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31.1 DEFINITION

Let us consider a set of simultaneous equations,
x + 2 y + 3 z + 5 t = 0
4 x + 2 y + 5 z + 7 t = 0
3 x + 4 y + 2 z + 6 t = 0.

�Now�we�write�down�the�coefficients�of�x, y, z, t of the above equations and enclose them 
within brackets and then we get

A = 
1 2 3 5
4 2 5 7
3 4 2 6

 
 
 
  

 The above system of numbers, arranged in a rectangular array in rows and columns and 
bounded by the brackets, is called a matrix.
 It has got 3 rows and 4 columns and in all 3 × 4 = 12 elements. It is termed as 3 × 4 
matrix,� to�be� read�as� [3�by�4�matrix].� In� the�double�subscripts�of�an�element,� the�first�
subscript determines the row and the second subscript determines the column in which 
the element lies, aij lies in the ith row and jth column.

31.2 VARIOUS TYPES OF MATRICES

(i) Row Matrix. If a matrix has only one row and any number of columns, it is called
a Row matrix, e.g., [2 7 3 9]

(b) Column Matrix. A matrix, having one column and any number of rows, is called a

Column matrix, e.g., 
1
2
3

 
 
 
  

(c) Null Matrix or Zero Matrix. Any matrix, in which all the elements are zeros, is
called a Zero matrix or Null matrix e.g.,

 
0 0 0 0
0 0 0 0
 
 
 

(d) Square Matrix. A matrix, in which the number of rows is equal to the number of
columns, is called a square matrix e.g.,

 
2 5
1 4
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2   Mathematical Physics

(e) Diagonal Matrix. A square matrix is called a diagonal matrix, if all its non-diagonal 
elements are zero e.g.,

  
1 0 0
0 3 0
0 0 4

 
 
 
  

(f) Scalar matrix. A diagonal matrix in which all the diagonal elements are equal to a 
scalar, say (k) is called a scalar matrix.

 For example;

   

6 0 0 0
2 0 0

0 6 0 0
0 2 0 ,

0 0 6 0
0 0 2

0 0 0 6

− 
   −   
   −
     − 

 i.e., A = [aij]n × n is a scalar matrix if aij = 
0, when

, when
i j

k i j
≠

 =

(g) Unit or Identity Matrix. A square matrix is called a unit matrix if all the diagonal 
elements are unity and non-diagonal elements are zero e.g.,

   
1 0 0

1 0
0 1 0 ,

0 1
0 0 1

 
  
      

(h) Symmetric Matrix. A square matrix will be called symmetric, if for all values of i and j,  
aij = aji i.e., A′ = A

  e.g., 
a h g
h b f
g f c

 
 
 
  

(i) Skew Symmetric Matrix. A square matrix is called skew symmetric matrix, if  
(1) aij = – aji for all values of i and j,   or A′ = –A

 (2)  All diagonal elements are zero, e.g.,

   
0

0
0

h g
h f
g f

− − 
 − 
  

(j) Triangular Matrix. (Echelon form) A square matrix, all of whose elements below the 
leading diagonal are zero, is called an upper triangular matrix. A square matrix, all 
of whose elements above the leading diagonal are zero, is called a lower triangular 
matrix e.g.,

         
1 3 2
0 4 1
0 0 6

 
 
 
  

 
2 0 0
4 1 0
5 6 7

 
 
 
  

 Upper triangular matrix   Lower triangular matrix
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(k) Transpose of a Matrix. If in a given matrix A, we interchange the rows and the cor-

responding columns, the new matrix obtained is called the transpose of the matrix A 
and is denoted by A′ or AT e.g.,

  A = 
2 3 4 2 1 6
1 0 5 , 3 0 7
6 7 8 4 5 8

A
   
   =′   
      

(l) Orthogonal Matrix. A square matrix A is called an orthogonal matrix if the product 
of the matrix A and the transpose matrix A’ is an identity matrix e.g.,

  A. A′ = I
  if | A | = 1, matrix A is proper.
(m) Conjugate of a Matrix

 Let A = 
1 2 3 4

7 2 3 2
i i
i i i

+ − 
 + − − 

 Conjugate of matrix A is A

  A  = 
1 2 3 4

7 2 3 2
i i
i i i

− + 
 − + 

(n)  Matrix Aθ. Transpose of the conjugate of a matrix A is denoted by Aθ.

