufacturer knows from experience that resistance of resistors he produces is normal with
mean m =140 W and standard deviation ¢ = 5Q. Find the percentage of resistors that will have
resistance between 138 Q and 142 Q. (given ¢ (0.4) = 0.6554, where z is standard normal variate).

. A manufacturing company packs pencils in fancy plastic boxes. The length of the pencils is
normally distributed with p = 6” and ¢ = 0.2” The internal length of the boxes is 6.4”. What
is the probability that the box would be too small for the pencils? (Given that a value of the
standardized normal distribution function is ¢ (2) = 0.9772).

. A manufacturer produces airmail envelopes, whose weight is normal with mean p — 1.95 gm
and standard deviation ¢ = 0.05 gm. The envelopes are sold in lots of 1000. How many enve-

lopes in a lot will be heavier than 2 gm? Use the fact that \/_J exp( de 0.3413

. The mean height of 500 students is 151 cm and the standard deviation is 15 cm. Assuming that
the heights are normally distributed, find how many students, height lie between 120 and 155 cm.

. A large number of measurements is normally distributed with a mean of 65.5” and S.D. of 6.2".
Find the percentage of measurements that fall between 54.8"” and 68.8".

. Find the mean and variance of the density function f (x) = Ae ™
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11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.
23:

24.

If x is normally distributed with mean 1 and variance 4,
() Find Pr(—3 <x <3); (it) Obtain k if Pr (x < k) = 0.90

A normal variable x has mean 1 and variance 4. Find the probability that x > 3. (Given: z is the
standard normal variable and ¢ (0) = 0.5, ¢ (0.5) = 0.6915, ¢ (1) = 0.8413, ¢ (1.5) = 0.9332)

(a) If x is normally distributed with mean 4 and variance 9; find
(i) Pr (2.55 < x < 5.5). (i) Obtain k if Pr (x < k) = 0.9.
Use Pr (z <.5) = 0.691 and Pr (z < 1.3) = 0.90.

(b) If logx is normally distributed with mean 1 and variance 4, find (%< x< ZJ given that
log (2) = 0.693.
(c¢) For a standard normal variate z P (-0.72 <z <0) =.......

The random variable x is normally distributed with £ (x) = 2 and variance V (x) = 4. Find a
number p (approximately), such that P (x > p) = 2P (x < p). [The values of the standard normal
distribution are ¢ (—0.43) = 0.3336, and ¢ (— 0.44) = 0.3300].

If X ~ N (10, 4) find Pr [|X] > 5].

The continuous random variable x is normally distributed with £ (x) = p and V (x) = p> If
Y = cx + d, then find V' (Y).

The pdf of X is given by /' (X) = Ae?™ x > 0, A 0. Calculate Pr [X > E (X)].

If X ~ N (75, 25), find Pr [X > 80/X > 77]

If X ~ N (10, 4) find Pr [|X] > 5}

A random variable x has a standard normal distribution ¢. Prove : Pr (1|X| > k) = 2[1 — ¢ (k)]
The random variable x has the probability density function /' (X) = kx if 0 <x <2

Find k. Find x such that (i) Pr (X < x) = 0.1 (i) Pr (X <x) = 0.95

For a normal curve, show that p, , =0and p, =@2n-1)c’p, ..

The length of an item manufactured on an automatic machine tool is a normally distributed

random variable with parameters M [ X ] =10 and p? = ZLOO Find the probability of defective

production if the balance is 10 + 0.05.

In a mathematics examination, the average grade was 82 and the standard deviation was 5. All
the students with grades from 88 to 94 received a grade B. If the grades are normally distributed
and 8 students received a B grade, find how many students took the examination. Given

1.20 2.00 2.40 2.45

g | =

0.3849 0.4772 0.4918 0.4929

Explain the characteristics and importance of a normal distribution.

The life time of a certain component has a mean life of 400 hours and standard deviation
of 50 hours. Assuming normal distribution for the life time of 1000 components, determine
approximately the number of components whose life time lies between 340 to 465 hours. You
may use the. Following data Where symbols have their usual meanings.

For standard normal variate mean p is
(@) 1 b)) 0 (c) 6 (d) none of the above
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25. Fill in the blanks:

(a) The mean of the marks obtained by the students is 50 and the variance is 25. If a student
gets 60 marks, his standard score is ...............

(b) If (v) = (

—X
\/I_Je 2 ,thenits meanis ............... and standard deviation is ...............
21
(¢) In the standard normal curve the area between z = —1 and z = 1 is nearly ...............
(d) If 6 =2, X =5, the equation of normal distribution is ...............

(e) The marks obtained were found normally distributed with mean 75 and variance 100. The
percentage of students who scored more than 75 marks is ...............

() The mean, median and mode of a normal distribution are ...............

(g) Exponential distribution f'(x) is defined by ' (x) = ae™, 0 <x < oo, thena = ...............
(h) The probability density function of Beta distribution witha=1,b=41isf(x) = .........
(/) For a standard normal variate z P (- 0.72 <z <0)=.........

ANSWERS
1. 125 2. (i) 0.2231, (ii) 0.3935.
3. (i) 0.0668, (ii) 62 (61.56) app. 4. 0.9772
5. 31.08% 6. 0 0228.
7. 159 8. 294
9. 66.01% 10. l,i
A2
11. (i) 0.8185, (ii) 3.56 12. 0.1587 _—
13. (a) (i) 0.382, (i) 7.9. (b) 0.24. (¢) 0.2642  14. 1.13834, l,%; 205 0.062
e 5\2n
X (x5
15. 22 16. ————¢ 29 0.062
3 PN
18. & =%, (i) x = 0.632, (ii) x = 1.949 20. 0.4798
21. 75 students 23. 788
24. (b)
1 (x5
25. (a) 2, (b) 0,1, (c) 68%, (d) f(x)= e 8 ., (e)50%, (f) zero, (2) 2, (h) 4(1—x)3, (i) 0.2642
N
TABLE - 1
AREA UNDER STANDARD NORMAL CURVEFROM Z=0TO Z= -
(o)

An entry in the table is the propor-
tion under the entire curve which is
between Z = 0 and a positive value of
Z. Area for negative values of Z are
obtained by symmetry.

For different values of Z, table gives
area (shown shaded in the figure)

under normal curve. 0o z
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| Z— .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .0000 | .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 | .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 1026 1064 .1103 1141
0.3 1179 1217 1255 1293 1331 1368 .1406 .1443 .1480 1517
0.4 1554 1591 1628 .1664 .1700 1736 1772 1808 1844 1879
0.5 1915 1950 1985 2019 2054 .2088 2123 2157 2190 2224
0.6 2257 2291 2324 2357 .2389 2422 2454 | 2486 2517 .2549
0.7 .2580 2611 2642 2673 2703 2734 | 2764 | 2794 2823 2852
0.8 .2881 2910 .2939 2967 2995 3023 3051 3078 .3106 3133
0.9 3159 3186 3212 3238 3264 .3289 3315 .3340 3365 3389
1.0 3413 .3438 3461 .3485 3508 3531 3554 | 3577 .3599 3621
1.1 3643 3665 .3686 3708 3729 3749 3770 | 3790 3810 .3830
1.2 .3849 .3869 3888 3907 3925 3944 | 3962 .3980 3997 4015
1.3 4032 .4049 4066 4082 4099 4115 | 4131, | 4147 4162 4177
1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319
1.5 4332 4345 4357 4370 4382 4394 | 4406 4418 4429 4441
1.6 4452 4463 4474 4484 4495 4505 | :.4515 | 4525 4535 4545
1.7 4452 4564 4573 4582 4591 4599 4608 4616 4625 4633
1.8 4641 4649 4656 4664 4671 4678 4686 4693 4699 4706
1.9 4713 4719 4726 4732 4738 4744 | 4750 4756 4761 4767
2.0 ATT72 4778 4783 4788 4793 4798 4803 4808 4812 4817
2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857
22 4861 4864 | 4868 4871 4875 4878 4881 4884 4887 4890
2.3 4893 4896 4898 4901 4904 4906 | .4909 4911 4913 4916
24 4918 4920 4922 4925 4927 4929 | 4931 | .4932 4934 4936
2.5 4938 .4940 4941 4943 4945 4946 4948 .4949 4951 4952
2.6 4953 4955 4956 4957 4959 4960 | .4961 4962 4963 4964
2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974
2.8 4974 | 4975 4976 4977 4977 4978 4979 4979 4980 4981
2.9 4987 4982 4982 4983 4984 4984 | 4985 4985 4986 4986
3.0 4940 | 4987 4987 4988 4988 4989 4989 4989 4990 4990

35.19 HYPOTHESIS TESTING

On the basis of sample information, we make certain decisions about the population. In
taking such decisions we make certain assumptions. These assumptions are known as
statistical hypothesis. These hypothesis are tested. Assuming the hypothesis is correct
we calculate the probability of getting the observed sample. If this probability is less
than a certain assigned value, the hypothesis is to be rejected.

Null Hypothesis (H,)

Null hypothesis is based for analysing the problem. Null hypothesis is the hypothesis
of no difference. Thus, we shall presume that there is no significant difference between
the observed value and expected value. Then, we shall test whether this hypothesis is
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satisfied by the data or not. If the hypothesis is not approved the difference is considered
to be significant. If hypothesis is approved then the difference would be described as
due to sampling fluctuation. Null hypothesis is denoted by H,.

Errors

In sampling theory to draw valid inferences about the population parameter on the basis
of the sample results.

We decide to accept or to reject the lot after examining a sample from it. As such, we
are liable to commit the following two types of errors.

Type 1 Error. If H is rejected while it should have been accepted.
Type II Error. If H is accepted while it should have been rejected.

Level of Significance

There are two critical regions which cover 5% and 1% areas of the normal curve. The
shaded portions are the critical regions.

Area of Area of
acceptance acceptance

0.5% 2.5%

Z =1.966 o Z =1.966 Z=-0.674 Z=0.674

Thus, the probability of the value of the variate falling in the critical region is the level
of significance. If the variate falls in the critical area, the hypothesis is to be rejected.

Test of Significance

The tests which enables us to decide whether to accept or to reject the null hypothesis
is called the tests of significance. If the difference between the sample values and the
population values are so large (lies in critical area), it is to be rejected.

Confidence Limits

pn—1.96c, p + 1.966 are 95% confidence limits as the area between p —1.96c and p +
1.966 is 95%. If a sample statistics lies in the interval p — 1.966. p + 1.96c, we call
95% confidence interval.

Similarly, p — 2.58c, p + 2.58c is 99% confidence
limits as the area between p —2.58c and p + 2.58c¢
is 99%. The numbers 1.96, 2.58 are called confi-
dence coefficients.

Test of Significance of Large Samples (r > 30) H-1960 H u+1.960
Normal distribution is the limiting case of Binomial
distribution when n is large enough. For normal
distribution 5% of the items lie outside p + 1.96
while only 1% of the items outside p + 2.586 G.
p—2.58c p p+ 2.58c
zzx_u
o

where z is the standard normal variate and x is the observed number of successes.

First we find the value of z. Test of significance depends upon the value of z.
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(i) (a) If |z]| < 1.96, difference between the observed and expected number of successes
is not significant at the 5% level of significance.

z| > 1.96, difference is significant at 5% level of significance.
b) If 1.96, diff is signifi 5% level of signifi

(if) (a) If | z| < 2.58, difference between the observed and expected number of successes
is not significant at 1% level of significance.

(b) If |z] > 2.58, difference is significant at 1% level of significance.
g g

Example 1. 4 cubical die was thrown 9,000 times and 1 or 6 was obtained 3120 times.
Can the deviation from expected value lie due to fluctuations of sampling?

Solution. Let us consider the hypothesis that the die is an unbiased one and hence

2 1 1 2
the probability of obtaining 1 or 6 = 5 = Ei.e., p= 3 q= 3

1
The expected value of the number of successes = np = 9000 x 3 = 3000

Also c=S.D.=/npq = /9000x%x§=\/2000244.72

30 =3 x44.72 = 134.16
Actual number of successes = 3120

Difference between the actual number of successes and expected number of successes
= 3120 — 3000 = 120 which is < 3o

Hence, the hypothesis is correct and the deviation is due to fluctuations of sampling due
randon causes. Ans.

Sampling Distribution of the Proportion

A simple sample of n items is drawn from the population. It is same as a series of n
independent trials with the probability P of success. The probabilities of 0, 1, 2, ...., n
success are the terms in the binomial expansion of (g + p)".

Here mean = np and standard deviation = /npq.

Let us consider the proportion of successes, then

. n
(a) Mean proportion of successes = " _ p

n
\n f
(b) Standard deviation (standard error) of proportion of successes = NP4 _ P4
n n

(c) Precision of the proportion of success = ——= 2L .
S.D. Pq

Example 2. A group of scientist reported 1705 sons and 1527 daughters. Do these

figures conform to the hypothesis that the sex ratio is 5

Solution. The total number of observations = 1705 + 1527 = 3232

The number of sons = 1705

1
Therefore, the observed male ratio = %2 0.5175

On the given hypothesis the male ratio = 0.5000
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Thus, the difference between the observed ratio and theoretical ratio = 0.5275 — 0.5000
=0.0275

The standard deviation of the proportion = ,[— =

The difference is more than 3 times of standard deviation.

Hence, it can be definitely said that the figures given do not conform to the given hy-
pothesis.

Estimation of the Parameters of the Population

The mean, standard deviation etc. of the population are known as parameters. They are
denoted by pn and o. Their estimates are based on the sample values. The mean and
standard deviation of a sample are denoted by X and s respectively. Thus, a statistic is
an estimate of the parameter. There are two types of estimates.

(a) Point estimation: An estimate of a population parameter given by a single number
is called a point estimation of the parameter. For example,

=2
(D) =ZE=X"
n—1
(D) Interval estimation: An interval in which population parameter may be expected to
lie with a given degree of confidence. The intervals are

({) X —o,to X + o, (68.27% confidence level)
(if) X =20, to X + o _(95.45% confidence level)
(iii)x =3 o to X +3 0, (99.13% confidence level)
x and o_are the mean and S.D. of the sample.
Similarly, ¥ £1.96 6, X +2.58 ¢_are 95% and 99% confidence of limits for .

_ o s o c
X £1.96 — and x + 2.58 —= are also the intervals as ¢ = —
Jn Jn :

T

Comparison of Large Samples

Let two large samples of size n, n, be drawn from two populations of proportions of
attributes A’s as p,, p, respectively.

(i) Hypothesis: As regards the attribute A, the two populations are similar. On combining
the two samples

_mptnp
n +n,
where p is the common proportion of attributes.
Let e, e, be the standard errors in the two samples, then

el2 =24 4d e% =24
n n

If e be the standard error of the combined samples, then
1 1
SR . pq{_+_}
moom moom
7 P~ P

e
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1. If Z > 3, the difference between p, and p, is significant.
2. If Z < 2, the difference may be due to fluctuations of sampling.
3. If 2 < Z < 3, the difference is significant at 5% level of significance.

(if) Hypothesis. In the two populations, the proportions of attribute A are not the same,
then standard error e of the difference p, — p, is

62:P1C]1+P2‘I2 Z:P1—P2<3
2 n n, ’ e

ef =l +

B

Difference is due to fluctuations of samples.

Example 3. In a sample of 600 men from a certain city, 450 are found smokers. In
another sample of 900 men from another city, 450 are smokers. Do the data indicate
that the cities are significantly different with respect to the habit of smoking among men.

450
Solution. 7, = 600 men, Number of smokers = 450, p, = % =0.75
450
n, = 900 men, Number of smokers = 450, p, = % =0.5
_mptmp,  600x0.75+900x0.5 900 — 060
—— 600+ 900 1500
gq=1-p=1-0.6=04
Pl e pq(i+ij
mom
s 11
e“=0.6x04] —+— |=0.000667
600 900
e =0.02582
PP _075-050 o o
e 0.02582
Z > 3 so that the difference is significant. Ans.

Example 4. One type of aircraft is found to develop engine trouble in 5 flights out of a
total of 100 and another type in 7 flights out of a total of 200 flights. Is there a significant
difference in the two types of aircrafts so far as engine defects are concerned.

5 1
Solution. 7, = 100 flights, Number of troubled flights = 5, p; = Too = 2
7
n, = 200 flights/Number of troubled flights = 7, p, = 200
ez _ P19 n Py 9> _ 0.05x0.95 i 0.035%x0.965
n n, 100 200
=0.000475 + 0.0001689 = 0.0006439
e =0.0254
_ 0.05-0.035 059
0.0254

Z < 1, Difference is not significant. Ans.
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EXERCISE 35.7

A random sample of six steel beams has mean compressive strength of 58.392 psi (pounds per
square inch) with a standard deviation of s = 648 psi. Test the null hypothesis H, = pu = 58,000
psi against the alternative hypothesis /, : 1> 58,000 psi at 5% level of significance (value for
t at 5 degree of freedom and 5% significance level is 2.0157). Here m denotes the population
mean.

2. A certain cubical die was thrown 96 times and shows 2 upwards 184 times. Is the die biased?

3. In a sample of 100 residents of a colony 60 are found to be wheat eaters and 40 rice eaters.

10.

11.

12.

Can we assume that both food articles are equally popular?

Out of 400 children, 150 are found to be under weight. Assuming the conditions of simple
sampling, estimate the percentage of children who are underweight in, and assign limits within
which the percentage probably lies.

500 eggs are taken at random from a large consignment, and 50 are found to be bad. Estimate
the percentage of bad eggs in the consignment and assign limits within which the percentage
probably lies.

A machine puts out 16 imprefect articles in a sample of 500. After the machine is repaired, puts
out 3 imprefect articles in a batch of 100. Has the machine been improved?

In a city 4, 20% of a random sample of 900 school boys had a certain slight physical defect.
In another city B > 18.5% of a random sample of 1600 school boys had the same defect. Is the
difference between the proportions significant?

In two large populations there are 30% and 25% respectively of fair haired people. Is this
difference likely to be hidden in samples of 1200 and 900 respectively from the two populations?
not hidden at 5% level of significance.

One thousand articles from a factory are examined and found to be three percent defective.
Fifteen hundred similar articles from a second factory are found to be only 2 percent defective.
Can it reasonably be concluded that the product of the first factory is inferior to the second?

A manufacturing company claims 90% assurance that the capacitors manufactured by them will
show a tolerance of better than 5%. The capacitors are packaged and sold in lots of 10. Show
that about 26% of his customers ought to complain that capacitors do not reach the specified
standard.

An experiment was conducted on nine individuals. The experiment showed that due to smoking,
the pulse rate increased in the following order:

5,3,4,-1,2,-3,4,3, 1.
Can you maintain that smoking leads to an increase in the pulse rate?
(¢ for 8 d.f. at 5% level of significance = 2.31).

Nine patients to whom a certain drink was administered registered the following in blood pressure:
7,3,-1,4,-3,5, 6,4, 1. Show that the data do not indicate that the drink was responsible for
these increments.

ANSWERS

© NN

die is biased. 4. 37.5% approx. Limits = 37.5 £ 3 (2.4)
10%, 10 £ 3.9 6. The machine has not been improved.
z = 0.37, Difference between proportions is significant. 8. z=25

It cannot be reasonable concluded that the product of the first factory is inferior to that of
the second. 11. Yes




Tensors Algebra
and Applications

36.1 INTRODUCTION

Tensors are logical generalization of vectors. The use of vectors is essential in the
mathematical study of a number of physical phenomena. In a similar manner, tensor
analysis become popular when Einstein (1879 —1955) used it as a tool for the presentation
of his general theory of relativity. It has now become an important mathematical tool
in many branches of theoretical physics such as Mechanics, Fluid Mechanics, elasticity,
Plasticity, Theory of relativity, electromagnetic theory etc.

The basic principle of tensor calculus is that we should not tie ourselves down to any
one system of coordinates. The transformation laws for the components of an entity
from one coordinate system to another are the basic criteria to determine the tensor
character of that entity.