 Let A = 
1 2 3 4

7 2 3 2
i i
i i i

+ − 
 + − − 

  A  = 
1 2 3 4

7 2 3 2
i i
i i i

− + 
 − + + 

  ( )A ′  = 
1 7 2

2 3
4 3 2

i i
i i

i

− − 
 + 
 + 

  Aθ = 
1 7 2

2 3
4 3 2

i i
i i

i

− − 
 + 
 + 

(o) Unitary Matrix. A square matrix A is said to be unitary if
  Aθ A = I (Vidyasagar University 2018)

 e.g. A = 

1 1 1 1
2 2 2 2, ,

1 1 1 1
2 2 2 2

i i i i

A A A I
i i i i

θ θ

+ − + − −   
   

= ⋅ =   
+ − − − +   

      
(p) Hermitian Matrix. A square matrix A = (aij) is called Hermitian matrix, if every 

i-jth element of A is equal to conjugate complex j-ith element of A.
 In other words, aij = jia

 e.g.  
1 2 3 3
2 3 2 1 2
3 1 2 5

i i
i i

i i

+ + 
 − − 
 − + 
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4   Mathematical Physics

Necessary� and� sufficient� condition� for� a�matrix�A to be Hermitian is that A = Aθ i.e. 
conjugate transpose of A
⇒  A = ( ) .A ′

(q) Skew Hermitian Matrix. A square matrix A = (aij) will be called a Skew Hermitian 
matrix  if every i-jth element of A is equal to negative conjugate complex of j-ith 
element of A.

In other words, aij = j ia−

All the elements in the principal diagonal will be of the form
  aii = iia−  or 0ii iia a+ =

If  aii = a + ib then iia a ib= −

  (a + ib) + (a – ib) = 0 ⇒ 2 a = 0 ⇒ a = 0
So, aii is pure imaginary  ⇒  aii = 0.
 Hence, all the diagonal elements of a Skew Hermitian Matrix are either zeros or pure 
imaginary.

e.g.   
2 3 4 5

(2 3 ) 0 2
(4 5 ) 2 3

i i i
i i
i i i

− + 
 − + 
 − − − 

The�necessary�and�sufficient�condition�for�a�matrix�A to be Skew Hermitian is that
  Aθ = – A, ( )A ′  = – A
(r) Idempotent Matrix. A matrix, such that A2 = A is called Idempotent Matrix.

e.g. A = 2

2 2 4 2 2 4 2 2 4 2 2 4
1 3 4 , 1 3 4 1 3 4 1 3 4
1 2 3 1 2 3 1 2 3 1 2 3

A A
− − − − − − − −       

       − = − − = − =       
       − − − − − − − −       

(s) Periodic Matrix. A matrix A will be called a Periodic Matrix, if
  Ak+1 = A
 where k is a +ve integer. If k is the least + ve integer, for which Ak+1 = A, then k is 

said to be the period of A. If we choose k = 1, we get A2 = A and we call it to be 
idempotent matrix.

(t) Nilpotent Matrix. A matrix will be called a Nilpotent matrix, if Ak = 0 (null matrix) 
where k is a +ve integer ; if however k is the least +ve integer for which Ak = 0, then 
k is the index of the nilpotent matrix.

e.g., A = 
2 2 2

2
2 2 2

0 0
, 0

0 0
ab b ab b ab b

A
a ab a ab a ab

       
= = =       − − − − − −       

A is nilpotent matrix whose index is 2.
(u) Involuntary Matrix. A matrix A will be called an Involuntary matrix, if A2 = I  

(unit matrix). Since I2 = I always     ∴ Unit matrix is involuntary. 
(v) Equal Matrices. Two matrices are said to be equal if 
 (i) They are of the same order.
 (ii) The elements in the corresponding positions are equal.
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Thus if  A = 
2 3 2 3

,
1 4 1 4

B
   

=   
   

Here  A = B
(w) Singular Matrix. If the determinant of the matrix is zero, then the matrix is known 

as singular matrix e.g. A = 
1 2
3 6
 
 
 

 is singular matrix, because |A| = 6 – 6 = 0.

Example. Find the values of x, y, z and ‘a’ which satisfy the matrix equation.

 
x 3 2 y x 0 7
z 1 4 a 6 3 2a
+ + −   

=   − −   
Solution. As the given matrices are equal, so their corresponding elements are equal.
  x + 3 = 0 ⇒ x = – 3 ... (1)
  2y + x = – 7 ... (2)
  z – 1 = 3 ⇒ z = 4 ... (3)
   4 a – 6 = 2 a ⇒ a = 3 ... (4) 
Putting the value of x = – 3 from (1) into (2), we have
  2y – 3 = – 7 ⇒ y = – 2
Hence,  x = – 3,   y = – 2,   z = 4,   a = 3 Ans.