36.2 SPACE OF N-DIMENSIONS

In a three dimensional rectangular space the coordinates of point are usually denoted by
(x, y, ). But this representation of coordinates is not suitable, if we want to generalize
the concept of space from rectangular to curvilinear coordinates or from three dimen-
sions to N-dimensions. That is why it is advisable to use a triplet (x', x%, x*) in place of
(x, v, z) where 1, 2, 3 are the super-scripts and do not posses any significance as power
indices. In general, the coordinates of a point in N-dimensional space, which may or may
not be rectangular, are denoted by N-tuples of the form ", x%,.., xV) where 1, 2,..., N
are the superscripts for N-variables and not the powers of x. The N-dimensional space
is generally denoted by V.

Remarks:

(/) A Curve in the space V is defined as the aggregate of points, which satisfy the N-
parametric equations.

xX=x(),i=1,2,..,N) (1)
where ¢ is a parameter and x’ (f) are N-functions of ¢, which satisfy certain continuity
conditions.

(if) A subspace V, of V, is defined for M < N as the aggregate of points which satisfy
the N-equations

x=x @, 2, ..M, (=12, ..N). -(2)

where ¢!, 2, ...t are M parameters. The x' (¢!, £, ...1™) are N-functions of ¢, 2, ..M

which satisfy certain continuity conditions. When M = N — 1, the subspace is called
hypersurface.
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36.3 COORDINATES TRANSFORMATION

Let. (x!, x%,..,x) and ( ¥ I, X 2,.., ¥ V) be coordinates of a point in two different frames
of reference in a V. Suppose there exist N-independent relations between the coordinates
of the two systems having the form

X=X ol a2, ), (=1,2, ..., N) (3)

where it is assumed that the functions involved are single valued continuous and have
continuous derivatives. Then the above set of N-equations may be solved and to each
set of coordinates (¥ !, X 2., X V) there will correspond a unique set (x!, x%,.., x)

given by

=x(x!, x2.,x",i=1,2,...,N. ..(4)
The relations (3) and (4) define a transformation of coordinates from one frame of refer-
ence to another. Differentiating (3) wet get

. J J J
dx’ za_lexl +6_L2dx2 +.... +6_LNde
ox ox ox

.
o’
= —idx’ ..(5)
i Ox
This is the coordinate differential transformation rule, i.e., the change in the direction
of coordinates.

Note : Throughout the text, to denote the coordinates of a paint only a superscript
will be used.

To write the results in compact form, which is the prime aim of tensor analysis, we
introduce the following two conventions :

(7)) Indicial convention :

In a N-dimensional space, indices used either as subscripts or superscripts will take all
values from 1 to N-unless otherwise stated.

Hence, the equations (3) and (4) may be written as
¥ =% (), x=x(X'), respectively. .(6)
(i) Einstein’s summation convention :

In a N-dimensional space, if an index is repeated in a term then it implies summation
with respect to that index over the range 1, 2, ...., N unless the contrary is specified.

Hence, using summation convention, the relation (5) for the coordinate differential
transformation may be written as

4 U
! =5 )
ox'
Similarly, by differentiating (4), wet get
i
&' =5 e (8

%J
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Remarks:

(1) The repeated index is called a dummy index, as it can be replaced by any other index
not used in that term. As for example, equation (7) may equally well be written as

. J
dx’ = ‘Tikdxk

Ox

) J
or dx’ = a—ildxl

Ox

Similarly, we may write equation (8) as
dx' = aid)? "

%m

Or any other superscript in place of m. This device of changing in dummies is often
employed as a useful manipulative trick for simplifying expressions. But the index j in
equation (7) and index i in equation (8) are not repeated and are called free indices.

(2) It may be noted (rather remembered) that the free indices on the two sides of an
equation must be the same.
(3) We shall use brackets, usually, to indicate powers. Thus the square of xN will be

written as (xV)?.

(4) To avoid confusion the same index must not be used more than twice in any single
N

term. For example (z A,-xlj will not be written as 4, x'A'x’ but rather Alijixf . The
i=1

difference in the use of superscripts and subscripts will be explained in due course.

36.4 KRONECKER DELTA

The Kronecker delta is written as 65- and is defined by

: 1, ifi=j
5 =0 1= 9)
0,ifi=]j
Thus, 8 =83 =....= 8% =1 (no summation over N)
2
8, =087 =...=0,
and, 8 =8 +085 +...+8%
=l+1+..+1=N ..(10)
An important property of Kronecker delta is that
3.4 =4, .(11)

since in the left-hand side of this equation when summation is carried out over; the only
surviving term will be one for which j = i. This shows that the role of 8']- when it is

multiplied with an entity, is to replace the index j in the entity by i or vice versa and
then itself falls out.
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It may be noted that

5'xi Qi

P %, ..(12)
because the coordinates x' are independent. Similarly,

o'

= 3 ..(13)

Example 1. Write each of the following, using Einstein'’s summation convention
(i) AFB'+AEB? 4. .+ A5BY
(i) ds* =g, (dx")* + g,,(dx?)? + ..+ g (dx)? + g ,dx'dx?

+ g, dxtdx! + L+ g dxdeN + gy, dxVdx!

Solution:
(i) AB'+ 4B+ ..+ 4LBY = 4B (if) ds* = g dx'dy Ans.
Example 2. Show that
S Foxt
- ] J I _—= .
() 88 =98 (i) 6_’ o 8;

Solution:
() 8 8] =8]8 +8 &f +.ccot 8 B+t By 3

=0+0+..+ 81}{ (1) + ... + 0 (no summation over k)

= 5L,
()_ai_@ai akox? ot ax
ox ox' ot ex o ox oxV ox/

k
% (by chain rule of partial differentiation)

X
= 8% [using (12)] .(14)
Example 3. If a(mxo‘xB = 0 for all values of the variables x', x*,.., xXV; show that a;+ a;= 0.
Solution: Let S = a(w)co‘xB =0
oS
then Yl aaﬁx“ES? + amﬁ(‘if‘)cB =0

=a x*+a,xP=0
o i3
Now, differentiation with respect to ¥ gives
o’s
o’ ox'

=a,; 8?+aiB 85— =0
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36.5 SUMMATION OF CO-ORDINATES
The equations of co-ordinates can be written in very compact form in terms of summation
convention. We write (x,, x,, x;) and (X ,, X,, X ) instead of (x, y, z) and
(', ¥', 2') and denote the co-ordinate axes as OX,, OX,, OX; and 0X,,0X,,0X 3. Also
we denote x,, fj as the co-ordinates of a point P relative to the two systems of axes; where

i=1,2,3,j=1,2,3. Let lij denote the cosines of the angles between OX, OX ;- In
general lij # lji

The equation of co-ordinate transformation can be written as
X =lyxy +hx, +1x
Xy =X + 15Xy + 1555 ...(la)
X3 = l3x; + 3%y + 333
X=X +hoXy + 3%

Xy =l X; + 15X, + 3% ..(1b)

Xy =11 % + 155X, + 3%

These equations of co-ordinate transformation can be represented by means of a table
form such that

X Xy X3
E1 ll 1 121 131
)_CZ 112 122 132
)_63 113 123 133

Adopting summation on convention i.e,

ay tay,tay=a;

a. b, =a, b, +a, b, +a, b, we re-write above equations as
ip g 1Ip “lg 2p “2q 3p “3¢q

X =1 x, x1=llj X,
X, =1,x, x2=12j X,
X3 =gy Xy Ty X

We can re-write these equations in single equation in the form.

JooyTe T g g
which are complete equivalents of the equations of co-ordinate transformation from
either system to another.

36.6 RELATION BETWEEN THE DIRECTION COSINES

The direction cosines of any three mutually perpendicular straight lines 0X,,0X,,0X,

relative to the system OX|, OX,, OX; are /|, L,|, L, 15, Ly, L5, L5, 1

11° °21° "31° "12> "22> 32> 23> "33°
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The relation between these direction cosines are

Ly by + by by + 1y Ly = ljl ljl = l/ Lyl thy byt = ljZ ljZ =1
Lyl thyly+ gy = lj3 lj3 =

Similarly,

Lyl by byt by =1 Ly =0, 1, Ly + Ly by + 1y Ly = ljZ lj3 =0

I
Lyly Tyl + 5 Iy = ljS ljl =0
Finally, we can write these equations by means of a single equation as
1, wheni=k 1, wheni=k
Ll = . or Oy = .
U910, wheni#k 0, wheni#k
where Sik is the kronecker delta.
or 3, = 11

Now, we know that )_cj = ll.j X,
Multiplying both sides by ljk then
or L =y b %,
putting i =k i.e., 8, =1 when i = k

Oy X, = Lx, = x=Lx,

DEFINITION AND TYPES OF TENSORS

36.7 CONTRAVARIANT VECTORS (CONTRAVARIANT TENSORS OF

FIRST ORDER)

Motivated by the relation (7), we give the following definition of contravariant vectors :
Definition : If a set of N quantities A' in a coordinate system x' are related to another
N quantities A’ in a coordinate system X’ by the trans formation equations

| B oxP

AP = 6_"Aq , (Contravariant Law) ..(15)

X

then A" (read as A superscript i) are said to be the components of a contravariant vector
or contravariant tensor of the first order (or first rank).

Notes : (i) The components of contravariant tensors are denoted by superscripts as a
convention, with the exception of the coordinates x', which may behave as a contravariant
vector in special conditions.

(if) The tensor entity itself may be denoted by a bold faced letter A, but it is advisable
to use its components such as A' rather than A which, as we shall see later, will help
us in knowing its order by the superscripts or subscripts.

r

0
Multiplying equation (15) by ('; and summing over the index p from 1 to N, we find

xP
ox" 17 - ox" ox? 44
oxr T ax o
S

%P
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ox" -
or A= gr (Contravariant Law) ..(16)
Pras

Thus equation (16) may equally well be taken as the transformation law for contravari-
ant vectors.

From equation (7), in view of transformation law, we conclude that the coordinate

differential dx' form the components a contravariant vector. It follows immediately that
i

i is also a contravariant vector, called the tangent vector to the curve x' = x/(¢).

In general an entity whose components transform as the coordinate differential trans-
formation rule (unlike i.e., in contrast to the partial differentiation transformation rule
of a scalar function) is called an entity having contravariant components or in short
contravariant entity.

Theorem The law of transformation for a contravariant vector is transitive.

Proof: Let the components of a contravariant vector relative to the coordinate system x’
be A’ and relative to the coordinate system X/ be A’ . Then by contravariant law of
transformation

—. 7Y
A’ =a_LiA’ ..(17)
Ox
Now, a further change of coordinates from X to x™* , the. new components 4'* by con-

travariant law must be given by

A* ='2’i—f2f ..(18)
Combining (17) and (18), we get '
O
ox’ ox'
- %A[ ...(19)

This shows that the transformation law of contravariant vector is transitive.
Theorem 2. The coordinates x' behave like the components of a contravariant vector
with respect to linear transformation of the type X’ = aj x', where a/ are a set of N*

constants.
Proof : Since, X/ = alx, ...(20)

On differentiation, we get

ax/
aij being constants.
Combining (20) and (21) we find
o
x/ =§ X ...(22)

Hence the proposition,
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... dx . d
Example 4. (i) If a vector has components X,y (x = o y= %J in rectangular carte-

sian coordinates then i, are its components in polar coordinates.
(i) A vector has components X , ¥ in rectangular cartesian coordinates then its respective
components in polar coordinates are
F-r0, 64210,
r

Solution: Here, the space is two-dimensional,

xl=x, x>=y
xl=yp, x2=0 ...(23)
?=x>+y%and O = tan™! (%j
. dx dY
) Since, X=—=—
@ At dr
d ;o _d t iant vect
an =— = ——are contravariant vectors,
YTa
we take Al=x, A=y ..(24)
and use Contravariant law, viz.,
i i i
7= 4 =a_ilA1 Jr‘a_%A2
ox’ Ox Ox
6—1 a—l
to get, A' =%Al +6L2A2
X X
or . or.
=—Xx+—
ox Oy
= i)'c+@
r oy Y
Xty _m_. .(25)
r r
2 2
and, ! z%Al +Z)?—2A2
X X
or 4 or;
ox Oy 7
y .
=———Xx+—y
2 2
xXy+yx
= =0 ...(26)
2
r
(#f) Similarly taking,
Al =%, A*= 7} ..27)
we find, A =gjc'+@j}
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_x)'é-i—yj}_r'r'—rzéz

r r
=i—rd* .(28)

—  00.. 00
d A2=—"+—"
an 8xx 6yy

_xXy-yX

}"2

iy .
r 0+2rr 0
= r—2 (Differentiating IIT)*

—6+270 .(29)

r
It may he noted that the velocity and acceleration components are Contravariant Vectors.

*  gsince ¥ +)2 =72, wehave XX+ )yy=rr (D
Xk+ yp+ 5%+ P = i 4 (1)
Also 0 =tan™! X, therefore 0 = Xy — yx ...(IIT)
X
from (1) and (III) PP+t = (7 + ) (3 +57)
or 41707 = 32 +)'/2 .(IV)
final result follows from (II) and (IV)

Further, the difference between resolved parts and components may also be observed
because 7, 0 are components of the velocity vector but its resolved, parts are 7 and 79,

as they have the same dimensions. In cartesian system, the resolved parts and com-ponents
are indistinguishable while in oblique system they may differ.

36.8 INVARIANT

A function I of the N coordinates x' [I = I (x')] is called an invariant or a scalar function
or tensor of order zero with respect to coordinate transformations if

=1 .(30)
where I [ 1 =1 (Xx/)]is the value of I in the new coordinate system X/.

Note : If ¢ is an invariant function of the coordinate x’ i.e., ¢ = ¢ (x), then on transfor-
mation of coordinates to X’ , we have

09 _ 09 ox'
o/ ox' ox/
or (al’.jzai(a—q’.j (31
/) o/ o

This law of transformation is rather like (15), but the partial derivative involving the
two sets of coordinates is the other way up. This shows that we may have another type
of quantities which transform in the manner of (31).

This is the transformation rule of the partial derivative of an invariant which is a function
of the-coordinate x’ (change in the direction orthogonal to constant coordinate surfaces).
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36.9 COVARIANT VECTORS (COVARIANT TENSORS OF FIRST ORDER)

Motivated by the relation (31), we give the following definition of Covariant Vectors :
Definition : If'a set of N quantities A, in a coordinate system x' are related to another
N quantities A’ in a coordinate system X’ the transformation equations
- !
4,=—
%P
then A, (read as A subscript i) are said to be the components of a Covariant Vector or
covariant tensor of the first order or first rank.

4, , (Covariant law) ..(32)

oxP
Multiplying equation (32) by ax—r and summing over the index p from 1 to N, we find
X
oxf - ox? ox?
r AP = r D A‘I
ox ox" ox
q
2 Zxr A, =814, =4,
X
ox? —
or A4 = ;_rAP (Covariant law) ..(33)
X

Thus relation (33) may equally well be taken as the transformation law of Covariant
Vectors.

Notes :

(i) The components of covariant tensors are denoted by subscripts as a convention.

0
(i) It follows immediately that the quantities a—dl) in equation (31) are the components
X

of a Covariant Vector, where in conformity with the convention the index i in ; is
X

regarded as a subscript. Such a Covariant Vector is called the gradient of ¢.

(iii) In general, an entity whose components transform like i.e., in conformity to the

transformation rule of the partial derivative of an invariant of coordinate function, is

called an entity having covariant components or in short covariant entity.

(iv) The contravariance and covariance of an entity is not the intrinsic (inherent) prop-
erty of the entity but this distinction is due to the way in which the components of the
entity are related to the coordinate system to which it is referred. For example, when
the components of a velocity vector are taken along the coordinate axes (Example 4)
they are contravariant components and if it is represented as the gradient of a potential
function (scalar function), which are perpendicular to the coordinate axes, then these
components are covariant.

In fact we can transform from one set of components of a given vector to another by
means of the metric tensor,

Theorem 3. There exists no distinction between Contravariant and Covariant Vectors
when we restrict ourselves to coordinate transformations of the type

—i_ i oom o pi
X' =a, x" +b",
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where b’ are N constants which do not necessarily form the components of a Contra-

variant Vector and af,, are N? constants which do not necessarily form the components

of a tensor such that

We have

X' =d, X" +b ..(34)
Multiplying by al, and summing over the index i we get

dx'=d d x"+ad b
and using the given relation, viz.

d a =38 ...(35)
we find alx' =8, x" +a.b’

=x"+d b

Finally, replacing the free index r by m on both sides, we obtain

X" =d ¥ —d b ..(36)
From (34) and (36) it follows that

&' "

=4 == (37

am " oy @7

This shows that (15) and (32), transformation laws for Contravariant and Covariant Vec-
tors respectively, define the same type of entity in the present case. This is in fact the
rectangular cartesian transformation of coordinates (orthogonal Euclidean space).

Theorem 4. The law of transformation for a Covariant Vector is transitive.
Proof : Let the components of a Covariant Vector relative to the coordinate system x'
be A4, and relative to the coordinate system X’/ be A’. Then by covariant law of trans-

formation.

-
A = _AAI‘ . ces 38
J o j ( )
Now for a further change of coordinates from X/ to x'k, the new components A4 by
covariant law must be given by

' 6_1 - J
A :L’AJ ..(39)
Oxy,
Combining (38) and (39) we get
J oA i
. . ) ..(40)
Ox; ox/ Ox;,

Hence the proposition.

Example 5. 4 Covariant tensor of first order has components xy, 2y — 2%, xz in rectangular
coordinates. Determine its Covariant components in spherical polar coordinates.
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Solution: Here the space is three dimensional,

Ad=x, =y, ¥ =z X =rX=0%=9.
Further,
x=rsin 0 cos ¢, y =rsin O sin §, z=r cos O ..(41)
Taking, for the given covariant vector 4,
A =xy, 4,=2y — 22, Ay = xz ..(42)
and using Covariant law, viz.
- o/
A =——4;
X
1 2 3
C R ) ..(43)
X' ox' X'
P 2 3
We find RS S S
X' ox' X'
Oox 6y 2 0z
=—(y)+—(2y—z" |+—(xz ..(44
)+ {2y -2 )+ = a2) (44)

using (41), we finally obtain
4, =(sinOcos ) * sin” Osin pcos §

+ (sin O sin ¢) (27 sin O sin ¢ — 1 cos? 0)

+ (cos 0) 72 sin O cos O cos ¢ ...(45)
Similarly, from (43)
-t ox? ox’
SR

Ox oy 2\ Oz
=— +—=2y—z" |+ —
P (x») ae( y-z ) P (xz)

= (r cos O cos §) 72 sin” O sin ¢ cos ¢
+ (r cos O sin ¢) (27 sin O sin ¢ — 7* cos? 0)
— (r sin ©) (#* sin O cos O cos ¢) ...(46)

and, 23 = (—r sin Osin ¢) r* sin? sin ¢ cos

+ (r sin O cos ¢) (27 sin O sin ¢ — 7* cos? 0) ..(47)

Product of Vectors

Product of two Vectors*

(a) Product of two contravariant Vectors :

Let the components of two Contravariant vectors relative to the coordinate system x’ be
A; and B’ and relative to the coordinate system X" the components A? and BY . Then

by contravariant law
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AP = EAl’ ...(48)
— q
and BY = %Bl ...(49)
X
Multiplying (48) and (49), known as outer product, we get
_ P
AP B = i 6_ A'B/ ...(50)
ox o

If we denote the N? quantities 4' B by C¥ and 47 B? by C* then

ox? ox?
P = —CY ..(51)
o' ox’
(b) Product of two Covariant Vectors :
Let the components of two Covariant vectors relative to the coordinate system x’ be 4,

and B’ and relative to X" be Zp and Eq )

Then by Covariant law

4,= Sfp A ...(52)
and B, = :;x; B, ...(53)
Hence Zp Eq jfp 2{; 4B,
or C,, = Sfp 2: . (54)

(¢) Product of a Contravariant Vector and a Covariant Vector:

Let the components of Contravariant vector and a Covariant vector relative to the coor-
dinate system x’ be 4, and B’ respectively and relative to X" be 4” and B, respectively.
Then

B
A Zgz‘ll ...(55)
— o’
and B, = ;q B, ..(56)
- = &P o/ ip
Hence A7 B, —EFA I ..(57)

P20 ..(58)
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Note : Relations (51), (54) and (58) show that the N° components of each CV, Cij and

C; satisfy different types of transformation laws when transformed from one coordinate

system to another and encourage us to define new tensor entities.