31.3 ADDITION OF MATRICES

 If A and B be two matrices of the same order, then their sum, A + B is�defined�as�the�
matrix, each element of which is the sum of the corresponding elements of A and B.

Thus if A = 
4 2 5 1 0 2

,
1 3 6 3 1 4

B
   

=   −   

 then A + B = 
4 1 2 0 5 2 5 2 7
1 3 3 1 6 4 4 4 2
+ + +   

=   + + − + −   
If A = [aij],  B = [bij]    then   A + B = [aij + bij]
Symmetric and Anti Symmetric matrices

  ′ ′
1 1= ( + ) + ( – )
2 2

A A A A A

 Square matrix = Symmetric matrix + Anti-symmetric matrix  Proved.
Example 1. Write matrix A given below as the sum of a symmetric and a skew  
symmetric matrix.

  A = 
1 2 4
2 5 3
1 6 3

 
 −
 
− 

Solution.  A = 
1 2 4
2 5 3
1 6 3

 
 − 
 − 

 On transposing, we get A′ = 
1 2 1
2 5 6
4 3 3

− − 
 
 
  

On adding A and A′, we have
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6   Mathematical Physics

  A + A′ = 
1 2 4 1 2 1 2 0 3
2 5 3 2 5 6 0 10 9
1 6 3 4 3 3 3 9 6

− −     
     − + =     
     −     

 ... (1)

On subtracting A′ from A, we get

  A – A′ = 
1 2 4 1 2 1 0 4 5
2 5 3 2 5 6 4 0 3
1 6 3 4 3 3 5 3 0

− −     
     − − = − −     
     − −     

 ... (2)

On adding (1) and (2), we have

  2 A = 
2 0 3 0 4 5
0 10 9 4 0 3
3 9 6 5 3 0

   
   + − −   
   −   

  A = 

3 51 0 0 2
2 2
9 30 5 2 0
2 2

3 9 5 33 0
2 2 2 2

   
   
   
   + − −   
   −   
      

  A = [Symmetric matrix] + [Skew symmetric matrix.] Ans.

Example 2. Express A   = 
1 – 2 – 3
3 0 5
5 6 1

 
 
 
  

 as the sum of a lower triangular matrix and 

upper triangular matrix.

Solution. Let      A = L + U

  
1 – 2 – 3
3 0 5
5 6 1

 
 
 
  

 = 
0 0 1

0 0 1
0 0 1

a p q
b c r
d e f

   
   +   
      

  
1 – 2 – 3
3 0 5
5 6 1

 
 
 
  

 = 
1 0 0
0 1 0
0 0 1

a p q
b c r
d e f

+ + + 
 + + + 
 + + + 

Equating the corresponding elements on both the sides, we get
 a + 1 = 1 p = – 2 q = – 3
 b = 3 c + 1 = 0 r = 5
 d = 5 e = 6 f + 1 = 1
On solving these equations, we get
 a = 0 p = – 2 q = – 3
 b = 3 c = – 1 r = 5
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Matrices  7
 d = 5 e = 6 f = 0

Hence, L = 
0 0 0
3 1 0
5 6 0

 
 − 
  

 and U = 
1 –2 –3
0 1 5
0 0 1

 
 
 
  

 Ans.

31.4 PROPERTIES OF MATRIX ADDITION

Only matrices of the same order can be added or subtracted.
(i) Commutative Law. A + B = B + A. (ii) Associative law. A + (B + C) = (A + B) + C.

31.5 SUBTRACTION OF MATRICES

�The�difference�of�two�matrices�is�a�matrix,�each�element�of�which�is�obtained�by�sub-
tracting�the�elements�of�the�second�matrix�from�the�corresponding�element�of�the�first.
  A – B = [aij – bij]

Thus   
8 6 4 3 5 1
1 2 0 7 6 2
   

−   
   

  = 
8 3 6 5 4 1 5 1 3
1 7 2 6 0 2 6 4 2
− − −   

=   − − − − − −   
 Ans.

31.6 SCALAR MULTIPLE OF A MATRIX

If a matrix is multiplied by a scalar quantity k, then each element is multiplied by k, i.e.

  A = 
2 3 4
4 5 6
6 7 9

 
 
 
  

  3 A = 
2 3 4 3 2 3 3 3 4 6 9 12

3 4 5 6 3 4 3 5 3 6 12 15 18
6 7 9 3 6 3 7 3 9 18 21 27

× × ×     
     = × × × =     
     × × ×     

2 3 4 3 2 3 3 3 4 6 9 12
3 4 5 6 3 4 3 5 3 6 12 15 18

6 7 9 3 6 3 7 3 9 18 21 27

× × ×     
     = × × × =     
     × × ×     

EXERCISE 31.1

 1. (a) If A = 
1 7 1
2 3 4 , represent it as A = B + C where B is a symmetric
5 0 5 and C is a skew-symmetric matrix.

− 
 
 
  

  (b) Express 
1 2 0
3 7 1
5 9 3

 
 
 
  

 as a sum of symmetric and skew-symmetric matrix.

 2. Matrices A and B are such that

   3 A – 2 B = 
2 1
2 1

 
 − − 

 and – 4 A + B = 
1 2
4 3
− 

 − 
, Find A and B.
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8   Mathematical Physics

 3. Given 
6 4

3
1 2 3

x y x x y
z w w z w

+     
= +     − +     

, Find x, y, z and w.

 4. If 
0 2 0 1 2 1
1 0 3 , 2 1 0
1 1 2 0 0 3

A B
   
   = =   
      

, Find (i) 2 A + 3 B   (ii) 3 A – 4 B.

ANSWERS

 1. (a) 

9 5 5 5 1 51 3 0 2 1 0
2 2 2 2 2 2

9 5 5 13 2 0 2 ( ) 7 5 0 4
2 2 2 2
3 2 5 2 2 0 5 55 3 4 0

2 2

A b A

       − − − −       
       

−       = + = + −       
       −       

      

 2. 
0 1 1 2

,
2 1 4 1

A B
− − −   

= =   − −   

 3. x = 2,  y = 4,  z = 1,  w = 3 4. 
3 10 3 4 2 4

( ) 8 3 6 , ( ) 5 4 9
2 2 13 3 3 6

i ii
− − −   

   − −   
   −   

31.7 MULTIPLICATION

The product of two matrices A and B is only possible if the number of columns in A is 
equal to the number of rows in B.
Let A = [aij] be an m × n matrix and B = [bij] be an n × p matrix. Then the product AB 
of these matrices is an m × p matrix C = [cij] where
  cij = ai1 b1j + ai2 b2j + ai3 b3j + .... + ain bnj
(AB)′ = B′A′
If A and B are two matrices conformal for product AB, then (AB)′ = B′A′, where dash 
represents transpose of a matrix.

31.8 PROPERTIES OF MATRIX MULTIPLICATION

 1. Multiplication of matrices is not commutative.
  AB ≠ BA

 2. Matrix multiplication is associative, if conformability is assured.
   A (BC) = (AB) C
 3. Matrix multiplication is distributive with respect to addition.
   A (B + C) = AB + AC
 4. Multiplication of matrix A by unit matrix.
   AI = IA = A
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 5. Multiplicative inverse of a matrix exists if |A| ≠ 0.
   A . A–1 = A–1 . A = I
 6. If A is a square then A × A = A2, A × A × A = A3.
 7. A0 = I
 8. In = I, where n is positive integer.

Example 1. If A = 
1 2 3 1 0 2
2 3 1 and B = 0 1 2
3 1 2 1 2 0

−   
   −   
   −   

from the products AB and BA, and show that AB ≠ BA.

Solution.  Here,  AB = 
1 2 3 1 0 2
2 3 1 0 1 2
3 1 2 1 2 0

−   
   −   
   −   

  = 
1 0 3 0 2 6 2 4 0 4 4 2
2 0 1 0 3 2 4 6 0 1 1 10
3 0 2 0 1 4 6 2 0 1 5 4

− + − + − + −   
   + − + − + − =   
   − + + + + − + + − −   

 

 BA = 
1 0 2 1 2 3
0 1 2 2 3 1
1 2 0 3 1 2

−   
   −   
   −   

 = 
1 0 6 2 0 2 3 0 4 5 0 7
0 2 6 0 3 2 0 1 4 4 5 3
1 4 0 2 6 0 3 2 0 5 4 1

+ − − + + − + −   
   + − + + − + = −   
   + + − + + − +   

 AB ≠ BA Proved.
Example 2. Verify that

  A = 
1 – .
3

– –

1 2 2
2 1 2 is orthogonal
2 2 1

 
 
 
  

Solution. A = 
1 2 2 1 2 2

1 12 1 2 2 1 2
3 3

2 2 1 2 2 1
A

−   
   − ∴ =′   
   − − − −   

  AA′ = 
1 2 2 1 2 2 9 0 0 1 0 0

1 12 1 2 2 1 2 0 9 0 0 1 0
9 9

2 2 1 2 2 1 0 0 9 0 0 1
I

−       
       − = =       
       − − − −       

Hence, A is an orthogonal matrix. Verified.