36.10 SECOND ORDER TENSORS

(a) Contravariant tensor of the second order :

Motivated by the relation (51) we give the following definition of second order contra-
variant tensor.

Definition : If a set of N* quantities AV in a coordinate system x' are related to another
N? quantities A" relative to the coordinate system x/ by the transformation equations
A" = aikail A7
ox' ox’
then AV are said t,, be the components of a contravariant tensor of the second order
(or second rank).

, (Contravariant law) ..(59)

(b) Covariant tensor of the Second order :

Motivated by the relation (54), we give the following definition of second order covari-
ant tensor :

Definition : If a set of N* quantities Aij in a coordinate system x' are related to another

N? quantities Zkl relative to the coordinate system x/ by the transformation equations

- o' o/
Ay =———4; (Covariant law ...(60
il 6)?k 6)?1 i ( ) ( )
then A, are said to be the components of a Covariant tensor of the second order (or

secondl rank). ,
(c) Mixed tensor of the second order :
Motivated by the relation (58), we give the following definition of a second order mixed
tensor :
Definition : If a set of N’ quantities A} in a coordinate system x' are related to another
N? quantities A} relative to the coordinate system X’ by the transformation equations
— oo
Af = ——4; (mixed tensor law) ..(61)
ox' ox
then A; are said to be the components of a mixed tensor of the second order
(or second rank).
Remarks:

(i) It may be noted that the indices are placed on the tensors as superscripts fo denote

contravariance and as subscripts fo denote covariance. Thus a mixed tensor A} is

contravariant in i and covariant in j and transform accordingly.

(ii) It is now obvious that A and B/ are the components of two contravariant tensors of
first order and A, and B/ are the components of two covariant tensors of first order then
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() A'B/ is a Contravariant tensor of the second order
B A,Bj is a Covariant tensor of the second order

() AiBj and 4 B are Mixed tenors of the second order

Theorem 5. The kronecker delta is a mixed tensor of the second order whose compo-
nents in any other coordinate’ system again constitute the kronecker delta.

Poof : The kronecker delta is

5 :{1)1 ;’:;;]’ .(62)
Let 83- be the components in the coordinate system x’ and the corresponding components
in X' be 5; . If we can prove that these components obey the transformation law (61) of
mixed tensors, then it will be a mixed tensor.
ax* o/ = ax* oxl et

== = = =38 (63
o o T o o ox (63)

Now,

Hence the proposition.
Notes :
(i) If kronecker delta is defined as,
- {1, ifi=j
Yool0, ifiz
ox' ox’ ox/ ox’

then it is not a covariant tensor, since the transformed components —-—06; =——
ox" ox ox" ox

does not yield kronecker delta.

(it) A tensor which has the same set of components relatively to every system of coordinate
axes is called an isotropic tensor.

Clearly kronecker tensor is an isotropic tensor.
g _E A, & at &
Tar e T oatay)
Hence, 5 5 , I.e., it has constant components independent of coordinate axes.
Example 6. I[f A is a covariant tensor of the second order and B', C are contravariant
vectors; prove that AIJBiU is, an invariant.

Solution: We have

- ox' ox’

Akl é’_k ] Ay (64)

P

B = LPBP ...(65)
ox

— &

=& 1 ...(66)

ox?
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o' ot axd ox!
o5k ox? o' ox
8x ox’
Oxp ox?

=8/ 5] 4,B7C*

then A4, B* C' = — 4;B7CY

= 4;BPC*

= 4,BC ..(67)

This proves the invariant character of AI.JBiCj ) Proved.

36.11 HIGHER ORDER TENSORS

We will now generalize the definitions given for second order tensors in §9 for tensor
entities of higher order.

A set of N" quantities A" in a coordinate system x’ represents the components of a

Contravariant tensor of the order » if the corresponding set of N” quantities AP

in the coordinate system X' are given by the transformation law

_ oxh oxP2 a)?pn Ail by
ox" ox? ox™

Similarly, if we have N" quantities A,~l iy....i, Whose transformation law is

(contravariant law) ...(68)

- axtoax ax
Aq]q2 ...... q, = q g, q T Dy
oxh ox?  ox

;, the components of a Covariant tensor of the order 7.

i (covariant law) ...(69)

we call 4, ;

Further, if we have N ™" quantities
iy,
iz wJn

whose transformation law is

Zl’ll’z-"l’m 3 6)?171 6)?172 afl’m Ox/! asz ax]n AiliZ"'im

6424, o o oyt '6)?% oxt " aptn M
(mixed tensor law) ...(70)

then we call Aj‘; ’; the components of a mixed tensor of the (m + n)™ order,

contravariant of m" order and Covariant of n™ order, which is generally written as of

the type (m, n).

Remarks:

(i) The convenient way to remember the results (68), (69) and (70) is that in the right
hand side expression as if 9the unbarred indices, assuming superscripts as numerator
and subscripts as denominator and regarding the index i in (X” / dx") as a subscript,
cancel out and leaving the barred indices required in the left hand side.

(if) A contravariant tensor of second order may be called a tensor of type (2, 0) and a

covariant tensor of second order is called a tensor of type (0, 2) and a mixed tensor
of second order is of the type (1, 1).
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Theorem 6. The transformation of the tensors form a group (i.e., the law of transfor-
mation of tensors possesses transitive property).

Proof : Without loss of generality, we consider a mixed tensor Aj- in a coordinate system
x', and consider the transformation of coordinates from x' to ¥/ and then x"’. Let the cor-
responding 1 components of the tensor be A,k and A(;p , then
— ool
A =—— 4
ox' ox

o'’ '
= Af (72)

(71

AP ="
T ok o'

Combining (71) and (72), we get

and

gr ot E &l
q 6)?1‘ & ax'? 6)?1 J
p b
v ox ‘ ox A}
ox' ox'

Equation (73) is of the same form as we get when we make direct transformation from

(73)

x' to x'". Hence the proposition.

Theorem 7. If all the components of a tensor in one coordinate system are zero at a
point then they are zero at this point in every coordinate system.

Proof : Let the components of a tensor in the coordinate system x' be

A5, AT

and the corresponding components in X' be

ZPle---Pm
91929

Then by the transformation law of tensors (70), it clearly follows that if the components
defined in (74) in x’ are all zero then the corresponding components defined in (75) in

X' will also be zero. Hence the proposition.
Remarks:

(i) This theorem is very important in the formulation of physical laws. It immediately
follows that if a tensor equation holds in one coordinate system it holds in every
coordinate system.

(if) Two tensors are said to be equal, if they are of the same rank and type and compo-
nentwise equal.

36.12 ZERO TENSOR

Definition : A tensor whose components relatively to every coordinate system are
all zero is known as zero tensor.
Notes :

(i) The tensor of order zero (scalar or invariant) and zero tensor are two different concepts.
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(i) If a tensor is zero in one coordinate system it will remain zero in all other coordinate
systems.

The order of indices in a tensor is important therefore we shall study its symmetric and
Anti-symmetric (skew-symmetric) properties.

Symmetric and Anti-symmetric

(skew-symmetric) Tensors

36.13 SYMMETRIC TENSORS

Definition : A tensor is called symmetric with respect to two contravariant or two
covariant indices if its components remain unaltered upon interchange of the indices.
eg. Ag" = AT
is symmetric in p and ¢ and if

qu}’ — A;]tpr
then it is said to be symmetric in s and ¢.
If a tensor is symmetric with respect to any two contravariant indices and also any two
covariant indices then it is called symmetric tensor.
It may be noted that the symmetry property is defined only when the indices are of the
same type.

Theorem 8. If a tensor is symmetric with respect to two indices (contravariant or
covariant) in any coordinate system it remains symmetric with respect to these two indices
in any other coordinate system.

Proof : Since only two indices are involved, there is no loss of generality if we prove
the proposition for the contravariant tensor, viz., A = 4.

-y xFex
We have A" = LL} A" (due to symmetry)

Hence the proposition.

Remark : We do not define symmetry with respect to two indices of which one denotes
contravariance and other covariance, because this type of symmetry is, usually, not
preserved after a coordinate transformation. The kronecker delta is an exception, which

is a mixed tensor, and possesses symmetry with respect to its two indices (5; = 5{ ) .

N(N +1)

Theorem 9. A symmetric tensor of the second order has at most — different

components in a V,,

Proof : Let 4. be a symmetric tensor of the order two. The total number of its compo-
nents in the array, in a V).

Ay ApyeAy
Ay Ayyedyy,
Ay Ay Ay
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are N? out of which all the N. diagonal terms will be different and the rest (N> — N) will
be equal in pairs due to symmetric property.

. N(N?+1 _
The number of such parts will be —2 Hence the total number of independent
components
2
:N+MZ%N(N+1)

Corollary. The number of independent components in Al.jk which is symmetric in 7 and
J is clearly

N?(N+1)

Lyoveny. v-
2 2

36.14 SKEW-SYMMETRIC TENSORS

Definition : A tensor is called skew-symmetric (or antisymmetric) with respect to
two contravariant or two covariant in dices if its components change sign upon
interchange of the indices.

ijh _  4jih
eg. Api =4,
is Skew-symmetric in i and j and if
ik _ ik
Alni - _Aml

it is said to be skew-symmetric in / and m.

If a tensor is skew-symmetric with respect to any two contravariant indices and also any
two covariant indices, then it is called skew-symmetric tensor.

Notes :

(i) The property of skew-symmetry (like that of symmetry) is also independent of the
choice of the coordinate system.

(it) Skew-symmetry, like symmetry, cannot be defined with respect to the indices of which
one denotes contravariance and the other covariance.

N(N-1)

(iii) A skew-symmetric tensor AV of the second order has at most — different arith-

metical components, as all the N diagonal terms A" (no summation) are zero in this case.

(iv) In general a skew-symmetric (anti-symmetric) tensor of rank (< N) in V,, will have

at most NC, =

= W independent components.
ri(N—r)!

If r = N (rank is the same as the range of indices) then number of independent compo-
nents will be one only. The non-vanishing component of an anti-symmetric tensor of the
type (0, N) is = A,,; ,, according as N is odd or even.

(v) Skew-symmetric tensors of rank higher than the number of dimensions of the space
are identically zero.
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Addition, Subtraction and Multiplication of Tensors

36.15 FUNDAMENTAL ALGEBRAIC OPERATIONS WITH TENSORS

(a) Addition : The sum of two or more tensors of the same rank and type (i.e. same
number of contravariant indices and same number of covariant indices) is also a
tensor of the same rank and type.

- ox ax/ ox”
ox" ox" Ox
=i ox ox! ox” B

- B! (77
o o ot 77
Adding,
Y 5 o
(A,g +B) ) =6_ilaiax—k(f1,’,m +B") (78)
ox' ox™ ox

This shows that 4™ +B™ =C™ (say) is a tensor of the same rank.

Remark : It can easily be verified that the addition of tensors is commutative and as-
sociative.

(b) Subtraction: The difference of two tensors of the same rank and type is also a tensor
of the same rank and type.

It follows immediately from (76) and (77) that

Drllm — Arllm . Bl{lm
is also a tensor of the same rank.
Further, it can be easily deduced from. («) and (b) that any linear combination of tensors
of the same rank and type is again a tensor of the same rank and type.
As for example, kA,lq'” + uB,l,m , where A and | are invariants (scalars), is a tensor of the
same rank and type.

(c) Outer multiplication : The product of two tensors, of any rank, is a tensor whose
rank is the sum of the ranks of the given tensors.

This process which involves ordinary multiplication of the components of the tensor is
called the outer product. As for example, 4/ B!, is the outer product of 4/ and B! and
may be denoted by C,’{,i which is a tensor of 5th order contravariance of order 3 and
covariance of order 2.

Note : The converse of (c) is not always true, i.e. Not every tensor can be written as a
product of two tensors of lower rank (e.g. 53 ). For this reason division of tensors is not
always possible.

The division, in the usual sense, of one tensor by another is not defined.

(d) Contraction : If one contravariant and one covariant index of a tensor (mixed tensor)
are set equal, the result indicates that a summation over the equal indices (dummy
indices) is to be taken according to the summation convention. This resulting sum is a
tensor of rank two less than that of the original tensor. The process is called contraction.
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We shall now prove that a contracted tensor of the type (r, s) is of the type
(r—1,s-1.

Let the components of a tensor of the type (7, s) in the coordinate system x’ be Az

T2
and in the coordinate system X' be
ZPlempr
09295 then’
_ P 123 Pr J1 J2 Ji AU
grver, SO O O OF O O i, (79)
D929 axil axiz axi, &N o ol NJ2Js
Setting p, = g, (say), we get
_ ) P2 P, J Ayl Jsoo
J0Prps _ i ox ox?r ox' ox ox iy
0929 ook ox oxt oxB  ox % NJ2-s
ol oxPr oxt ox’3 Ox’s iy,
Al ...(80)

Cat o ot awt axt R
Since the free indices are (7 — 1) in contra variance and (s — 1) in covariance, denoting,

ADPrPr — CN OOy g gS2 Bk Cll byl
992y BB By Tt J2Js my MMy

the relation (80) may be written as
70 O e O oax o oxr . ox™ ox™  ox™! Lyl
By By By axl‘ axl"*‘ 6)?3‘ 6%‘32 a.fﬁ:’] m my..mg_
This shows that the new tensor obtained on contraction is of the type (r — 1, s — ).

Notes:

(81)

(i) We never contract indices of the same type as the resulting sum is not necessarily a
tensor.

(if) The process of contraction reduces the order by two and may be repeatedly used, if
so desired, to construct new tensors, whose order will always be non-negative.

(iii) The invariant Aj» is formed by contraction from the mixed tensor A;» of order two.
This justifies us in calling an invariant as a tensor of order zero.

(e) Inner multiplication: By the process of outer multiplication of two tensors (different
type or mixed type) followed by a contraction, we obtain s a new tensor called an
inner product of the given tensors. The process is called inner multiplication.

As for example, given the tensors A,ij and B}, the outer product is A,ij Bl Letting j = ¢
we obtain the inner product A,ij B = C,i’;. Letting j = ¢, i = r another inner product
A!BY, = Dl is obtained.

Notes :

(i) Inner or outer multiplication of tensors is commutative and associative.

(if) The summation convention generally applies to two indices one of which is a super-
script and the other a subscript.
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Theorem 10. Every tensor, which has at least two contravariant or two covariant in-
dices, can be expressed as the sum of two tensors, one of which is symmetric and the
other skew-symmetric in a pair of contravariant or covariant indices.

Proof : Without loss of generality, let the tensor be AY | then we may write

1 N1y B
L O B AN O B
AV = Z(Ak + 4] )+2(Ak 47') .(82)
Denotin l(A” +Aj[) =By
g, k k k
2
R A
and E(Ak — 4 )—Ck
we find, B,’-;" = B,{i and CZ = —Ckﬂ
Hence, AV =BV + (7, ...(83)

in which B,’Z is symmetric and CZ is skew-symmetric.
Note : The symmetry and anti-symmetry are sometimes shown by putting the parentheses
and brackets respectively.'Here the symmetric part may be written as B 5;7 ). and anti-sym-
metric part is C/1.
Example 1. If 4™ is skew-symmetric and B, is symmetric, prove that 4™ B = O.
Solution: Given 4* =— A" and B,_= B_.
Now changing the dummy suffixes in 4 B , we get

A"B _=A"B_=-—A"B

rs sr rs

or 24%B, =0
or A®B, =0
Example 2. If ¢ = a74'4/, then we can always write ¢ = bl.]AiAf where b, is symmetric.
Solution: O = a4’ ..(84)
interchanging the dummy indices, we get

b = aiAi .(85)

Adding (84) and (85)
20 = (aij + aji) A'A
or o - b A4 ...(86)
1
Where b, = E(a[j +aj) -(87)
which is symmetric, i.e. bij = bﬁ.
Example 3. If Aij is a skew-symmetric tensor, then show that

(8 8f +8 85 ) 4, =0
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Solution:
(8 8f +8] 8} ) 4y, = ', 8f 4, +5} 4,
= 55{ Ay + SI;Aik
=4 i+ A,j
= Aﬂ + (= Aﬂ) (skew-symmetric property)
=0.

Example 4. If a; is a symmetric covariant tensor and b, a covariant vector which satisty
the relation

aijbk ta, b, + akibj =0
prove that either a; = 0 or b,=0.
Solution: Let, aijbk = Aijk, ...(88)
then 4, is a third order covariant tensor which is symmetric with respect to the first pair
of indices i and j due to the symmetric property of a; Also replacing the free indices i,
jand k by j, k and i respectively on both side, we find

a, b =4,, ...(89)
gk Zi ki
is symmetric with respect to j and & and similarly

a,. bj =4y ...(90)

is symmetric with respect to & and i.

Hence, Al.jk is a completely symmetric tensor.

Adding (.88) to (90) and using the given relation, we get
Ayt A, +4,=0

or 3 Aijk =0,

or aijbk =0.

This implies that either a; = Oorb, =0ie b =0.

Example 5. If the tensors a,. and g, are symmetric and ' and V' are components of
contravariant vectors satisfying the equations :

(a;—kg) u'=0
and (a; - klgi].) Vi=0, k# k!
prove that g, u' v =0 and a; u' v =0.
Solution: Given, a;=a, 8, =g, ..(91)
(a; — kg;) u=0 ..(92)
(a;— klgi].) Vi=0, ..(93)
Taking the inner product of (92) by ' and (93) by «/, we
get aij.uivj - kgl.j.uivj =0, ...(94)
a V'l —k'gv'u/ = 0. ...(99)

Changing the dummy indices 7 and j in (95) and using (91), the equation (95) may be
written as
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aij.v«fui - klg”v-iui =0. ...(96)
From (94) and (96), it follows

(k' =k gij.v"uj =0,
or gl.j.viuf =0,as k# k'
Substituting this in (96), we find ai/u’vf =0.

Example 6. I/ u; # 0 are the components of a tensor of the type (0, 2) and if the equation :

ful.j +gu,; = 0
holds, then prove that either f = g and Uy is skew-symmetric or f'=— g and Uy is symmetric.
Solution: Given that fuij +gu,; = 0. (1)
Changing the free indices, we may write it as

Fu, + gu, = 0. (2
Adding (1) and (2), we get

(F+8 (u;+u)=0 -(3)

which implies that
(i) either, ug tu,; = 0, i.e. Uy is skew-symmetric and then from (1) it follows that /' = g,
(if) or, f = — g and then from (1) it follows that U is symmetric.

Example 7. If Aij is skew-symmetric, then prove that

(B) Bf +B B} )4, =0

Solution:
(B} Bf +B] B} )4, = B} Bf 4 + B Bj 4,
k pi i pk

=B, Bj Ay +B) Bj Ay (changing the
dummy indices in the first term)

= BfB; (A + 4y )
=0. (since 4, is skew-symmetric)

Quotient Law of Tensors

36.16 QUOTIENT LAW

In tensor analysis it becomes sometimes necessary to ascertain whether a given entity is
a tensor or not. In theory we may say that if the components of the entity obey tensor
transformation laws, then it is a tensor otherwise not However, in practice this is trouble-
some and a simple test is provided by a law known as Quotient law which states :

Statement : An entity whose inner product with an arbitrary tensor is a tensor, is
itself a tensor.