EXERCISE 31.2
 1. Compute AB, if 

  A = 
1 2 3
4 5 6
 
 
 

 and B = 
2 5 3
3 6 4
4 7 5
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 2. If A = 
1 3 0
1 2 1
0 0 2

 
 − 
  

, B = 
2 3 4
1 2 3
1 1 2

 
 
 
 − 

. From the product AB and BA. Show that AB ≠ BA.

 3. If A = 
0 1 0
0 0 1
0 0 0

 
 
 
  

, B = 
0 0 0
1 0 0
0 1 0

 
 
 
  

 4. If A = 
0 1
1 0

 
 − 

 choose α and β so that (α I + β A)2 = A

 5. Write the following transformation in matrix form :

  x1 = 1 2
3 1

2 2
y y+  ; x2 = 1 2

1 3
2 2

y y− +

� � Hence,�find�the�transformation�in�matrix�form�which�expresses�y1, y2 in terms of x1, x2.

 6. If A = 
0 tan

2

tan 0
2

α − 
 

α 
  

 and I is a unit matrix, show that I + A = 
cos sin

( )
sin cos

I A
α − α 

−  α α 

 7. If f (x) = x3 – 20 x�+�8,�find�f (A) where A = 
1 1 3
1 3 3
2 4 4

 
 − 
 − − − 

 8. Show that 
cos sin
sin cos

θ − θ 
 θ θ 

 = 

1

1 tan 1 tan
2 2

tan 1 tan 1
2 2

−θ θ   −   
   

θ θ   −      

 9. If A = 
3 3 4
2 3 4
0 1 1

− 
 − 
 − 

 then show that A3 = A–1.

 10. Verify whether the matrix A = 
2 2 1

1 2 1 2
3

1 2 2

 
 − 
 − 

 is orthogonal.

 11. If A and B are square matrices of the same order, explain in general

 (i) (A + B)2 ≠ A2 + 2 AB + B2    (ii)  (A – B)2 ≠ A2 – 2 AB + B2   (iii)  (A + B) (A – B) ≠ A2 – B2

ANSWERS

 1. 
20 38 26
47 92 62
 
 
 

 4. α = β = 
1
2

±

 5. y1 = 1 2
3 1

2 2
x x− , y2 = 1 2

1 3
2 2

x x+  7. 0
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31.9 ADJOINT OF A SQUARE MATRIX

Let the determinant of the square matrix A be | A |.

If A = 
1 2 3

1 2 3

1 2 3

,
a a a
b b b
c c c

 
 
 
  

  Than | A | = 
1 2 3

1 2 3

1 2 3

.
a a a
b b b
c c c

The matrix formed by the co-factors of the elements in

  | A | is 
1 2 3

1 2 3

1 2 3

AA A
B B B
C C C

where 2 3
1 2 3 3 2

2 3

,
b b

A b c b c
c c

= = −  1 3
2 1 3 3 1

1 3

b b
A b c b c

c c
= − = − +

 1 2
3 1 2 2 1

1 2

,
b b

A b c b c
c c

= = −  2 3
1 2 3 3 2

2 3

a a
B a c a c

c c
= − = − +

 1 3
2 1 3 3 1

1 3

,
a a

B a c a c
c c

= = −  1 2
3 1 2 2 1

1 2

a a
B a c a c

c c
= − = − +

 2 3
1 2 3 3 2

2 3

,
a a

C a b a b
b b

= = −  1 3
2 1 3 3 1

1 3

a a
C a b a b

b b
= − = − +

  C3 = 1 2
1 2 2 1

1 2

a a
a b a b

b b
= −

Then the transpose of the matrix of co-factors

  
1 1 1

2 2 2

3 3 3

A B C
A B C
A B C

 
 
 
  

is called the adjoint of the matrix A and is written as adj A.

31.10 PROPERTY OF ADJOINT MATRIX

 The product of a matrix A and its adjoint is equal to unit matrix multiplied by the 
determinant A.

 INVERSE OF A MATRIX

If A and B are two square matrices of the same order, such that
   AB = BA = I (I = unit matrix)

 then B is called the inverse of A i.e. B = A–1 and A is the inverse of B.
 Condition for a square matrix A to possess an inverse is that matrix A is non-singular,  
i.e., | A | ≠ 0
If A is a square matrix and B be its inverse, then AB = I
Taking determinant of both sides, we get
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12   Mathematical Physics

  | AB | = | I | or | A | | B | = I
From this relation it is clear that | A | ≠ 0 i.e. the matrix A is non-singular.
To find the inverse matrix with the help of adjoint matrix
We know that  A . (Adj. A) = | A | I