Proof: It will suffide to set out the proof for the following particular case :

In the coordinate system x’ let A(i, j, k) be the given entity. Let BZ be an arbitrary tensor

whose inner product with A(7, j, k) is a tensor C,, i.e.
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Al j, k) By =C, . ..(97)
We have to show that A(i, j, k) is a tensor.
In the transformed coordinates X' , we have
A(p,q,r) B} =C,, .(98)
_ p 4 o™ .
But, pro - &L O pi .(99)
ox' ox’ ox"
o™ oxt
and c,=——C ...(100
n " ox’ mk ( )
Hence equation (98) may be written as
oxP ox? ox™ ;  ox™ axt
A(pa q, )___nBrit —n A —mk
ox' ox’ ax ox" ox
_ox” oxt
i, k)BY [using (97
T [using (97)]
ox"™ ox? ax? oxt
or — | A(p. q.r G, j. k) B =0
ox” o' ox!  ox”
n t

On inner multiplication by (i.e. taking outer product by F and then contraction
"

with n = ¢) yields

ox™ ox? ox?  ox
, _ l,k U_
x’[(q)aa' ,(1)}
&P ox? ok
or A(p,q,r)———————A(, j, k) |B" =0 ..(101
[(pq)aaj ,(J)} (101)

From this we cannot jump immediately to the conclusion that the quantity inside the
parentheses vanishes. We must remember that here i and j are dummy indices which

imply summation and it is the sum which is zero. However since B;j is an arbitrary ten-
sor we can arrange that only one of its components is non-zero. Now each component
of Bﬁj may be chosen in turn as that one which does not vanish. Therefore the expression
in brackets is identically zero.

o’ ox! _axt
Hence, A(p,q,r)——=
a1 o' o/ ox”

i oyl

AG, j, k) .(102)

Again on inner multiplication wit

m

ok ax' ox/

A ,q,1r)8h 81 =— — i, j, k
(p.q.7) g A, j, k)
ax’ ox’ oxk
or A(m,n,r)= i, j, k ...(103
( )= e A, j, k) (103)

This equation shows that A(7, j, k) is a tensor of third order, which is covariant in 7, j and
k and therefore may be written as Ai/‘k'
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Remark : In the above proof it is necessary that B,Z should be arbitrary and does not

possess any symmetric or skew-symmetric properties. If it is not so, then (102) is not a
logical consequence of (101).

Example 1. An entity A(p, q, 7, s), which is a function of coordinates x' transform to
A, j, k,1) in another coordinate system X' according to-the law

ox? ox! oxt o'
ox' ox? ox” ox’

A, j, kD)= A(p,q,1,5)

Answer the following questions :
(i) Is the given entity a tensor ?

(i) If so, give the suitable notation indicating its contravariant and covariant characters
artel the rank.

Solution: (i) Yes, the given entity is a tensor because it obeys the tensor
transformation law.

(if) The suitable notation for the given entity is Agrs in the coordinate system x’ and Zij K

in the coordinate system X' This indicates that it is a mixed tensor of Order 4, con-
travariant of order 3 and covariant of order one, i.e., of the type (3,1).
Example 2. Use Quotient law to prove that Kronecker delta is a mixed tensor of order two.

Solution: Let 4/ be an arbitrary contravariant vector, then by an obvious property of
the kronecker delta.

8, 4 = A,
which is again a tensor (4’ is contravariant tensor of order one).
. i .
Hence, by Quotient law & ;1S a tensor.
Moreover 83- has two indices i and j and with its product with 4/ the summation is car-

ried out over j i.e. it should be covariant in j and since the result is the contravariant
vector 4’ it should be contravariant in i. Thus &', is a mixed tensor.

Example 3. If A" and B' are arbitrary contravariant vectors and ijA’F is an invariant,
show that ij is a covariant tensor of the second order.

Solution: Since CI.IA"Bf is an invariant, we have

Cl-jA’BJ =Cqup BY . ...(104)
Further, 4" and B’ are contravariant vectors, therefore
— &P
4= g ..(105)
ox'
_
and B =5_p/ ..(106)
ox’
Substituting these in (104), we get '
_ P awt)
ox' oOx
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But 4°, B W being arbitrary vectors, it follows that 4’3’ is an arbitrary tensor and therefore

—  ox? ox?

i =C o

ox' ox’

which is the law of transformation of a contravariant tensor of the order two. Hence
the result.

..(108)

Example 4. If A" is an arbitrary contravariant vector and CyAiAj is an invariant, show
that Clj + Cj.l. is a covariant tensor of the second order.

Solution: Proceeding as in Example 16, the equation (107) in the present case may be
written as

_ &P o),
( i~ Coy géx_f}‘l A4/ =0 ..(109)
This quadratic form, vanishes for arbitrary 4/, but we cannot jump to the conclusion that
the quantity inside the parent-heses vanishes because 4’4/ is not arbitrary but a symmetric
tensor. We must remember that in the form bl.inAf the coefficient of the product 4' 42
is mixed up with the coefficient of 4% 4'; it is in fact b,, + b, Thus interchanging the
dummy indices i and j, and adding the two results, we can deduce only that

_ &P ox? — o ovd

Ci+Ci =Cpy— T e L A
ox' Ox ox’ Ox

The trick now is to interchange the dummies p and ¢ to the last term; this gives

N _ 6_17 a_q
(Cy+Cii)=(Cpy +C )éé

pg T ap
establishing the tensor character of (Cij + Cji) as a covariant tensor of the order two.

.(110)

L(111)

36.17 RELATIVE TENSOR

If the components of an entity
iy,
Tz
transform according to the equation

a_xw o ol axPr ale axjs AiliZ"'ir A12)

AP1P2Pr . 1l ety
x| ox" ox> oxt ax? o M)

N4

X

then the given entity is Called a relative tensor of weight w, where is the Jacobian

of transformation. If w = 0, the entity is called absolute tensor or simply tensor. If
w = 1, the relative tensor is called the tensor density.
Notes :

(i) The algebraic operations, multiplication, addition subtraction of relative tensor are
same as those of absolute tensors.

(if) The outer product of two relative tensors is itself a relative tensor of rank and weight
equal to the sum of the ranks and the sum of weights of the given relative tensors
respectively.

(iii) Unless or otherwise stated we are dealing with absolute tensors in this text.
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Conjugate Tensors

36.18 CONJUGATE TENSORS (OR RECIPROCAL TENSORS)

Lemma 1. Consider a symmetric covariant tensor of the second order Aij whose determi-

nant | 4; |# 0. Let G, ) (1. j)* denote the cofactor of A, in the determinant | 4; | and let

Bi/' _ G(A)(ia ])
| 4y |

J

..(113)

We shall now prove that BY represents the components of a symmetric contravariant
tensor of the order two.

We have labelled the indices i and j in BY as contra variance indices in anticipation of
the result.

Proof. Since 4, is symmetric, | 4; | is symmetric which implies that Gy (i, ) is sym-
metric and therefore B is symmetric.

From the properties of determinants we have the following two results

4, Gy ()= | 4; | .(114)
4; G, G, k)= 0,j # k. ..(115)
Hence, using (113) we may write the above two results by a single equation
ik _ <k
4;B" =35; ..(116)

Although 5’; is a tensor and A4, is a tensor, we cannot apply Quotient law to establish
ij

tensor character of B* to this equation because Aij is not arbitrary. It is a symmetric
covariant tensor.
Let C' be a chosen arbitrary contravariant vector, then
C AU:DI., .(117)
so that D, is an arbitrary covariant vector, because the above equations can be solved
uniquely as | 4; |# 0. Consequently.
C A, B* = D.B*
ij i
or ag 8]; = DB*
or Ct=DB* ..(118)
1

We can now apply the Quotient law to equation (118) and see that B is a contravariant
tensor of the second order.

Lemma 2. Let us now form another tensor Eij from B7 by the same process as defined
in Lemma 1, i.e.

E; = —G(T;(;"j)' (119)
Since |A,1HBU‘ =1 and |A,j| # 0, it follows that ‘B'J‘ # 0. We shall now prove that E=A;

Proof : By the theory of determinants
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E;B" =5}, (120
Inner multiplication by 4,, yields,

E;B* 4 = &} 4, using (116),. E;5] = A,
E,=4,=A4, ..(121)
Hence the proposition.

Thus we see that, by virtue of (116), the relation between the tensors 4, and BV is
of reciprocal nature. We, therefore, give the following definition of conjugate tensors
(or reciprocal tensors) :

Definition : Two second order symmetric tensors A, and BY. one covariant and the other
contravariant, are said to be conjugate (or reciprocal) tensors if they satisfy the equation

438" = 5% and |4, HB’J‘:&O

Note : if the tensor 4. is given, Lemma 1 describes the process by which its conjugate
B can be determmed Similarly, Lemma 2, describes the process to determine A when
BY is given.

Example 1. If A is a symmetric covariant tensor of the order two and BV is formed by
dividing the cofactor of A in the determinant |A,j| a (say) by |Ay| itself, show that :

(i) ‘B’f‘ =1/a and (if) 4,87 = N
Solution: By the theory of determinants
A;B"* =5} (122)
(i) Now, |A,~]~|.‘Bik‘ = ‘éﬂ or a‘Bik‘ =1
‘B""‘=l (123)
a

(if) Again, from (122) identifying j and &, we get
4;B" =5 = N. (124)
Example 2. IfAl.j = 0 for i # j, show that the conjugate tensor B/ = 0 for i # j and

i 1 .
B" =— (no summation).
Solution: We have A;B* =55 ..(125)
(i) Let k£ #, then
0=4,B*
=A,B%+ A,B* + .+ A4 B*+ .+ 4, B%
j 2 ) Y Ni

=0+0+ ..+ A/./.B/k +.+0

= AjjBfk (No summation over j).
But, Ajj # 0 (No summation over j).
Hence BF=0,j+k ie, BI=0i#j ..(126)
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(if) Let k = j, then from (125)
1= AUBi/
=A,B"+ 4,B” + ..+ A,B"+ ..+ A,BN
=0+0+.+4,B"+.+0
= A4,B". (No summation over i).

But, A; # 0 (No summation over 7).
|
Hence B" =— (No summation) (127)
All
Note : We shall use the results of Example 19, hereafter, as the standard results in the

succeeding chapters.

Example 3. [f A7 and Aj; are reciprocal symmetric tensors and if u; are components of
a covariant vector, show that Aij.uiuf :Aifuiuj where u' = A’”ua

Solution: Since u' = A,
taking the inner multiplication by 4, , we get
A’ = 4, A%, = 6%, =u,. ..(128)
Now with the help of (128), we have
i 4 _ ik 1
Aluu, = AV(A, ub) (Aljul) = oju" Ayu
= A u'v
lj
= Ai/.uiu/ :
Example 4. If the relation Bl.jkuiu/uk = 0 holds for any arbitrary contravariant vector
u', show that

By B + By + By + By + By = 0.

Solution: We have Bi].kuiufuk =0.
Also, be changing the dummy indices, we get successively
B, wufu' =0, B, ubul =0, B ik =0,
Jki ij Ji
B, uifi/ = 0, B, k' = 0.
7 i

In this way all the permutations are exhausted. On addition, these six equations give
ik —
(Bi/.k + 3/,“ + Bk!./. + Bjik + Bl.,g. + Bk/.i)u‘u/u =0.

This implies for arbitrary 1/, i.e. for not necessarily zero contravariant vector u/,

By By + By + By + By + By = 0.
Example 5. If the tensor Bl.].k is symmetric in i and j and the relation Bl./.kA"A/Ak =0 holds
for any arbitrary contravariant vector A', show that Bi].k + Bjkl. + Bk;‘/ =0.
Solution: The symmetry of the tensor Bl.].k in 7 and j implies the symmetry in its first
two free indices, i.e.

B, =B,  B,=B, and B, =B, (1)

Further, changing the dummy indices and taking all the permutation as explained
in Example 21, we conclude from By.kAiA/Ak = (), that
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By + By, +B,+B,+B, +B,=0 -(2)
From (1) and (2), we get the desired result
B.,+B, +B, =0. Proved.
ijk Jki kij

Example 6. If a tensor Aijk[ is symmetric in i/ and j and anti-symmetric in j and /, show
that Aijkl =0.

Solution: The given conditions imply that the tensor 4, is symmetric in the first and
second indices and anti-symmetric in second and fourtlg indices. Using the symmetric
and anti-symmetric properties, we may write

A = Ajigg = A (1)
Also, Ay = Ay = Ay = Ay = A ~(2)
Adding (1) and (2), we get

2y = A + Ay = 0
Hence, Aijkl =0. Proved.

Example 7. If A;-k B’* = C'is a contravariant vector and B* is an anti-symmetric tensor,
then show that A;-k + A,i,- is a tensor.
Solution: Given that 4} B** =C". e
In the transformed coordinates , we have

APB" =C". (2
But B and C* are tensors, therefore

&R

B =—_=_pJk, .3
ox’ oxt @)
_ &P
and c’ :x—iC ) (%)
ox
Hence equation (2) may be written as
-, ox1 ox" . oxP ; oOx? ., i
h— B ="' =" 4, B"* using (1
" ox) ox* ox' ox [using (1)]
-, ox1 ox" oxt ;
or p T g 1B =0, .(5)

" oxl oxk ox'

Since B is an anti-symmetric tensor (not arbitrary) from this we cannot jump to the

conclusion that the quantity inside parentheses vanishes. Interchanging the dummy indices

j and k, we get

_, 0% 0% X’ ;|
b —————4;, |BY =0. ..(6)
ox" ox! Ox

Now changing the dummy indices ¢ and » within the parentheses and writing
BY = - B/ equation (6) may be written as
N - L

p LT T8 4l |BY =0 (1)
o oxt ox) ox'
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Adding (5) and (7), we get

-y =, \Ox? Ox" ; ﬂx "
PP _( 4 i j
(4 +4, )é’xj o (4 + 44, )= | B =0. -(8)
This implies that (because the result still holds good when ;j and & are interchanged),
ox? ox" ; ;i\ Ox?
p iz i i\gr
(4p +4; )axf o = (45 + 44 X
ﬁx ox? ﬁx » L Tp
or (45 + 44 = T ok (4p +7 ) -9

establishing the tensor character of (Aj-k + A,ij ) as a mixed tensor of the type (1,2).
Proved.
36.19 ASSOCIATION OF A SKEW SYMMETRIC TENSORS OF ORDER TWO
AND VECTORS
We associate the skew symmetric tensor of order two.

a; = € ua, (1)
The tensor a; is skew symmetric for

a4; = € iy =€ = 4
The relation (1) is equivalent to statements
Uyy = Ay, Ayy = =5 Ay = Ay, Ayy = =y} Ay = Ay, Ay = =35 @y = 0, a5y = 05 a3;, = 0.

On the inner multiplication with iijm we obtain from (1)

€, 04, =€, €.a €. e =020 -020,
ijm ~ij ijm T ijk "k ijk ~ pqk ip~Jjq iqjp
=20, 4, €, e =023 - 8 8
m ijk ~ pjk ip~Jj
=2a_ whenk=m =33, -0, :26.
m ip ip ip

1
Hence a,, =5€,»jm a
This shows that association is one-one.

EXERCISE 36.1

1. Write down the laws of transformation for the tensors Ak and Bklm

2. Evaluate: (a) 5;82 @] 5;512511

3. Show that the velocity of a fluid at any point is a contravariant tensor of rank one.
4. If Aj- is a mixed tensor of rank two, show that Aj. is also a tensor.

5. In an N-dimensional space, how many different expressions are represented by A’p BkC

When each expression is written out explicitly, how many terms does it contain?



Tensors Algebra and Applications < 33

6. If A7 and BF?are tensors, show that 47B}" is not a tensor.
7. If A,’é is a tensor, show that i and 4} are not tensors.
8. If A7F how that AY%, ATE 4im opq  gimk travariant vect
. im 18 @ tensor, show that A%, A, Ay, " an ;m are contravariant vectors.
9. Show that any covariant or contravariant tensor of the second rank can be expressed as the
sum of a symmetric tensor and an antisymmetric tensor of the same rank and type.

10. If a, b, c are three-dimensional vectors, show that their scalar triple product can be written as
(axb).c= Sl.jkal.bjck, where a, b, c, are the cartesian components of a, b, ¢ respectively, and
summation convention is used.

11. If g, is any vector, show that €t = 0.

: . 04;

If A" are the components of an absolute contravariant tensor of rank one, show that —~ are
. x .
the components of a mixed tensor. J

12. If 4" and 4 are reciprocal symmetric tensors and x, are the components of a covariant tensor
of rank one, show that Ai]xi)cf, = AVxlxj where x' = A" .

13. If the components of a tensor are zero in one co-ordinate system, then prove that the components
are zero in all co-ordinate systems.

14. Show that the expression A(i,j,k) is a tensor if its inner product with an arbitrary tensor B,ﬁl is
a tensor.

15. A% is a contravariant tensor and B, a covariant tensor. Show that AVBk is a tensor of rank three,
but AVBj is a tensor of rank one.

16. If g; denotes the components of a covariant tensor of rank two, show that the product 8; dx!
dx/ 1s an invariant scalar.

ANSWERS
o ol o L, = o o o ax' o N
1. AV = AP4 B _ Bl 2. (a) 8, (b)d

ol axt axt T T M oep ot ot ox! o

Metric Tensor

36.20 EUCLIDEAN SPACE OF THREE-DIMENSIONS

In the familiar Euclidean space of three-dimensions in rectangular cartesian coordinates the
distance ds between two neighbouring points (x/, x>, x’) and (x/ + dx/, ¥° + dx’, ¥* + dx’)
is given by

ds? = (dx')* + (dx*)* + (dx°)* = dx' dx', (i =1, 2, 3). (1)
The distance ds is also called the line-element.

The formula (1) is called the metric of the Euclidean space of three dimensions and it
contains within itself all the basic elements of the geometry of a rectangular space of
three dimensions.

In equation (1) the coefficients of the squares of dx’, dx’ and dx’ are equal to unity
and no terms like dx'dx?, etc. occur. These properties are, however, due to the use of
orthogonal cartesian coordinates and disappear if any other coordinate systems are used.
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If instead of rectangular cartesian coordinates we take the coordinates of the points in
curvilinear coordinates (e.g. cylindrical or spherical polar coordinates) such as

(x’l,x'z,x'3) then x' are functions of x” and dx'are linear homogeneous functions of
the dx"” given by (c.f. §3)

Ox'

ﬁxlm

When we substitute these linear functions in (1) we get a homogeneous quadratic expres-

dx' = ' (i,m =1,2,3) .(2)

sion in dx" viz.,

ds* =( a)fl ox J dx"dx'™  (Summation over i) ..(3)
ox'm ox'"
which may be written as
ds® = g, dx"dx"™  (m, n=1,2,3) (4
' ox' ox' . .
where Zun = o ax—'n(Summatton over i) (5

No matter what curvilinear coordinates are used, the distance between two given points
has the same value, i.e. ds (or ds?) is an invariant.

The differential expression on the right hand side of (2.4) which represents ds> may be
called the metric form or fundamental form of the space under consideration. It may
also be called the square of the line element.

Motivated by this, the idea of distance was extended by Riemann, originator of tensor
calculus, to a space of N-dimensions.

Metric and Fundamental Tensors

36.21 RIEMANNIAN SPACE, METRIC TENSOR

Definition : If the square of the line element ds between two neighbouring points,

whose coordinates in a V, are x’ and x’ + dx', is given by the quadratic differential form

ds* = gijdxidxj, ..(6)
where g; are functions of X’ and g = |gl.j| # 0, the space is said to be Riemannian space.

In addition to this we postulate that the line element ds is independent of the coordinate
system i.e. ds? is an invariant. It follows from (6) (see theorem 1) that g is a symmetric
covariant tensor of the order two. It is called the fundamental covariant tensor or metric
tensor of the Riemannian space. The quadratic differential form gl.j.dxidxj is called the
Riemannian metric or simply the metric of the space.

Theorem 1. The fundamental tensor g is a covariant symmetric tensor of the order two.

Proof : Since gl.j.dxidxj is an invariant, we have

gdx'dx’ =g, dxPdx? (7)

P 4
g, O g O

dx’
> P4 axz ax_/
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_ x?ax
or g, —g dx'dx’ =0 ..(8
(.J Pq o i axjj ( )
we deduce from equation (8) that
N
& t8i=\&p T8 - -9
jrej (pq qp)ax ol ©)
establishing that (gl./. + g}.i) is a covariant tensor of the second order.
We can write
1 1
gijzz(gy.+gji)+5(gij—gjl.) -(10)
Th deide’ =L (g + g, )dddd +1 dx'dx’ 11
cn gijx X 2(g1] gjl) X ax (gzj g]l) X ax ( )
also, on interchanging the dummy indices on the R.H.S., we get
1 1 —
g;dx' dx’ = (g/l+gll)dx dx’ + 2(gﬁ—gij)dx]dx ..(12)
Adding equations (11) and (12), we get
2gdx‘dx’ = (g,j +gﬂ)dx dx’ (13)

This equation implies that g; is symmetric. Thus combining the two conclusions that
(gij + gjl.) is a covariant tensor of the second order and g, is symmetric, we conclude
that Zgi]., or g, is a symmetric covariant tensor of the second order.

Note : If we compare (1) and (6) we find that in a three dimensional Euclidean space,
referred to a system of rectangular axes, all the components of fundamental tensor are

zero except g, = &,, = 833 = 1

We shall call a N-dimensional space as Euclidean space of N-dimensions if its metric is

2 2 2

ds* = (dxl) + (dxz) et (de) ..(14)
ie g, = 0,i#j and g, = 1 (no summation).
Indicator
It is implied that the metric of a Euclidean space is positive definite. i.e.

ds*> 0. .(15)
In special theory of relativity the metric of the four dimensional space (space-time) is
given by

2 12 2\2 30\, 205 4\?

ds =—(dx ) —(dx ) —(dx ) +c (dx ) ...(16)

where c is the velocity of light and x# is the time coordinate. This metric is not positive

definite, we see that ds” is positive when x!, x?, x* are constants along the curves, it is

zero when, say, x° and x° are constants and x' = cx*, and negative when x* is constant.

Thus, in general, for some displacements dx’ the form ds’ may be positive and for
others it may be zero or negative. If ds’ =0, for dx’ not all zero, i.e. the two points are
not coincident the displacement is called a null displacement. A curve along which the
displacement gl.jdxi dx' is null despite the fact that the two points are not coincident
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is called a null curve. For any displacement dx’ which is not null, we introduce an
indicator e, which is +1 or —1, so as to make ds? always positive, i.e.

ds*=e 8 dx' dx ..(17)

36.22 CONJUGATE METRIC TENSOR

Since 8 is a symmetric covariant tensor of the second order and g = |gl.1.| # 0, we can define
gij — G(l’ ] ) ,

g
Where G (i,j) is the expression formed by the cofactor of g; in the determinant |gl.].|.

..18)

If follows that g7 is a symmetric contravariant tensor of the second order and is said to
be the conjugate of g i.e. conjugate metric tensor. It is also called the fundamen-
tal contravariant tensor. Hence the fundamental covariant tensor g, and fundmental
contravariant tensor g¥, being conjugate, are related to each other by the equation.

g;8" =5} .(19)

36.23 METRIC TENSOR IN CARTESIAN COORDINATES

Show that the metric of a Euclidean space, referred to Cartesian coordinate is given by
ds? = dx? + dy2 + dz?

Here we have

2 _ it — 5 JA¥P ¥4
ds* = gdedxj = gpqu dx ..(1)
In Cartesian coordinates

X=x, X =y X =z, (2

By covariant law
— ' ax!

P4~ A=p " A—q OV
ox? ox?

. . 2 2
g o _(a_xfg o2l (2,
T a aw  \aw) N a) TP  e) oP

ox Y > (e)
ERERH
=1+0+0=1

Similarly, g» =1, g3 =1
and 812781 =813=831 =83 =8» =0
s’ =g, (dx*1 )2 + 80 (dx*Z )2 + 853 (abf3 )2
= dx’ + dy* + dz?

The metric tensor g pq In cartesian coordinates, is
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(1 0 0]
g, =[010
100 1

and the conjugate metric tensor g,, , which is the inverse of the matrix(3) is

1 0 0]
g7 =(010
00 1

36.24 METRIC TENSOR IN CYLINDRICAL COORDINATES

(3

Example. Show that the metric of a Euclidean space, referred to cylindrical coordinates

is given by
ds® = (dr)2 +(rd9)2 +(dz)2 .

Determine its metric tensor and conjugate metric tensor.
Solution: We have

ds’ = g; dx' dd = g™ dxPdx?
In cylindrical coordinates

X=rx*=0,% =z x=rcosb, y=rsinf, z=z

and g,, =?

By covariant law

= ox' ox!

Bri = r g O
Therefore,

_ o' o/

1 G e

ox'! ? ox? ? ox° ’
= E g11+6xT1 g22+5 833

()33

= cos’ O+sin’0+0=1.

_ g 2 . a_y 2 . a_Z 2
27 (%0) "\20) T\ 20

=r2sin 0 +7r%cos> 0+0=r?

_ a_xz+6_yz+@2
£33 0z 0oz 0z

(1)

(2)

(3

(4
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= 0+0+1=1
_ ox' ox’

g = ———8&i
12 ot ot <Y

fad)ad), (et e, (e e
a)?l afZ 811 afl 6}2 82 821 a)?z 833
or )\ 00 or )\ 00 or )\ 00

= -rcos@sinf + rsinfcosd + 0

=0
Similarly,
g13 = g3 =0,and due to symmetric property g, = g3 = &3, =0.
Hence,
2~ AT 2\ -3)\?
ds =g11(dx ) +2) (dx ) +833 (dx )
= (dr)’ +(rd0) +(dz)’
The metric tensor in cylindrical coordinates is
100
g,,=|070
001
Clearly, g= |§pq| =7

and the conjugate metric tensor g7, which is the inverse of the matrix (8), is

10 0
gr=10 1/ 0
0 0 1

36.25 METRIC TENSOR IN SPHERICAL COORDINATES

.(5)

..(6)

(7

(8)

9

Ans.

Example. Show that the metric of a Euclidean space, referred to spherical coordinates

is given by

ds*= (dr)’ +(rd0)’ +(rsin0dg)’
Determine its metric tensor and conjugate metric tensor.
Solution: We have

ds’=g dx'dx) =g, dx"dx’
In spherical polar coordinates

X=rx=0,%x=¢

x= rsinfcos@, y=rsinfsing, z=rcosd

(1)

(2)
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We have to find g,

By covariant law

_ o
qu - oc? oxd gl]
Therefore,
o o_atad
11 o' ot o
2 2 2
o nr 2| 33
2 2 2
. I A I 4
or or or
=sin® O cos’ o+ sin” @sin’ ¢+cos2 0=1 ..(3)
(&))@
£27%0) "\50) "o
= 7% cos? O cos? o+ r* cos? @sin’ o+ r*sin® 0 = r* (4

_=a_xz+a_yz+gz
£33 Y o Y

= r*sin? @sin’ o+ r* sin? @s cos’ ¢+0

=r"sin” 4. (5
— o' ox’
812 _Fax__zgij
_ o ax! 2 ot ax? 2 o’ ax’ g
e . e e e
(), (2 @), () &=
or )\ 06 or )\ 00 or )\ 06
=(sin @ cos ¢)(rcos O cos @)+ (sin Osin g )(r cosOsin @) +(cos ) (—rsin )
:rsianos@(cosz¢+sin2¢)—rsinﬁcos€
=0. (6)
Similarly,

813 = 823 =0 and by symmetric property g, = g3 =83, =0
Hence,

2

ds* = g, (df] )2 +8n (‘Ez) 85 (d)?3 )2
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=(dr)* +(rd0)’ +(rsindg)’ )
The metric tensor g, in spherical polar coordinates is therefore given by
1 0 0
g, =0 7 0 (8
0 0 rsin’@
Clearly,
g = |&,|=r"sin*0 .(9)

and the conjugate metric tensor g™, which is the inverse of the matrix (8), is

1 0 0 A
ns.
g7 =0 1/? 0
0 0 1/r’sin’6
Example 1. If the metric of a V, is given by
2 2 2
ds> :5(de) +3(dx2) +4(dx3) —6(dx1)(dx2)+4(dx2)(dx3),
Find (i) g and (ii) g¥
Solution: Comparing the given metric, with the metric
ds® = gy-dxidxj, (i,j=12,3)
We find
81=5 82=81=-3
8n =3 83=8n=2
833 =4 g5=83 =0.
Hence, 33 13 = 831
15 =30 |
8 = 3392 (1)
0 24
and
g:|gl.j|:4 (2)

To get the conjugate of 8 i.e. the inverse of the matrix equation (1)
G(1,1) =8, G(1,2) = G2,1)=12, G(2,3) =G(3.2) = —10,
G(2,2)=20, G@3,1)=G(1,3)=—6,

G3,3)=6

Since,

g = G(i.j)

, We obtain
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gll=2 , g2=g21=3
5
gzz -5 ) g23 ,gz.z, _2
3 3
3. 2 31 =
g 5 s g g B
Hence,
2 3 —3
2
5
g’ =] 3 5 - Ans.
353
| 2 2 2 |

Example 2. Show that
0] (ghj i — & g[j) ghj =N-1) 8ir
0 _ 09 o .
(i1) a—qi (0 8y — & &) &7 = oF 8T 8 ¢ is a scalar.
X

(i) If g and a; are components of two symmetric tensors and 88y
T84y~ 8u%=0
@G Jj, k,[=1,2,...,N), show that a =08 where o is a scalar.

akj

Solution: We have

g g"=g"
0) (28— 8u8) & =2, -2" g8,
=Ng 4~ g
=Ng j 8 i
= (N - 1) g i
0 o¢ o¢ ;
(1) —¢ (ghk 8~ 8 g,k) gh _ghkg gll . . 8 ghl ik
ox’ X]
o6 . op
:gj&k]gﬂ _gj‘szjgik
_0¢ o¢
a k — 8~ o 1 —7 Sik

(iii) Since g¥ is the conjugate tensor of the given tensor 8 taking the inner product
of the given tensor equation by g ¥, we have

g’ 8y Uy~ 8y Uyt &y 4y — & @) = 0
or gl g;ay—8"g a,+g"ga,-g"a;8,=0
or Na, - &, ajk+6’kaﬂ—[3gkl=0
[Since g¥ g, = &' and g% a ; = a scalar (=B, say)]

or Na,—a,+a,-—Bg,=0
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or Na ,=B g s
or ay Zngz = 08
of a4; =08y

Example 3. Show that
(i) g¥ g dg, = —dg !
Solution: We have

B g¥gy=0

On differentiation

(i) g; g, dg™ = -

gV dg,+g,dg" =0
g dgy =g, dg"=0
Taking inner product of (2) by g¥, we get
g¥g"dg, =—g" g, dg"
— _S§l Joil
=0 dg’
— _dgl
= —dg’" (by symmetric property)

or

(if) Relation (1) may be written as

gik gij — 8/{]
On differentiation
gij dgik + gik dgij: 0
g, dg™ = —g" dg,
Taking inner product of (3) by g,,, we get

g, 8y dg”

or

-g" g, dg;
= -8 dg,

= —dg

= —dg;

Associate Tensors

36.26 ASSOCIATE VECTORS

[a ) =al
[ = B/N, a scalar]

Proved

dg ;

(1)

(2)

Proved.

(3

Proved

Definition: The associate vector of a contra variant vector A/ s defined as the inner

product of the fundaments tensor g i and A’ and denoted by A,

Thus 4,=g, A

(1)

The covariant vector A, is the associate vector of the contravariant vector 4 / and the

process is called the lowering of the superscript.

In a similar manner we may define the associate vector of the covariant vector B, by

Bi=gl B.

)

The contravariant vector B ! is the associate vector of the covariant vector B/. and the

process is called the raising of the subscript.
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Theorem 2. The relation between a vector and its associate is reciprocal.

Proof: Let A’ be a given contravariant vector and A/. be its associate, then

Aj =g; Al ..(3)

The associate of the covariant vector Ai is , by definition (say B’)
Bi= 4, gV [substituting (3), after
=g’ g, Ax changing the dummy suffix 7]
=5 Ak = A -(4)
This show that the associate of the associate is the vector itself and thus establishes the
reciprocal character. Proved.

36.27 ASSOCIATE TENSORS

The process of raising and lowering the indices can be performed on tensors of higher
order. From the tensor A’l/,’:l we can from associate tensors like
ik _ ijk
Ailzm =& Alllm
ko ik
4 rsim = Sir gjs All/m
ijk _ o 1l gijk
A”]m - gl A7n1
The dot notation is used to indicate the indices which have been raised or lowered.
The dots may be omitted when there is no scope of confusion, e.g., we may write 477 =
g gl A;;- It may be noted that an associate tensor of g, is
gl g¥ g;
=gl §4
1
= gn
This shows that the fundamental tensors g and g%, besides being conjugate are also
associate tensors. However, any second.
Order tensor and its associate, like Al.]. and 47 may not be conjugate as a rude.
Example. Show that AP dg,5 =~ A, dg™®
; . _ ik
Solution. We know that:- dg =78 8 dg'’
Taking the inner product by 47, we get

AT dgj 1= 8&; A/ gy dg'™

=-4 ligkldgik
=—d ,dg"
Changing the dummy indices, we get the required result
AP dg 5 = ~A,4 dg op Proved

36.28 MAGNITUDE OF A VECTOR

The fundamental quantities required for any geometrical measurement are length and
angle. These can be defined and calculated with the help of the metric tensor and that
is why the metric tensor often refers to as geometry of the space.
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Definition: 7he magnitude of a contravariant vector A', which is usually denoted by A,
is defined by the square of length or norm of vector A’ as

4)* = e & A4, ..(5)
or A7 = ey A, A/ ..(6)

where e, is the indicator +1 or —1, which make 4 real. The magnitude 4 is a invariant.
In Euclidean space V', referred to rectangular cartesian coordinates, there is no difference
between contravariant and covariant vectors and e = +1, the relation (2.56) reduces to
the familiar definition of the magnitude of a vector, viz.,

(AP = () + (4, + (4,)”
Similarly, the magnitude B of the covariant vector B | is defined by
(B)? = s gV BiBj -(7)
or (B)? = s Bij .(8)
Unit Vector: A vector whose magnitude is unity is called a unit vector.
It may be noted that
ds’ = eg ; ax idx 7

dx' | dx’

This show that (dx'/ds) is a unit contravariant vector. It is a unit tangent vector to the
curve in V.

Null Vector: A vector whose magnitude is zero is called a null vector.
For example the tangent vector to a null curve is a null vetor.

Note: The indicator e ) May be dropped, if it is obvious that (4)* is positive.

36.29 ANGLE BETWEEN TWO VECTORS

In familiar vector algebra the scalar product of two vectors 4 and B is defined as

A.B=|4lBl cos .(10)
where 0 is the angle between 4 and B.
A.B
Hence, cos 0 =—— .(11)
|4]|5]

Motivated by this the angle between two vector A’ and B’ in Riemannian space is defined by
A'B,
! m
\/e(A)A 4,(¢s)B" B, )

~A'B’
= L (12)

! m
\/(e( 08pA A7 ) (e(2)8,,, B" B )
If the two vectors 4 and B’ are unit vectors, then

costAiBi:gU.AiBj:Ai B. ..(13)

cos 0=
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Orthogonal Vectors: Two vectors are said to be orthogonal if the angle between them is
a right angle, i.e. cos 0 = 0. Hence it follows from (12) that the necessary and sufficient
condition for orthogonality of two vector A' and B' is

g, AB =0 (14)
or AB,=0 .(15)

Note: We do not define the angle between two vectors, when one or both of them happens
to be null vector. However, (14) is still taken as the definition of orthogonality of two null
vectors. It may be noted that for a null vector dx'

g; dx'dx’/ = 0. ..(16)
This show that the null vector is self-orthogonal.
Theorem 3. The angle between two unit vectors 4’ and B’ , in a Vs is defined by
cos 0 =g, A'B.
Show that | cos 0 < 1, if the metric of the Riemannian space V, is positive define.

Proof: If the metric of the Riemannian space is positive definite then the magnitude of
the vetor A4’ + pB' is greater then or equal to zero for all real values of A and p, i.e.,

g; (AA"+ uBY) A4 + pnB') >0, ..(17)
for all real value of A and p.
Hence, g, (\* A’ A/ + \uB' 4/ + \ud’ B + 1 B' B) > 0
or A2+ Ap cosO + A cos 0 + p? >0
or (M + pcos 0)? +p2 (1 —cos?0)>0 .(18)
Since this is true for all real value of A and p, it follow that

l1-cos?0>0

ie. | cos 0] < .(19)
Hence the proposition.

Note: If the metric is not positive then the angle between two real unit vectors need not
be real.

Example 1. If Xl.j are components of a symmetric covariant tensor and u', V' are unit
vectors orthogonal to w' and satisfying the relations:

(X — ogy) u'+ pw; =0
(X[j - u)’gy.) v+ p’wj =0

where @ # w', prove that u' and V' are orthogonal, and that

X u v =0.
Solution: Since the unit vectors u/, V' are orthogonal to w' we have
uw =0, (1)
viw, = 0. ..(2)

Taking the inner product of the given relation
A (X — wgy) u'+ pw; =0,
With ' and using (2), we get
(X; — og,) uv' = 0. (3)
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Similarly, the inner product of the second relation
. (X — 'gy) v+ p'w; =0
with «/ and using (1), we get

X, —o'g) Vi = 0. (4
Since X i and g ; are symmetric tensors, interchanging the suffixes 7 and j in (4), we get
X, - o'g) V' = 0. .(5)

Subtracting (5) from (3), we find
(oo—co’)gl].uivfzo
This implies
g; u v =0;as 0= ...(6)
i.e. ¥ and V' are orthogonal vectors.
Further, from (5) and (6) we conclude
X; u' v = 0. Proved.