⇒  
1 ( . )

| |
A A dj A

A
⋅  = I [Provided | A | ≠ 0] ... (1)

 and A . A–1 = I ... (2)
From (1) and (2), we have

∴      –1 1 ( )A = Adj. A
| A |

Example 1.   If A = 1, .
3 – 3 4
2 – 3 4 find A
0 – 1 1

−

 
 
 
  

Solution.  A = 
3 –3 4
2 – 3 4
0 – 1 1

 
 
 
  

 | A | = 3 (– 3 + 4) + 3 (2 – 0) + 4 (– 2 – 0) = 3 + 6 – 8 = 1
The co-factors of elements of various rows of | A | are

   
( 3 4) ( 2 0) ( 2 0)
(3 4) (3 0) (3 0)
( 12 12) ( 12 8) ( 9 6)

− + − − − − 
 − − − 
 − + − + − + 

Therefore, the matrix formed by the co-factors of | A | is

 
1 2 2
1 3 3 , .
0 4 3

Adj A
− − 

 − 
 − − 

 = 
1 1 0
2 3 4
2 3 3

− 
 − − 
 − − 

∴ 1 1 .
| |

A Adj A
A

− =  = 
1 1 0 1 1 0

1 2 3 4 2 3 4
1

2 3 3 2 3 3

− −   
   − − = − −   
   − − − −   

 Ans.

Example 2. If A and B are non-singular matrices of the same order then,

  (AB)–1 = B–1. A–1

Hence prove that (A–1)m = (Am)–1 for any positive integer m.

Solution. We know that,

  (AB) . (B–1 A–1) = [(AB) B–1] . A–1 = [A (BB–1] . A–1

   = [AI] A–1 = A . A–1 = I

Also,   B–1 A–1 . (AB) = B–1[A–1 . (AB)] = B–1 [(A–1 A) . B]

   = B–1 [I . B] = B–1 . B = I

By�definition�of�the�inverse�of�a�matrix,�B–1 A–1 is inverse of AB.
ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 
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⇒  B–1 A–1 = (AB)–1 Proved.

  (Am)–1 = [A . Am–1]–1 = (Am–1)–1 A–1

   = (A . Am–2)–1 . A–1 = [(Am–2)–1 . A–1] . A–1 = (Am–2)–1 (A–1)2

   = (A . Am–3)–1 . (A–1)2 = [(Am–3)–1 . A–1] (A–1)2 = (Am–3)–1 (A–1)3

   = A–1 (A–1)m–1 = (A–1)m Proved.

EXERCISE 31.3
Find the adjoint and inverse of the following matrices: (1 - 3)

 1. 
2 5 3
3 1 2
1 2 1

 
 
 
  

 2. 
1 1 2
1 9 3
1 4 2

 
 
 
  

 3. 
1 0 1
3 4 5
0 6 7

− 
 
 
 − − 

 4. If 
3 4
1 1

A
− 

=  − 
, then show that 

1 2 4
1 2

n n n
A

n n
+ − 

=  − 

 5. If A = 
1 1 2 1 1 3
1 2 1 , 0 3 2 ,
0 1 1 1 1 1

P
−   

   − =   
   −   

 show that P–1 AP = 
1 0 0
0 2 0
0 0 1

− 
 
 
  

 (Ranchi University 2019)

 6. If A = 
1 1 1 2 5 3
1 2 3 , 3 1 2 ,
1 4 9 1 2 1

B
   
   =   
      

 show that (AB)–1 = B–1 A–1.

 7. Given the matrix A = 
3 2 2
1 3 1
5 3 4

 
 
 
  

 compute det (A), A–1 and the matrix B such that AB = 
3 4 2
1 6 1
5 6 4

 
 
 
  

  

Also compute BA. Is AB = BA ?
 8. Find the condition of k such that the matrix

  A = 
1 3 4
3 6
1 5 1

k
 
 
 
 − 

 has an inverse. Obtain A–1 for k = 1.

 9. Prove that (A–1)T = (AT)–1.

 10. If 
0 1 2 1
2 1 1 0

A
   

=   − −   
 where 

a b
A

c d
 

=  
 

, then A is

  (a) 
2 1
0 0
 
 
 

       (b) 
0 1
2 1
 
 − 

      (c)  
2 1
1 0

 
 − 

     (d)  
2 1
1 1
2 2

 
 
 − −
 

 (AMIETE, June 2010) 

ANSWERS
Find the adjoint and inverse of the following matrices: (1 – 3)

 1. 
3 1 7

1 1 1 5
4

5 1 13

− 
 − − 
 − 

 2. 
6 6 15

1 1 0 1
3

5 3 8

− 
 − − 
 − − 

 3. 
2 6 4

1 21 7 8
20

18 6 4

 
 − − 
 − 
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 7. 
9 2 4 1 0 0

15, 1 2 1 . 0 2 0 ,
5

12 1 7 0 0 1
B AB BA

− −   
   − = ≠   
   −   

 8. 1

29 17 14
3 1, 9 5 6
5 8

16 8 8
k A−

− 
 ≠ − = − 
 − − 

 10. (d)

31.12 ELEMENTARY TRANSFORMATIONS

Any one of the following operations on a matrix is called an elementary transformation.

1. Interchanging any two rows (or columns). This transformation is indicated by Rij, if 
the ith and jth rows are interchanged.

2. Multiplication of the elements of any row Ri (or column) by a non-zero scalar quantity 
k is denoted by (k.Ri).

3. Addition of constant multiplication of the elements of any row Rj to the corresponding 
elements of any other row Rj is denoted by (Ri + kRj).

 If a matrix B is obtained from a matrix A by one or more E-operations, then B is said 
to be equivalent to A. The symbol ~ is used for equivalence.

  i.e., A ~ B.

Example 1. Reduce the following matrix to upper triangular form (Echelon form) :

   
1 2 3
2 5 7
3 1 2

 
 
 
  

Solution. Upper triangular matrix. If in a square matrix, all the elements below the 
principal diagonal are zero, the matrix is called an upper triangular matrix.

2 2 1

3 3 23 3 1

1 2 3 1 2 3 1 2 3
22 5 7 ~ 0 1 1 ~ 0 1 1

533 1 2 0 5 7 0 0 2

R R R
R R RR R R

     
→ −     

      → +→ −     − − −     

 Ans.

Example 2. Transform 
1 3 3
2 4 10
3 8 4

 
 
 
  

 into a unit matrix.

Solution. 2 2 1

3 3 1

1 3 3 1 3 3
22 4 10 ~ 0 2 4
33 8 4 0 1 5

R R R
R R R

   
    → −−   
    → −− −   

 
1 1 2

2 2

3 3 2

31 3 3 1 0 9
1~ 0 1 2 ~ 0 1 2
2

0 1 5 0 0 7

R R R
R R

R R R

→ −   
   − → − −   
    → +− − −   
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1 1 3

2 2 3

3 3

1 0 9 1 0 0 9
~ 0 1 2 ~ 0 1 0 21

0 0 1 0 0 17

R R R
R R R

R R

−    →
   − → +   

→ −      

 Ans.

TO COMPUTE THE INVERSE OF A MATRIX FROM ELEMENTARY

MATRICES (Gauss-jordan Method)
If A is reduced to I by elementary transformation then
  PA = I where P = PnPn–1 ... P2 P1

∴  P = A–1   = Elementary matrix.

 Working rule. Write A = IA. Perform elementary row transformation on A of the left 
side and on I of the right hand side so that A is reduced to I and I of right hand side is 
reduced to P getting I = PA.

Then P is the inverse of A.

31.13 THE INVERSE OF A SYMMETRIC MATRIX

 The elementary transformations are to be transformed so that the property of being 

symmetric is preserved. This requires that the transformations occur in pairs, a row 

transformation must be followed immediately by the same column transformation.

 Example 1. Find the inverse of the following matrix employing elementary transformations:

   
3 3 4
2 3 4
0 1 1

− 
 − 
 − 

 (U.P. I Semester Compartment 2013)

Solution. The given matrix is A = 
3 3 4
2 3 4
0 1 1

− 
 − 
 − 

 
3 3 4
2 3 4
0 1 1

− 
 − 
 − 

 = 
1 0 0
0 1 0
0 0 1

A
 
 
 
  

	 ⇒  

41 1
3

2 3 4
0 1 1

 − 
 

− 
 − 

 = 

1
1

1 0 0
33

0 1 0
0 0 1

RR

A

  → 
 
 
  

⇒ 

41 1
3
40 1
3

0 1 1

 − 
 
 − 
 − 

  =  

2 2 1

1 0 0
3
2 1 0
3

20 0 1

A
R R R

 
 
 
 − 
  → −
 

  ⇒	 

41 1
3
40 1
3

0 1 1

 − 
 
 − 
 − 

 = 
2 2

1 0 0
3
2 1 0
3
0 0 1

A
R R

 
 
 
 − 

→ − 
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	 ⇒ 

41 1
3
40 1
3
10 0
3

 − 
 
 − 
 
 −
  

 = 

3 3 2

1 0 0
3
2 1 0
3
2 1 1
3

A

R R R

 
 