Example 2. In a three-dimensional coordinate system show that the angles between the
coordinate curves are given by

12 813 823
cos 0. =—=25— cosb.,=—22— c050,, =—=2=2—
12 s 13 H 23
V&11822 \VE&11833 V822833

Solution: Along the x ! coordinate curve, x*> = cont. and x> = cont. Therefore,

ds® = g“(dxl)z,abc2 =0,dx*=0.
dx! 1 )
or —=
ds g

Thus a unit tangent vector, which is a contravariant vector along the x ' — curve has the

1
components | ——=,0,0 | and if we denote it by 4"}, then
V&

r 1 r
Al = Té‘l (2)
where r = 1,2, 3. &n
Similarly, the components of the unit tangent vector along the x>~curve are given by
r 1 r
Ay = 5 ..(3)
82
and along the x*—curve by
r 1 r
A = 8 (4
833

Now, the angle between the coordinate curves x! and x? is the angle their unit tangent
vectors (2) and (3):

Hence, cos 0, = 8y A7 A4
1 &p
2
\/gllg22 \/gngzz

=g, %, 0 (5
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Similarly,

813 £23
cos 0, =—— - -..(6)
13
V&11822 VE282
Example 3. In an orthogonal coordinate system V, show that

. . 1 1 1
(1) 81 = &= 83, =0 (i) gy =—78» =% and g;;=—3
g g g

andcos 0,5 =

Solution: (7) In the orthogonal coordinate system
01, =0,;=0,;=90°
Therefore, from (5) and (6) it follows that
g,=0,g5=0and g,; =0 (1)
(i1) We know that

0g,; gt =35 (2
Let k=i=1, then
i1 _ sl
g;8 =8,
or g18"'+8,8" +g;8 =1
or g, 8" +0+0=1, [using (1)]
1
Therefore, i s ..(3)
g
In a similar manner, by taking k =i = 2 and k = i = 3 respectively, we get
1 1
-5 =? and g,, =? ..(4)

Example 4. Show that the angle 0 between the vectors A” and B’ is given by
% L ok
(eneier@ng —2mg; ) 4" 4 BB
e¢s)&nguA" A'B'B*

sin? § =

Solution: We have, be definition

gi‘AiBj
cos § = ; L — (1)
\/e(A)ghiA A \/e(B)gjkBjB
Therefore,
ipj h pk
cos? 0 = (g[jAB )(ghkA ’ )

h i i pk
(e(A)ghiA Al)(e(B)gjkBjB )
where it is kept in mind that the dummy suffix, in multiplication, should not be repeated
more than twice.
Hence, sinf@=1-cos20

. gyguA'B A"'B"

e yguA 4B/ B!
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ipj 4hpk
(e(A)e(B)ghjgjk — 8ii8nk )A B’A"B

= T ok Proved.
e €5 8&n&Ad AB'B
Example 5. If A" and B’ are orthogonal unit vectors, show that
(ghjgik_ghkg,j)Ah BBk =1
Solution: Since 4 ’ and B’ are orthogonal unit vectors, we have
ipi _ hogi
gl,jAB/ =0 andgth A =1,
i pk _
8k B Bf=1
NOW) (ghj it — 8k g,'j) AhBlA]Bk
=gthhAjgikBin—ghkAhBkg”BiAf
= (1) (1) = (0) (0)
=1 Proved.
Example 6. Prove that (1,0, 0, 0) and (\/5, 0,0, \/5/6’) and unit vectors in the V, with
the metric
ds* = — (dx")? = (dx?)? — (dx®)? + c* (dx*)?
Show also that the angle between these vectors is not real.
Solution: Let, 4' = (1,0, 0, 0) and B' = (+/2,0,0,43/c)
Also for he metric
ds? = — (dx")? — (dx?)* — (dx®)? + c? (dx*)?
gn="lLgy=-lgy=-1.84= c?
and g8;= 0,i#j
Now, (A)zze(A)gl.jAfAJ: =g, A4'4'=1
and (BP=e #&; BB
=eytg, B B +g,B8 BY
=ep) {—2+c2 iz}
c
=(+D(-2+3)=1
Hence, 4 ' and B’ are unit vectors.
Further, cos 0 =g, A'B
=g ,, A" B!, other terms being zero by virtue
=— /2 of the given values of 4/, B and g i
ie. |cos6|:\/§>l
This show that the angle 0 is not real. Proved

Principal Directions

36.30 PRINCIPAL DIRECTIONS FOR A SYMMETRIC COVARIANT TENSOR OF
THE SECOND ORDER

Let Ai]. be the components of a symmetric covariant tensor of the second order. Since Al.j
can be written as a square matrix; we consider the determinantal equation
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| 4. —2g. | =0, (1)

ij ij
which is of degree N in A.

By the covariant law, we have

_ox” ax' =
i ox' ox’ e
B 6x 6x —
and 8 = o o o7

—i
Hence, in a new coordinate system X , the equation (1) transform to

6x 8x

ox’ af(_"q #2p,) =0

ox” ox' |~ —

or |40 - 22,,,| = 0 -2)

ax” ||ox”)
Since, J=1Z X £0 (3
Ox' Gx’

The equations (1) and (2) are of the same form and hence the N-roots
k (k =1, 2,..., N) of this invariants. The parentheses in k£ emphasise that it has no
tonsor1a1 51gn1ﬁcance

Let k(k) is a simple root (not repeated) of the equation (1) then the equations
(4 i Aug 11) E ..(4)

which are N in number, determine the values of N components L;k) We shall now show
that L;k) are the components of a contravariant vector.

Since the tensor (Aij - A p gl.j) is not arbitrary, we cannot apply Quotient law to estab-
; —i
lish the tensor character of L;k). Therefore, changing to the coordinate system x the

equation (4) may be written as

- — yox ox'
(qu _l(k)gpq )gﬁx_f ) =0 -(5)
i
Taking inner multiplication by —- yields
Ox
—p
Ox
(Am l(k)gpq)5 o — Ly =0
—p

- - Oox i
or (qu —ﬂ(k)gpr )EL(k) =0 -(6)
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These equations, which are N in number, determine the values of the N components of
a;p i —-p —i

the entity —.L’(k) which we represent by L) in the coordinate system x.
ox'

— a ;
Thus, Lio = aLL(k) (7

This shows the L(’k) are the components of a contravaiant vector.
The equation (4) implies that without loss of generality the components L(’k) .may be taken
as the components of a unit vector.

Hence,
€y & L Ly = 1
or g L(k) L(k) € ...(8)

where € is the indicator corresponding to the vector L o

Let A ™) is another simple root of the equation (1), which is not 7“(/() , l.e.

A an F Ay | ..(9)
Then the components of the corresponding contravariant unit vector L' () € given by
the equation

(Aii (M) g U) L’ =0 ...(10)
In this case
g L(M) L(M) € (1)
Now, take the inner multiplication of (2.86) by L’ and that of (10) by £/ @ We find
AU L(’k) / 7“(/() L(k) L =0 ..(12)
Al (M)L *) —A(M)gijL(M)L x =0 ..(13)

Since, 4,. and g;; are both symmetric the equation (13) may be written as
ij ij
i J i Joo—
AiL an w0 = Aan il anL o =0,

Then changing the dummy suffixes 7 and j, we get

A oL o = 2an &g anL w =0 ~(14)
Subtracting (14) from (12), we get

En —ﬂ(k)][gy.ﬁ(k)Lf(M)] - 0. .(15)
Since, A # 4k we have

gL wyl oy =0- .(16)

This shows that the two unit vectors Li(k) and Li(M) corresponding to the two different
roots, are orthogonal.

Thus we conclude that if all the N roots of the equation (1) are real and distinct, then
the corresponding N unit contravariant vectors, determined by the covariant symmetric
tensor A;,- are mutually orthogonal.
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The directions of these V unit vectors at a point, which are mutually orthogonal, are called
the principal directions determined by the covariant symmetric tensor 4,.. The condition
for the existence of the real principal directions is that the roots of (3) are real, which
will be satisfied if the metric of the space is positive definite.

In Euclidean space of N-dimensions, the metric of the space is given by (previ-
ous section) and the components of the fundamental tensor 8 form the N X N unit
matrix, i.e. [g.] = L ..(17)

)

Therefore the roots of the equation (1) in this case are eigen values of the matrix Al./. and
the principal directions are the directions of the eigen vectors. '

If Al.j = lgl.j at a point, then the principal directions are indeterminate at that point. If
Aij = lgl,j at all points of a space V,, the space is said to be homogeneous with respect
to the symmetric tensor Aij.

Example 1. Show that the principal directions at a point for the symmetric tensor Ai/
correspond to the maximum and minimum values of A defined by '

A;L'L
- glleLm
Solution: We are given that
I
A= A”—z (D)
gLl L"
or AL = Ag,, L'L"
(Aij —ﬂgg/)LiLj =0. (I, m are dummy suffixes) (2

For maximum or minimum values of A, we have

oA

Differentiating (2) with respect to I/ and using (3), we get
2(4; - gy )L =0

or (4, —2g; )L =0. (4)

Equation (4) implies that the directions L' determined by A[j are the principal directions,
which is the required result.

Example 2. Prove that
AyLi(k)Lj *) = €y [No summation over (k)]
and AL Ly = 0.
Solution: From equation (4), we conclude that
AL 0L 4y = X085 L aol o
Now, using the relation (8), we get

AL o ey = Ay eny-
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Similarly, from (16), we have
ALy (my = X8 L iy oy
and now using the relation (16), we get the required result, viz,

AL L oy = 0. Proved

36.31 PERMUTATION SYMBOLS AND TENSORS

The permutation symbol is written as €k and in the Euclidean three dimensional space
V, is defined by
0 , if any two of i, j, k are equal
€ = 1, If i, j, k is a cyclic permutation (1)
-1, ifi, j, k is anti-cyclic permutation
Thus,

€l1a = €113 T €y T €yp3 T €331 = €335 = €1y T €9y = €35, =0

€y = €y =€y = 1

€130 = €3 = €33 = 1 -(2)
We now introduce the entities defined by

) 1
. ik
Ejp =~ge5€” Z_Eeijks (3)

where g is the determinant of the metric tensor g;; of the space referred, which may not
necessarily be rectangular. We shall now prove that although €k is not a tensor, in gen-

eral, both &;; and &™ are tensors, covariant and contravariant respectively, and are called
permutation tensors in three dimensional space. The generalization to higher dimen-
sions is possible. It is clear from the definitions of € Eijk and &” that they are skew-
symmetric in all their indices.

Theorem 4. The entities defined by (permutation tensors)
1

— ijk _
gijk = geijk’g —_eijk,
V&

are respectively covariant and contravariant tensors, where € is a permutation symbol
and g is the determinant of the metric tensor 8

Proof : We see that

ox' ox/ ox* ox/ ox' oxk
Cijk 7T ~=m ~=n ik =1 ~mm An
ox ox" ox ox ox" ox
(interchanging the dummy indices 7 and j)
o' ox ox*

ijk —
o™ ox' ox”

(using the skew-symmetric property of ¢;; )
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o' axd ot
“oxl o ox
Similarly, it can be shown that it is skew-symmetric in all /, m and n. But this expres-

This show that €k

r

X . .
—|- From the theory of determinants, it

sion, apart from sign, is the Jacobian determinant

X
therefore follows that
ox' ox/ ox* "
7 = ]| xs| )
ox' ox" oOx ox
Now, by covariant law we know that
- ox' ox/
Epg = ol oxd &ij
_ 6x‘ ox’
Therefore, |gpq| 6_1’ = |g |
o[
_ X
or = ..(5
= (5)

Let, in the coordinate system x', the entity &5 be denoted by &, where

‘E_‘Zmn = \/?elmn (6)
Now, using (2.017) and (2.108), from (2.109) we find

- \/— o' ox! oxt
Emn =NE& Cik 7 =
X

_, o o ot A
i ol o ot

This shows that & is a third order covariant tensor.

Also, writing ¢’ for e, and e for e;; we have
Imn 1 Imn axr elmn .
=— = using (5
Iz = [using (5)]
1 g ox ax'" ox"
— e ik 2 .
= using (4
5 e [using (4)]
ik O ox' 8x ox" .(6)
ox o) oxt

This shows that €™ is a contravariant tensor of the third order. Hence the proposition.

Remark: In rectangular cartesian coordinates g = 1, therefore the permutation tensors
have components as those of permutation symbols and there is no distinction between
contravariant and covariant components, i.e.
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ik _ -
& = gl]k = eljk

Example. Prove that

_ Imn
Siie = 8il 8 jm8in €

mn 1 o,
i1 8 jm8n " =gy 8 jim8n Eezmn [By definition (3)]
1
:Egilgjmgknelmn (7)

But, £ jmEin Cimn = 8i1 €j28k31 &2 €381+ &i3 £18k2
—8i1838k2— 82 818k37 8i3 828k1

8i1 82 83
=&n &2 8j3
81 8k2 83
= gey - ..(8)
Combining (7) and (8), we get
81 SjmBin & = ge =y (9
Hence the proposition. Proved.

36.32 ALTERNATING TENSOR

Consider an abstract entity of order 3 and dimension 3 such that its components relatively
to every system of co-ordinate axes are the same and given by € where

0 if any two of ijk are equal
€= 1 if ijk is a cyclic permutation 1,2,3
-1 if ijk is an anti cyclic permutation 1,2,3

Thus for unequal values of the suffixes, we have

€= €= €5 = L €15, €537 €55 =1

Let OX,, OX,, OX;, OX, 1,0)_( 2,0)?3 be two systems of rectangular axes. We want to

show that € is a tensor of order three. Consider, now expression

L1l €.
p g ke
For any given system of values p, g, 7; the expression (1) consists of a sum of 3° = 27 terms
of which 6 only are non-zero, for the other 21 terms corresponds to a case when atleast

two of 7, j, k are equal. The expression (1) can be written as in the form of determinant
by, b, b,

L

L

= llq b
by L

q q

r r r
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From properties of determinants,

0 if any two of p, ¢, r have equal value.

Above determinant = 1 if p, g, ris a cyclic permutation of 1, 2, 3

—1 if p, g, r is a non cyclic permutation of 1, 2, 3
Thus we see that the components of the given entity in any two systems of rectangular
axes satisfy the tensorial transformation equations so that the entity is a tensor. This tensor
is known as Alternate tensor. Thus, we see alternate tensor is same as skew-symmetric

tensor. €.

> always denote the alternating tensor.
ij

EXERCISE 36.2

. Find g and gij corresponding to the metric
2 2 2
ds* = S(dxl) + 3(dx2) + 4(dx3) —6dx'dx* + 4dx’*dx>.
. Find the values of g and g%, if

dr?
2
1——
R?
. Prove that for an orthogonal co-ordinate system

ds? =

+r? (d62 +sin? qu)z), where R is constant

n_ 2 1 3 1
(@) g,=8,;=8;,=0 ) g =—=% =08 =
2 > o 811 822 833

. Surface of a sphere is a two dimensional Riemannian space. Find its fundamental metric tensor.
If a be the fixed radius of the sphere.

. If the covariant vectors e, are orthogonal, show that

(a) g; is diagonal, (b) gﬁ =1/gii (no summation), (c) ‘si‘ =1/ |£i|.

. Prove that (si -sj)(sj -sk):B};.

ANSWERS

. g:4’ gll =2, g22: 5’ g33: 5’ g12: 3’ g23=72.5’ g13=75

4 .2 2

r7sin“ 0 11 r 22 1 33 1 ij . .

g=—"78 =l-—7F,g7"==,8"=———5-,8"=0(i#
| r? R? r? % sin” 0 ( )
R
=& o= a2sin? 0. o= a*sin? O gllzigzz_ ! 2_0=g*

- 8T an 8= a s s, &= a’sim , az az sin26
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SPECIAL THEORY OF RELATIVITY

Michelson Morley experiment and sits out come;

The Michelson Morley experiment was supposed to be one of the most famous null ex-
periment to detect the presence of other. The experiment bad helped Lorentz, Fitzgerald,
Poincare to but their observations and also helped Einstein to describe. The propagation
of light thought space and time.

Earlier it was proved that sound needs a medium (water, air, etc) to travel from one wave
to another and in 1864 James clerk Maxwell proved that light is an electromagnetic wave
and thus it was assumed. that there must exist an other which helps in propagation of light
wave. It we assumed that other exists everywhere and is on effected by the Matter. The
Michelson - Morley, was conducted in the year 1887 to select the of existence of ether.

The experiment was con wet with the help of two mirrors M, sm. The beam splitter and
with a light source and a telescope to observe the interference pattern.

Basis of the experiment:

The experiment was conducted in two stages:

(1) Which the mirrors are at rest position

M;
L LLL
v
v
L A
A
J l
~a
A > > S “«<+—{ M,
Light «— L —
source Y
A\ 4

Telescope

Let us taken, L, _L, =L

The time taken by light beam for both arms is |f =

o | o
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(ii) Where the objects (Mirrors) started moving with a velocity v w. r. t other them
C—» Speed of light

M, M,
B, V——> Speed of objects
\‘i A i M
B e Raaii L=
Light
source Beam
splitter

Let us assume that

Time taken by ray from A to B = tll
Time taken by ray from A to B
Then from B to C = ¢,

1_4

= tl )

Also AB = cf]
AB = ctll
AD = v

In r + £ d AABD
AB?= AD? + BD?

1 12
= Ch=V24 +12
2
= L’=(C-V)4

2
= L’=4 -V’

. L
Also 4 =
c?-y?
Also =2 tll
. 2L
= 4n =
2 _p?
2L
= h = >
clh_V"
c?

Now we calculate the time taken by ray w. r. t M,
The time taken is
_ CE N EC

Relativespeed Relativespeed

2
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2L 1

v
e

The time difference will be

At = tl_ l‘2
22
1 Vl
c 1—% C(I_C‘)
2L 1 1

C e (V2
FTTT
C? C

On rotating the positive of mirrors by 90° we get.

. 2L 1 1

t'==—

C ? 2
1_L (I—Vj
C? c’

VIV N N
C 1_V \&
2 1
C C?
1A !
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oL vy v2Y
C (lc_j _(I_Fj

Using binomial expansion and negleeting the higher times we get

2 2 2 2
t=1At=&|: v A V}

= [ ——— -
c 2t 22

2
t=' —At(z—L].V—z
c)C

2
T =(£JV_
c)c

We know that

C
Frequency = 7

=C=y

C
2
:i=L.(£j
a V

Where i = path difference.
4

= Interference bringe will shift after a path difference of % .

The value of L was taken as 11m
A =5.5%x10"m

L. 10°*
C

2
:L.[gj Z-04
v) 2

= It shows 40% shift in interference bringe but actually no shift food hence the theory
of existence of ether was nullified.

37.2 FUNDAMENTAL POSTULATE OF EINSTEIN THEORY OF RELATIVITY

(1) The fundamental laws of physics are of the same form in all inertial frames of
reference.
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(2) The speed of the light is same in all inertial frames of reference, regardless of the
motion of the source relative to the observer.

for Einstein in all frames (space-time) co-ordinates are Relative or changable.

37.3 LORENTZ’'S TRANSFORMATION

“These are the equations which enable us to find the relation between the space and the
time co-ordinates of an event in two different inertial-frames in uniform relative motion
w.r.t each other, in accordance with the Postulate of special Theory of Relativity.”

y A SV (uniform) (x,y,zt)

z
Both are inertial frame.

Suppose ¢ =t =0 at O, Q', when they coincide then a flash of light is sent out
from ‘O’ along x-axis in wave-front. The light wave will Travel outward in all
direction with speed ‘C’ and hence will be an expanding sphere, At any time ‘#’, to the
observer of frame ‘S’, at any time t, the light wave will appear a Sphere of Radius ‘c?/,
(¢ — in all frame is constant).

o g2
X +y +z
Whose equation ¢ = % = u

C
= x+yP+22=7327 (1)
, 2 2 2 172
and t’:OP:(x +y +z )
C C
. xr2 +y72 +Z’2 — C2t!2 (2)

According to Gallilean Transformation
xX'=x-vt, y'=y, z'=zt=t
So from equation (2) (x —vt)* +y* +z* =’
= x*=2xvt+VviE +y 2t = ..(3)
Here equation (3) not resembles with (1) Here (—2xvz + v*2) is extra factor. So Gallilean
Transformation are not satisfied. Now from the Property of Homogenity and Isotropy
of the free space.

(1) Transformations should be linear and simple
(2) at v << c¢ these Transformation change in Gallilean Transformation
x'= k(x—vt) -(4)

from (1)* Postulate all laws in nature same so
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x:k(x'+vt') (5 and y=»"and z=2' ...(6)
from (4) & (5) x=k(x'+vt")

x:k[k(x—vt)—i-vt']

xzkz(x—vt)+kvt' = kvt’=k2v1+(1—k2)x

r_ e "=k ——11= (7
= t kH_—k or t {t+(k2 j } (7)

v v
from (2)" Postulate C is same in all frames so
x=ct, x'=ct' (8)
from (4), (7), (8) so

x( 1
k(x—vt)= CI{H_;[I(_Z_IH

or jé{l—s(i—lﬂ = ckt + kvt = i (c +v)

A=) ()

—_—

= k= ﬁ is never negative because v << c.
1-vi/c

from (7) t':l{w{,{—é_}’jf} :k[t_g}
C v C
. t—wx/c?

= |
V1=V /¢

So Lorentz Transformation equations are

Transform S to S'is

pwx
x'= XV y=y, z'=z t':—cz
| v? VI=v /et

2

c

Now take Lorentz Inverse Transformation equations are

x'+vt' , oy t'+vx'/c2
X=—F—=, V=), Z2=2, =T
l—ﬁ N1=v? /¢

2

Cc
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2
v . . .
If v << ¢ so — <<1, so they change in to Gallilean Transformation
c

Numerical: Prove that the spherical wave-front of light is Invarient under Lorentz’s
Transformation.

or X+ +2 - =0.
. x'z +yr2 + 272 _ CZt!Z =0

2

t t—wxlc |
X—=V —VX/C
—_— +y2+zz—c2|:—} =0

NI=v? [ c?

2
(x—vt)2 -t (t—w;)
2
_Vv
1 42

2 2
2 2.2 202 VX
X2+ = a0t - - 2+M

c 2,2 _
= R +y +z° =0
2 2
xz(l—vzj—czﬁ(l—vzj
= ¢ a2 =0
1-v /¢ yrEs
= - P+y*+22=0. Prove that.

38.4 Consequences of Lorentz Transformation
1. Length contraction or Lorentz- Pitzerland Contraction 2. Time dialation

3. Transformation of velocities or Addition of velocities 4. Transformation of Acceleration
5. Relativity of Simultanity 6. Relativity of mass
7. Mass — Energy Equivalance.

1. Length contraction
Ay AR
S —>V

Rod
41__‘:[_” I I R
/ X Iy X / X

z z'

fixed ¢——

Consider a Rod lying at rest along x-axis of S frame, so

Proper length of Rod /; = x, — x,
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Now we see measurement in S’ frame which are going in +ve direction from S with
velocity ‘V’ —
’

So observe length [ =x," - x,

4 ’ 4 ’
X, +vt X, +vt

Here x, ST T
v v
I-— 1-—
c c
’ ’
X, —X

1
So xz—x1:ﬁ310>l 'Yz—z

v
1——
cZ

ory>1

But in perpendicular directions »' =y, z' =2z no change in length

Thus length of the Rod in all other frame of Reference in uniform motion with respect
to the frame in which the Rod is at Rest, is Shorter than its Proper length.

Example. A Sphere will look like as a spheroid due to decrease in its diameter
Parallel to x-axis.

Sphere Spheroid
—
(S) (S
2. Time-dilation
(Relativity of time)
y Y
A
S/
S ——»V
t1’ t2 r ’
Clock R
@ Clock
» X » X'
At=t, -t Aty =t -t
T= Ty =
z z'

Consider a clock placed at the O paint x " in the frame S’ moving with uniform velocity
‘v’ along x-axis with respect to frame ‘S’. Suppose at any instant, observer of frame S’ for
which clock is at rest, have time # So the observer of frame S’ will find the time to be
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If some time later, the observer of frame S’ notes the time as ¢, the observer of frame

’ x'
t, + cz
S will record it as = 2
-2
CZ
t) -t T
So t2_t1: 2 12 = T= 0 - =1, andT>T0
v %
1-— 1-—
4 c

So time interval noted by an observer w.r.t. whom the clock is at rest is smaller than the
time interval noted by the observer w.r.t whom clock is in motion.

4. velocity Transformation ( Relativistic Addition of velocities) —

Consider a body moving with a constant linear velocity u w.r.t. S frame along x-axis
and u" w.r.t S’ frame along x'— axis. Frame S moves with velocity V in same direction
w.r.t frame S.

Suppose U, U, g U, are component of velocity w.r.t frame S and u; uz’ are component
of Velomty w.rt frame S'.

Here S frame fixed.

In S frame uxzﬁ, u, = 4 u, £
d’ " dt’ dt
In §" frame ux':cjii, ':dl u'—d—z

u, , U, =
dt dt
According to Lorentz Transformation

v x—vt Y=y 2 p t—wx/c?
:—’ = ’Z :Z’ -
_i N1=v? /¢
2
c

Now differentiate it

L
,  dx—vdt , , , 2
X' =—, &) =dy, dz' =dz, dt'=—=—
1—v2|02 1-v*/¢c?
de_,
Now uf =& _dx=vdt _ dr 4,7V (D)
oodr vdx v dx v
dt—— 1-—— 1-—
¢’ dt
e d' dy,|1- ch dy/dt [1 V
}, dr "% 1—1@
> ¢ dt
,_uy\/l—vz/c2
Uy v (2)
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Similarly u.' =———— ..(3)

So equations (1) (2) and (3) give Transformation equations for velocity components in
S to S’ frame.

The inverse velocity Transformation equations from S’ to S frame is

’ ! 2 2 ’ 2 2
u +v u,N1=-v'/c u N1-v* /¢
U =—"— u =" y ="

x ’ z

¥y
A4 ’ \4 '
1+Vux 1+Tuv l+7ux
C2 C [

Case 1. when v << ¢ so equation (1) (2) and (3) are

! ’ ’
u, =u,~v, u, =u

X ¥ ) z z*

Called classical (Newtonian) Gallilean Law of addition of velocity.
Case 2. If we consider the particle to be a photon moving with velocity ‘C’ in fame S’

’
u, +v
which is also moving with velocity ‘C’ along x-axis so u, =——
v,
' ct+v  c+v I+—
Ifu =c u = = =c c
ve 14
I+— 1+—
c c

So speed of light is an absolute constant, independent of the motion of the frame of
reference and all frame of Reference.

5. Relativity of mass (variation of mass with velocity)

z z'
A A
S S’
>V (Identical and perfectly
elastic baily)
M, Wy, r:ro{_’ u 24, m (Before collision)
A B 2m B
—rV o0
(m; +m,) (At Rest) (After collision)
° o > >
X x'
y y'

According to newtonic (classical) mechanics mass of moving Particle does not depend
on velocity. But Relatively see below.

Suppose to the observer of frame S, the masses of the bodies ‘4’ and ‘B’ appears to be m,
and m, and velocities u, and u, after collision the two bodies come to rest momentarily
in frame S’ they together will appear to be moving with the velocity of frame S" with
velocity v to the observer of frame S.

According to law of conservation of momentum is

myu, +myu, = (my +m,)v
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ﬂ:(—v_%] (1)
my, \u —v

from inverse velocity Transformation equation we have

!
_ ux—i-v
ux— ;
vu
X
I+-—
C

The Body A moves with velocity #' in frame S’ and appears to be moving with velocity
u, to the observer of frame S.

! !
Set u, =u" and u_=u,

’

So velocity of Body A in frame S is u, =~ (2)
1+ W;
s ' ' _ C
Similarly set u, =—u"and u = u,
. . ) —u'+v
So velocity of Body ‘B’ in frame S is u, = B ..(3)
1- 2
From equation (2) & (3) in (1)
| Uty
vu' vu'
1- 1+
™ ¢ )__ ¢ ~(4)
m, u'+v B - vu'
vu' c?
1+
C2
Now from equation (2)
(Tricky Point)
2 w1 )
1 ——(u'+
u’ 1| u'+v ( c? 7 W+)
PR ) R Y
1+ (1+ 5 j
c
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.(5)

.(6)

Equation (4) & (5) Put in (4)

m Jl-ui/c?
m, 1-u’/c’

Now If w.r.t. S frame, Before collision velocity of Particle B is zero
So u, = 0.

m
m 1 m, = 2

— 2
or u
m, l-ul/c? 1--

So Body ‘B’ at Rest so m, = m,,

m
m = —=
2
_W
2

c

Hence above equation can be considered to be applicable ot a single body whose rest

. . . m,
mass is no and moves with velocity v so m =

a_r
CZ
Discussion of Result

(1) When v << ¢ so m = m, (likely classical Mechanics)
(2) If v = ¢ so m = o imaginary (which is impossible)
If v> ¢ so m = imaginary (which is impossible)

also say when velocity incase so effective mass of body increased.

d

Mg

m = oc
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Experimental verification
(1) For high energy electrons and B-particles emitted by same radio —active substance by
bunchier, Kauffmann, guge and lavanchy)
(2) Splitting of spectral line in p-spectrum and phenomenon of fine — structure of H- spectrum
by Summerfield Relativistic Co-reaction.
(3) Particle accelerator (cyclotron, betation) have mass increase with velocity increase.
Mass—Energy Equivalence

Mass is depend on velocity so K.E is also change with velocity use Newton second law
& work energy the omen both are invariant in all frame by 1% postulate.

Suppose a force ‘F’ act over a body whose Rest mass is ‘m,” over a distance dx, the
amount of work done by the force will appear as increase in K.E (dt)

So dt = Fdx o)
We know f _d_ i(mv) = mﬂ_'_vd_m
dt dt dt dt

Here m & v variable and m & ¢ are constant Quantity.

So dT = mﬂdx+vd—mdx
du dt

dx .
dT =mv dv +Vdm ...(2) (o v= o at any instant)
m m,’
we know m = or 5
2 %
=5 1=
? ¢
2 my’'c? 22 29 2 2
S>mt= ———=mc -—my =myc ..(3)
¢ —-v
Differentials equation (3) 2vmc’dm —(2mmv*dm+m® 2vdv) =0
Cdm — (mvdv + v?dm) = 0
= mvdv + vdm = c*dm ..(4)
From equation (2) & (+) ..(5)

It shows that change in (K. E) of a body can be expressed in terms of change in its
mass due to motion.

When a body is accelerated from rest to a velocity ‘V” it’s mass increases from m, ¢,
m and K.M acquired is obtained by integrating equation (5) between the limts m, to m
Therefore

T= Iczdm =c’(m—m,)

So K.E energy of moving particle is equal to ¢? times the gain in mass due to motion.

my, is Rest mass of the particle and m002 is Rest energy called internal energy.
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So total energy E = T+ myc? = C* (m — my) + myC* = m c* ..(6)

So E = mc? is Einstein mass — Energy equivalence theorem.

Discussion of the Result
(1) Relation E = mc* shows that equivalence of mass and energy so thus special theory of
Relativity ascribes energies to all masses and masses to all energies.

(2) In classical mechanics, the law of conservation of mass and energy are two separate
peinciple independent of each other The Relations E = mc? leads to unified ion of the
two laws into one law called low of conservation of Relativistic energy.

(3) In classical mechanics mass is considered something fundamental to matter while energy
is a property of the matter acquired by virtue of its position or motion. The Relation
E = mc? puts an end to such a distinction between mass and energy.

(4) The kinetic energy of a particle travelling with a velocity v is

T=cz(m—m0)

Here m=

S , vz -1/2
0 T=c"|m, l—c—2 —m,

) 1v 3! +1
T =myc HI+EC—2+§C—4+——— -1 [](1=x)" =1+nx+ n(n )Xz
4
T =—my’ +om,—+——=
When v << ¢
So T = % movz — formula of K.E is classical picture.
Experimental evidence in support of the Mass—Energy Equivalance
(1) For electron m; = 9.1 x 107! kg
31" 16
So £ = me> = 207 XX S ey [~ lev = 1.6 x 10%]

1.6x107"
For 1 amu = 1.67 x 10~2"kg
So |1 amu =931 Mev|

(2) Pair — production and An illation of matter also support the equivalence of mass and energy.

(3) Fission and fusion processes are the direct applications of the Einstein’s mass — energy

Relation.



Special Theory of Relativity < 15

EXERCISE 38.1

Chapter-end Exercises

MULTIPLE CHOICE QUESTIONS

1.

According to the special theory of relativity, something that happens at a particular point in
space at a particular instant of time is called ....................

(i) Event (i) Phenomenon (iif) Incident (iv) Happening

. According to the special theory theory of relativity, a person or equipment meant to observe and

take measurement about the event is called ....................

(7) Supervisor (if) Observer (iii) Examiner (iv) Invigilator
3. A frame of reference is specified by a
(i) Observer (if) Decimal system (iii) coordinate system  (iv) metric system
4. The frame of reference in which the law of inertia is satisfied is called ................... frame
of reference.
(i) Einstein’s (if) Newton’s (iif) Non-inertial (iv) Inertial
5. The frame of reference in which the law of inertia is not satisfied is called .................... frame
of reference.
(7) Einstein’s (i) Inertial (iii) Non-nertial (iv) Newton’s
6. A car moving with a constant velocity represent ........c........... frame of reference.
(7) Einstein’s (i) Inertial (iii) Non-inertial (iv) Newton’s
7. According to the special theory of relativity, physical laws are the same in frames of
reference which
(/) move at uniform velocity (ii) accelerate
(iif) move in circles (iv) move in ellipses.
8. clocks in a moving reference frame, compared to identical clocks in a stationary frame,
appear to run
(i) Slower (if) At the same rate (iif) Faster (iv) Backward in time
9. A spaceship, moving away from the Earth at a speed of 0.9¢, fires a light beam backward. An
observer on Earth would see the light arriving at a speed of.
(i) 0.1c (if) More than 0.1¢ but less than ¢
(iii) ¢ (iv) More than ¢ but less than 1.9¢
10. The term “relativistic” refers to effects that are.
(i) Observed when speeds are near the speed of light.
(i) Noticed about a moving object.
(iii) Observed when objects move backward in time.
(iv) Measured by stationary observers only.
11. The purpose of the Michelson- Morley experiment was to
(i) Determine the velocity of light.
(it) Detect possible motion of the Earth relative to the sun.
(iii) Detect possible motion of the sun relative to the ether.
(iv) Detect possible motion of the Earth relative to the ether.
12. A spaceship approaches the Moon, traveling at 0.5¢ with respect to the moon. It crew shines a

laser at the Moon. The beam strikes a lunar mirror and is reflected back to the ship. The crew on
the ship will measure the speed of the reflected Beam to be
(i) 2.0¢ (i) 1.5¢ (iii) ¢ (iv) 0.75¢
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

A train has a rest length of 100m. the traveling at a very high velocity, it goes through a tunnel
of length 80m. observers located at both ends of the tunnel . what is the Velocity of the train
expressed in units of ¢?

(1) 0.866¢ (i) 0.33¢ (iii) 0.50¢ (iv) 0.60c

Relative to its period on the earth, the period a pendulum on the moon is

(/) Shorter (ii) Longer

(iif) The same as on the earth (iv) Varies with time

Lorentz transformations are converted into Galilean transformation for ................... particle.
(i) Large mass (if) Small velocity (iif) Large velocity (iv) Small mass
According to the special theory of relativity a moving clock always go

(i) Slow (if) Down (iii) Up (iv) Fast

The energy momentum relation in special theory of relativity is given by
(i) E=ymc* +p® (i) E=ymyc* +c'p* (i) E=\myc* =’ p* (iv) E = Jm,c* + ¢ p?
Calculate the velocity of a body if its total energy is three times its rest energy

(i) 0.54c¢ (ii) 0.76¢ (iii) 0.94c (iv) none of these
The relativistic mass expression is given by ....................

. E ,  m

(i) m' = (if) m' =— (i) m' =—Fo (iv) W' =—

1-= 1-= 1-% 1--

c 4 c C

Lorentz transformation of momentum for Y component ....................
(i) P'Y =PY (i) P'Y =Pz (iii) P'Y = Ex (iv) P'Y = Bx
The speed of light is represented by ...........c.......
HE @M (1) Q @iv) C

According to Einstein’s special Theory of Relativity, laws of physics can be formulated
based on .........cco.......

(i) Inertial frame of Reference (i) Non inertial frame of Reference

(iii) Both non and inertial frame of Reference (iv) Quantum state

As an object approaches the speed of light, it’s mass becomes ....................

(i) Zero (if) Double (iif) Remain same (iv) Infinite

In relativity an electric field and magnetic fields are ....................

(7) Dependent (ii) Independent (iii) Interdependent (iv) Null

A charged particle in an electromagnetic field experience a force called ....................

(7) Gravitational forces (i7) Lorentz force (iii) Frictional force (iv) Restoring force
The electric force is represented as ....................

(i) F=qE (if) F = gE + q(uxB) (iii) F = q(E — uB) () F=0

The Maxwell first equation is knows as .........c..c....... law.

(i) Coulombs (if) Newtons (iif) Gauss (iv) Keplers

Which of the following is Einstein’s mass energy relation?

) E,=(m-— mO)c2 (i) B* = p*c? = mozc4 @) E, = mv?/c? (iv) E = mc?

Relative to a stationary observer, a moving object ...................

(i) Appears longer than normal

(i) Can do any of the above. It depends on the relative velocity between the observer and
the object

(iii) Appears shorter than normal.

(iv) Keeps its same length time
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30.

In the classical mechanics the kinetic expression of a particle of mass m and ....................
(i) Force (if)y Moving with velocity u
(iif) Momentum (iv) Acceleration

Answers to Selected Questions

1. (i) 2. (i) 3. (iii) 4. (iv) 5. (iii)
6. (ii) 7. (i) 8. (i) 9. (iii) 10.(i)
11. (iv) 12, (iii) 13. (iv) 14. (ii) 15. (i)
16. (i) 17. (i) 18. (iii) 19. (i) 20. (iii)
21. (iv) 22, (i) 23. (iv) 24. (iif) 25. (ii)
26. (i) 27, (iii) 28. (iv) 29. (iv) 30. (ii)

SHORT ANSEWER TYPE QUESTIONS

=

PRXAARWUN

Define Event and Observer

Define Inertial frame of reference and Non-Inertial frame of reference.

Derive the energy-momentum relationship for a particle moving at relativistic speed.

Write a short note on aluminiferous ether.

State the two postulates of special theory of relativity.

Discuss the major conclusions of Michelson-Morley experiment.

Write the equations for Galilean transformation equations.

Write the equations for the Lorentz transformation equations.

With the help of an example explain why Lorentz Fitzgerald length contraction is not applicable
to the objects which are not moving with relativistic speed.

LONG ANSWER TYPE QUESTIONS.

1.

w

Define frame of reference and discuss the inertial an non- inertial frames of references with the
help of necessary diagrams.

Discuss the Galilean transformation equations in detail

Explain the concept of aluminiferous ether and state the postulates of theory of relativity.

What is aluminiferous ether? Discuss the Michelson-Morley experiment for the search of either,
derive the necessary equations and state its major conclusions.

With the help of necessary diagram discuss the Michelson- Morley experiment and enlist its
major outcomes.

Explain the failure of Galilean transformation equations and derive the Lorentz transformation
equation with the help of necessary diagrams and equations.

Discuss the phenomenon of Lorentz-Fitzgerald length contraction along with an example.
Write a detailed note on Time Dilation.

Explain why a moving clock (at a relativistic speed) appears to go slow.

Derive the expression for the kinetic energy of a particle moving at relativistic speed and hence
establish the relationship showing the equivalence of its mass and energy.

Obtain the energy-momentum relationship for a particle moving at relativistic speed.



Calculus of Variation

38.1 INTRODUCTION

The calculus of variations primarily deals with finding maximum or minimum value of
a definite integral involving a certain function.

38.2 FUNCTIONALS

A simple example of functional is the shortest length of a curve through two points
A(x,, y,) and B(x,, y,). In other words, the determination of the curve y = y(x) for which
Y

y=(x)=y,» (x,) =y, such that

)]2 1+[%)2 dx (1)

1S a minimum.

An integral such as (1) is called a Functional. 0 X
In general, it is required to find the curve y =y (x) where y (x) = y,and y (x,) =y, such

. . dy
that for a given function f x,y,d— s
x

Tf(x,y,%j dx .(2)

is maximum or minimum.

Integral (2) is known as the functional.

In differential calculus, we find the maximum or minimum value of functions. But the
calculus of variations deals with the problems of maxima or minima of functionals.

A functional / [y (x)] is said to be linear if it satisfies.

(1) I[cy (x)] =c [y (x)], where c is an arbitrary constant.

(i) 1 [y, )+ y, 0] =11y, )] +1[y, (x)], where y, (x)e M and y, (x)e M

38.3 DEFINITION
A functional / [y (x)] is maximum on a curve y =y (x), if the values of / [y (x)] on any curve
close to y =y, (x) do not exceed / [y, (x)]. It means A/=1[y (x)] -1 [y, (x)] <0 and AI=0on
y=y, ).
In case of minimum of 7 [y (x)], A = 0.

Extremal: A function y = y (x) which extremizes a functional is called extremal or
extremizing function.
1
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38.4 EULER’S EQUATION IS

of df o
l—(i'] =0 (D.U. II Sem. 2012)
oy dx\oy YA
This is the necessary condition for N W
o \\//\)\*\ B(X2,y2)
I= I S (x,»,y")dx to be maximum or minimum. N
x (X1,y1 Y2
Proof: Let y = y (x) be the curve AB which makes ¥4
the given function 7 an extremum. o | | >
Y

Consider a family of neighbouring curves
Y = u(x) + on(x) (1)
where o is a parameter, and 1(x) is an arbitrary differentiable function.
At the end points A and B,
n@,) = nx) = 0
when o = 0, neighbouring curves become y = y (x), which is extremal.
The family of neighbouring curves is called the family of comparison functions.

If in the functional J. N S (x,»,»")dx We replace y by Y, we get
X

ijzf(x,Y,Y')dxz‘[;Z f[x,y(x)+om(x),y'(x)+ocr|'(x)}dx,

which is a function of a, say / (a).

X2
I(a)= If(x,Y,Y')dx
X
For a = 0, the neighbouring curves become the extremal, an extremum for o = 0.
The necessary condition for this is I (a) = 0 ..(2)

Differentiating / under the integral sign by Leibnitz’s rule, we have

p(a);‘f(w_xﬁ&w_rjdx
Ox 0o 0Y 0o 0Y' Oa

R

X2 ’
I'(a) = I 16—Y+18—Y dx a_x =0 asaisindenpendent of x .(3)
oY oo 9Y' oa oa.

X
On differentiating (1), w.r.t.'x’, we get, Y'= y'(x)+om’(x)

’

Again differentiating w.r.t.a’, we get o =1'(x)

Differentiating (1), w.r.t., we get QZ—Y =n(x)
o

Now (3) becomes I'(w) = f[%n(x) +%n'(x)} dx

Integrating the second term on the right by parts, we get
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of f 2 otd(of
le ~ [{ay, (x)}l —j{a(ﬁjmxwx]

f f

') Pdlo
j s n(x)dx{ﬁn( %) ay,nm)}— j E[W}n(x)dx

oY

29 2d(o o d( 9
:){aiYn(x)dx+0_){E[a_j;jn(x)dx:)-![__E( fﬂn(x)dx[ﬂ(xl) n(x,)=0]

oY
1

for extremum value, I'(o) = 0

o= |55 oo

N(x) is an arbltrary continuous function.

g_4al9 =0 which is a required Euler’s equation.
oy dx\ oy
Note: Other Forms of Euler’s equation
d N Ofde Ofdy Of d
1. —f(X,y’y) f_ l_y iy
dx Ox dx Oydx 0Oy dx
a _o af LT
or —

dx ax 6y 6‘

But i(yﬁi]:y/_[i}iyn
dx\” oy de\oy' ) op'
On subtracting (5) from (4), we have
YA 2) LT
de dx\” 0y') oOx Oy dx\ oy’

dx o' | ox oy dx oy
Hence i f- af A =0
8y ox

Which is an another form of Euler’s equation.

0
2. We know that al is also a function x, y, y' say f(x, y, ').
V

!

(@’j Opdr bdy b dy' 29 06, Db,
dx

o ) oxdr dyde oy dr ox oy oy

2 2 2
R /A T (/0 NI (/0 I AR i |
ox\oy') oyl oy o'\ oy’ oxoy' oyoy' "’

d( o
Putting the value of _(6i] in Euler’s equation, we get
y

(4

.(5)

i{f_y'al}_ai = y,[@l_i@i} = (y’)(O) =0 [Euler's equation]

.(6)
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o dr B L,
oy oxoy oy oy’ d o'’

This is the third form of Euler’s equation.

38.5 EXTREMAL

(7

Any function which satisfies Euler’s equation is known as Extremal. Extremal is obtained
by solving the Euler’s equation.

0
Case 1. If f'is independent of x,i.e.,al: 0.
X

0
On substituting the value of al in (6), we have di{ =y g } =0
X

x
Integrating, we get f — y'g = constant
Y

0
Case 2. When f'is independent of y, i.e.,% =0.

. of . )
Putting the value of _6f in Euler’s equation, we get
y

4

af . of
p —— | = 0, Integrating we get —— = constant
x

oy '
. . L.oof o of .
Case 3. If f'is an independent of y ,z.e.,; = 0. On substituting the value of P in the
’ . of y y
Euler’s equation, z get — =
oy

This is the desired solution.
Case 4. If f'is independent of x and y,

o 2 2
wehavei=0andg20 oraf 0 and 6f=0

Ox oy oxdy’ oy

: . . o’
Putting these value in Euler’s equation (7), we have y"ay—{: =0

2
If o2 #0 then " = 0 whose solution is y = ax + b.
Y

Example 1. Write the Euler-Lagranges equation and explain the terms involved.
(D.U. II Sem. 2012, April 2010)

Solution. The Euler Lagrange’s equation is LN /A P =0
de\oy') oy

0
Example 2. Prove that if f does not depend on x explicity, then f— f’ ai = constant.
y

(D.U. II Sem. 2012)
Solution. The Euler Lagrange’s differential equation is
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i(i} T
dx\oy ) oy B

0
Multiplying above equation by )" and adding subtracting the expression y” G_y'

!

o ;W
(where y" = — and )’ =—|, we get
Ox Ox

y,di(afj yaf yaf ,ai_oiy,i(glwﬂai_ JOf O
x dx

’ y r 12 ’ y ’ y -
o' oy 0 oy oy Oy Oy
d 0 6 of 0
N - ! f ¥ I +l =0 (adding and subtracting l
dx 6y ox Ox
S (R T I Ao A I
dx 6y' ay Ox | ox
d A '
- £ =0 {“f=fy. 0}
dx dx ax
d| af o
— =0
= & | -f } o (1)
. of
If f does not depend upon x explicitly, then ™ =0 and so we must have
X
dx{ f - f } ,8){ — f = constant
, af
= f—y g = constant. Proved. -.(2)

Example 3. 7est for an extremum the functional

1
1Ty(x)]= [ (w+* ~25%)dx, y(0)=1.y(1)=2
0
Solution. Euler’s equation

z_i[z]_
o deloy' )

Here f=xy+y”>—2y%y

o , o
——=x+2y-4y" and - =-2y
ay oy

KL 0/ S A
dx(ay'j dx( )=

Putting these values in (1), we get x+2y—4yy'- (—4yy ’) =0

(1)

2

or x+2y=0 ory:—g Atx=0,y=0; Atx:l,y:—E.
This extremal does not satisfy the boundary conditions y (0) =1, y (1) = 2.
Hence there is no extremal. Ans.
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Example 4. Prove that the shortest distance between two points is along a straight line.
(D.U. II Sem. 2012)

Solution. Let 4 (x, y,) and B (x,, y,) be the two given points and s the length of the arc
joining these points. Y

X X 2 X B
Then s= jds: J. 1+[%) dx = I«¢(1+y'2)dx (1) / (XZ'YZ)
X
X

X] X] //
yx)=y. y(x)=» A(x1,y1)
If s satisfies the Euler’s equation, then it will be minimum 0 ;(
of dfof .
———|=1=0 Euler’s equation

Here in (1), £ =+(1+?)

0
fis independent of y, i.e., é =0

1 ,
_iégzi_i(Hygzi_qnyqzwf}i_g;_
dx\ oy dx\ oy dx| 2 dx (1+y72)
Putting these values in Euler’s Equation, we have
d ' d !
(P ) SN

dx (l+y'2) dxm

’

On integrating £
J+y?)

constant (¢), i.e., (') = c* (1 +)?)

2

d
or y.z(l_cz):cz 3 y'2: 2:mz o y'=mord—y:m
- x
Integrating y=mx+c ..(2)
which is a straight line. Ans.
Now y(x)=» and  y(x;)=y,
mx;+c=y and mx,+c=y, ..(3)

on subtracting, we get

or Yy =y =m(x, —x;) or m=u
Xy =X
Subtracting (3) from (2), we get
Y=y, =mx-x)
y=n= 22— (x—xp) Proved.
Xy =X

Example 5. Find the curve connecting the points (x, x,) and (x, y,) which when rotated
about the x-axis gives a minimum surface.

Find the extremal of the functional.
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TZnyds or 2nTyﬁ(1+y'2)dx
X X

Subject toy (x) =y,, ¥(x,) = ¥, (D.U. April 2010)

Solution. 27 is constant so we have to find the extremal of
Y

R)
2 (x2,¥2)
[ ra+y?)ax (x4.y1)ds
X
9 0 /
Here f=y./(1+ ") which is independent of x. a—i =0 *
One form of Euler’s equation is z
1 PSR I AP S 4 ()
dx oy'| ox dx oy' Ox
. . , o
On integrating, we get, /' — )/ Fh constant (c) (1)
y

r= y\/(1+y’2),a—f,= ) =L2y
Oy 241+ y'

0
Putting the value of f'and 6_f' (1), we have
5

2y'
W+ y?) =y —==—y=c
2J(1+y?)

12

= ey -2 —¢ o y(l+yH -t =1+ y?)

NS
y=cy(+y?) or y* =c*(1+y?)
Iyz_cz Orﬂz /yz_cz
c dx c

2 2
y2_y_c "
= yi==—F—ory'=

d d d d _
—ﬁ:% = J.—'yzy—czzj.%:com 1%:§+b

X . . . .. .
y = ¢ cosh [—+b] which is the equation of catenary. This is the required extremal.
c
Ans.
Example 6. Find the curve connecting two points (not on a vertical line), such that a

particle sliding down this curve under gravity (in absence of resistance) from one point
to another reaches in the shortest time. (Brachistochrone problem,).

Solution. Let the particle slide on the curve OA from O with ° X
zero velocity. Let OP = s and time taken from 0 to P = ¢. By the
law of conservation of energy, we have Py
K.E. at P — K.E. at O = potential energy at P. (x1,¥1)
lmv2 —0=mgh
2 Y
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= 1+y"? -

1 ds]2 ds
2 B Z ek or B= 2
Zm(dt mgh or —-=(2gy)

Time taken by the particle to move from O to A

St e,
T‘ld idh__' JEE‘JJ_ J@g { N

TS 0
Here, f= & which is independent of x,i.e., g =0.
\/; Ox
0 1 2y!
and Y J

g _ - Y
o N i e

Solution of Euler’s equation is

0
-y a—f'— constant ¢

0
On substituting the values of f'and 6){ ,we get

Ja+r%_y. PA—
NE Sy

2

y—zzc 3 or 1+y2—y? =c ,(l+y'2)\/;
VI+y7)
2 2
d 1 d 1-ye
= 1=cyy(1+y?) or 1+(d—y) =g _y:—);
Y

x C dx ye

dy:\ﬂ/cz—y:\/m [1 )
y

= E 3 c—zza
dx = f b4 dy
a-y
Ixxdxz'f ( y de Put y = gsin* 0
0 a-y dy =2asin0cos0d6

X =

je ( asin’0

0
J2asm9cos6d6 J( j2asinecosede:J‘Zasin2 0d0

0 La asin’® cos0

0
= af (1-c0s20)d0 = a[G— sze)
0 2 0

= x= %(29 —sin20) and y = asin’0 = %(l —c0s20)

x=A(®-sin®)

On putting %= 4 and 26 =0 - A(l—cos®)

:|WhiCh is a cycloid. Ans.
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EXERCISE 38.1

1. Find the extremal of the functional
x 1+
1@]=[] .y dy
. X
2. Solve the Euler’s equation for L (x+ y') y'dx.
0
X
3. Solve the Euler’s equation for I 1+ xzy')y'dx
X0
Find the extremals of the functional and extremum value of the following:
X 2
4. I[y(x)]= I 1+')2/ dx 5. I[y(x)]= I 2ansubJecttoy( )—1 y()=2.
X0 y 1
2
2
6. 1[y(0)]=[(x—y)’dx subjecttoy(0) =0,y (2) = 4.
0
=
2
7. JA(y‘2fy )dx subject to y(0) =0, y(zj 1
1 2 2
\/ 1+ y'
8. [(y?+120y)dx subjecttoy(0)=0, y(1)=1 9. dex subjectto y(1) = 0,(2) = 1.
X
0 1
ANSWERS
=
1. y=sinh (¢x+c¢,) 2. y=—7+clx+cz 3. y=ax'+
i c x?
4. y=sinh (cx +c,) 5. y=——+d , value=1 6. y=7+cx+d,value:2
x
. 3 21
7. y = sin x, value = 0 8. y=x ,Value:? 9. y=x’
38.6 ISOPERIMETRIC PROBLEMS

The determination of the shape of a closed curve of the given perimeter enclosing
maximum area is the example of isoperimetric problem. In certain problems it is necessary
to make a given integral.

I= [ f(x.p.y)dx (1)

maximum or minimum while keeping another integral

X
1= I g(x,y,y") dx = K (Constant) (2
X
Problems of this type are solved by Lagrange’s multipliers method. We multiply (2) by
A and add to (1) to extremize (1)
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X2 X2 X2
Ie= [ £y, yYdx+n | g(x,p,y)de = | Fdx (say)

X X x|
oF d|(oF

Then by Euler’s equation 55[5] =0,

Note. Isoperimetric problem. To find out possible curves having the same perimeter, the
one which encloses the maximum area.

Example 7. Find the shape of the curve of the given perimeter enclosing maximum area.
Solution. Let P be the perimeter of the closed curve,

X2

Then P=[\l+y? dx (1)
X

The area enclosed by the curve, x-axis and two perpendicular lines is

X2
A= [ ydx -(2)
X
We have to find the maximum value of (2) under the condition (1).
By Lagrange’s multiplier method.

f=ytal+)y?

For maximum or minimum value of 4, F must satisfy Euler’s equation

of d(aF\:O

o o)
- ()
1 Ly 20y =0 or-a b =X | =
dx| 2 dx 1+ "
Int i t X L a
ntegraing w.r.t.‘x’, we get X — N
(+y?)
!

= ————==x—-aor XM y?=(1+y? (x —a)
N+
[V = (x—a)’]y? = (x—a)y

, X—a dy _ xX—a

- g :\/W—(x—a)z] o ax Y2 —(x—a)’]

Integrating w.r:¢. (x), we obtain

y=—0* ~(x=a)1+b

= y-b=-A[M-(x-a)] = -bP=N—(x—a)P = (x—aP+(y—b}=N

This is the equation of a circle whose centre is (a, b) and radius A. Ans.

1]
] . .
Example 8. Find the extremal of the functional A= Iz(x y—y x)dt subject to the integral

t . . n
1
constraint I 5 \ (x2 - y2 )dt=1.
f
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1 . . . .
Solution. Here f= E(XJ’*JCJ’) s g=\x" -y

F=f+Ag

F= %(xy fyx)+7u\/x2+ y2

For A4 to have extremal F must satisfy the Euler’s equation

OF d|OoF
| |0 (1)
X X_ax_
F d|oF
2_7? a. =0 (2)
y l‘_ay_
( ]
1* d A2
From (1) 5)’5{1 -0

2\/x2+y2

From (2) ——| =+ =0 ..(4)
2 dt|2 24P
4 L T
dt ° °
x4 2
Integrating (3) and (4), we have
Ax Ax
y- . . :cl = yicl - . . (5)
"x2+y2 4y
A A
N e R Ty ~(6)
4y 2y
Squaring (5), (6) and adding, we get
(s )
2,2
u—%f+w—qf=ﬁtf+{J
X2+ )?

(x-c) +(y—¢)* =2°

This is the equation of circle. Ans.
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Example 9. Find the solid of maximum volume formed by the revolution of a given
surface area.

Solution. Let the curve PA pass through origin and it is rotated about the x-axis.

T Y
A
S= _([Znyds P (xy)

S = [2mp\(1+ y'*)dx OB ALx
0

[/

v =[mdx -(2)
0 A
Here we have to extremize J with the given S.
Here f=my?, g=2mp(1+y"?)
F=f+1g

F= ny2 +A2my (1+y'2)
For maximum V, F must satisfy Euler’s equation. But /' does not contain x.

F
F—y'a—=C
oy'
; a1 2y
= Y + A2y (1+y") —y'————==C

2 12
= my? + 21y /(1 +y'2)—n}h¢=C

Ja+y?)

= w? + 2wk =C
(1+y%)
As the curve passes through origin (0, 0), so C = 0.
ny2 + _Zoh =0
(4%

20
= y+ﬁ:0 = 1+ )y =-21
(1)

42 4 -y’
= 1+y?% = 5 = y'’= 1= 2y
y y y
R dy _(# -y
dx y

d
jﬁz]dx—i—C
N el "

= -y =—x-C
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The curve expasses through (0, 0). On putting x =0, y = 0 in (1) we get
-C =2\

(1) becomes 40—yt =—x+21

Squaring a0 —y? = (x-20)?

= (x—=20)% + y* = 40?

This is the equation of a circle.

Hence, on revolving the circle about x-axis, the solid formed is a sphere. Ans.

EXERCISE 38.2

. Show that an isosceles triangle has the smallest perimeter for a given area and a given base.

=

2. Find the extremal in the isoperimetric problem of the extremum of

1
I(y'2+ 2‘2—4xz'—4z)dx
0

1
subject to [(y?+xy=2%)dv =2,y (0) = 0,2 (0) =0,y (1) = 1,z (1) = L.
0
3. Find the surface with the smallest area which encloses a given volume.

&
4. Find the extremal of the functional I\/xz +y? + 22 dtsubjecttox? + y* + 22 =a*

g

X X
5. Find the extremals of the isoperimetric problem j y 2 subject to _[ ydx=c.

0 R0
ANSWERS
2 oL TE L 3. Sph
A 2 S i E . Sphere
4. Arc of a great circle of a sphere. 5. y=x*+ax+b

38.7 FUNCTIONALS OF SECOND ORDER DERIVATIVES

Let us consider the extremum of a functional.

X
[ Gey.yiym dx ()
X
The necessary condition for the above mentioned functional to be extremum is
11{%} +d_2[i] —0
oy dx\oy') dx*\oy"
Proof. Let the boundary conditions be
Yx) = v, 0(x) =y, Vix) =), V) =),
Let o be a parameter and M(x) is a differentiable function.
At the end points 1(x) = N(x,) = 0 and n'(x,) =M'(x,) =0
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Putting y + om(x)for y in (1), we have

[ 7Ty +an(),p+an'(@),y"+ an'(x)]dx

X

X X2
Writing j fIx,y+an(x),y+an'(x),y"+oan"(x)]dx = J. Fdx=1

X |
For extremum value of (1)
dar_, dl _ (?oF
da do. ° oo
Differentiating under the sign of integral, we get

_"J[aF dy  OFdy' oF 6y] i _T[@F6(0Ln)+6F6(an')+6_F6(an")]dx
oy 80( oy' oo 8y" oo oy Oa  Oy' Oa oy" oa

dl
But —=0when o0 = 0
da
X x
():J[gnng g '}dx I fndx+I ndx+J‘i"n"dx:0
WL oy
Integrating by parts, w. 7. ¢. “x’, we have

(o o AT IR
J o dx[ay"]“*ﬁ[@]f nde| =0

2
2o 9 d
lnd fn f [ f] Mndx
lay Oy ox\ oy’ 5
x| X1

Butn (x) =n(x,) =0and n'(x) =n'(x,) =0
Rlof dfof of of dfof f
%0 ﬂay E[ay] dr® [ayﬂ Bd=0= 5 E[ay) dr® [6)/] 0 Proved.

EXERCISE 38.3

X
1. Find the extremal of I (16y2 —y"2+ xz)dx .

X0

w2

: fo .1 . ,
2. Find the extremal of j (ay+5by )dx subjectto y (—¢) =0,y (—c¢) =0,

—C

¥ =0,y (c)=0.

TE T
3. Find the extremal of [ "™ dx subject to [ y>dx =1,y (0) =y (m) = 0, 3"’ (0) ="’ () = 0.
0 0

x
4. Find the extremal of I Qxy+y"?)dx .

X0
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ANSWERS

. a .2 22
1. y=ce” +ce®™c, cos 2xt ¢, sin2x 2. y=—-——(x"—c")

3. y=a, sinx+a,sin2x + ...

24b
7
_X_ 5+ 4+ 3+ 2+ +
4. y—7!+clx Xt texte, X te,xteg
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