 
 − 
 
  → +−
  

 

	 ⇒ 

41 1
3
40 1
3

0 0 1

 − 
 
 − 
 
 

 = 

3 3

1 0 0
3
2 1 0
3
2 3 3 3

A

R R

 
 
 
 − 
 − − → − 

	 ⇒ 
1 1 0
0 1 0
0 0 1

− 
 
 
  

 = 
1 1 3

2 2 3

43 4 4
32 3 4 4

2 3 3 3

R R R
A

R R R

−  → −
 − −  → +
 − − 

	 ⇒ 
1 0 0
0 1 0
0 0 1

 
 
 
  

 = 
1 1 21 1 0

2 3 4
2 3 3

R R R
A

− → + 
 − − 
 − − 

 Hence,  A–1 = 
1 1 0
2 3 4
2 3 3

− 
 − − 
 − − 

 Ans.

EXERCISE 31.4
Reduce the matrices to triangular form:

 1. A = 
1 2 3
2 5 7
3 1 2

 
 
 
  

 2. 
3 1 4
1 2 5
0 1 5

 
 − 
  

Find the inverse of the following matrices:

 3. 
1 3 3
1 4 3
1 3 4

 
 
 
  

 4. 
1 – 1 1
4 1 0
8 1 1

 
 
 
  

Use elementary row operations to find inverse of 

 5. 
1 1 3
1 3 3
2 4 4

A
 
 = − 
 − − − 

 (AMIETE, June 2010) 6. 

2 1 – 1 2
1 3 2 – 3

– 1 2 1 – 1
2 – 3 – 1 4
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 7. 

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

 
 
 
 
 
 

 8. 

2 1 –1 2
1 3 2 –3

–1 2 1 –1
2 –3 –1 4

 
 
 
 
 
 

 9. 

2 –6 –2 –3
5 –13 –4 –7

–1 4 1 2
0 1 0 1

 
 
 
 
 
 

 10. 

1 3 3 2 1
1 4 3 3 – 1
1 3 4 1 1
1 1 1 1 – 1
1 – 2 – 1 2 2

 
 
 
 
 
 
  

ANSWERS

 1. 
1 2 3
0 1 1
0 0 –2

 
 
 
  

 2. 
0 1 4
0 5 –19
0 0 22

 
 
 
  

 3. 
7 – 3 – 3

– 1 1 0
– 1 0 1

 
 
 
  

 4. 
1 2 – 1

– 4 – 7 4
– 4 – 9 5

 
 
 
  

 5. 
12 4 6

1 5 1 3
4

1 1 1

 
 − − − 
 − − − 

 6. 

2 5 – 7 1
5 – 1 5 21

– 7 5 11 1018
1 – 2 10 5

 
 − 
 
 
 

 7. 

1 –2 1 0
1 –2 2 –3
0 1 –1 1

–2 3 –2 3

 
 
 
 
 
 

  8. 

2 5 –7 1
5 –1 5 –21

–7 5 11 1018
1 –2 10 5

 
 
 
 
 
 

 9. 

–2 1 0 1
1 0 2 –1

–4 1 –3 1
–1 0 –2 2

 
 
 
 
 
 

 10. 

30 – 20 – 15 25 – 5
30 – 11 – 18 7 – 8

1 – 30 12 21 – 9 6
15

– 15 12 6 – 9 6
15 – 7 – 6 – 1 – 1

 
 
 
 
 
 
  

31.14 RANK OF A MATRIX

The rank of a matrix is said to be r if
(a)  It has at least one non-zero minor of order r.
(b)  Every minor of A of order higher than r is zero.

Notes: (i) Non-zero row is that row in which all the elements are not zero.
 (ii)  The rank of the product matrix AB of two matrices A and B is less than the rank of 

either of the matrices A and B.
 (iii)  Corresponding to every matrix A of rank r, there exist non-singular matrices P and 

Q such that  PAQ = 
0

0 0
rI 
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31.15 NORMAL FORM (CANONICAL FORM)

 By performing elementary transformation, any non-zero matrix A can be reduced to one 
of the following four forms, called the Normal form of A :

(i) Ir (ii) [Ir 0] (iii) 
0

rI 
 
 

 (iv) 
0

0 0
rI 

 
 

 The number r so obtained is called the rank of A and we write ρ(A) = r. The form 
0

0 0
rI 

 
 

 

is�called�first�canonical�form�of�A. Since both row and column transformations may be 
used�here,�the�element�1�of�the�first�row�obtained�can�be�moved�in�the�first�column.�Then�
both�the�first�row�and�first�column�can�be�cleared�of�other�non-zero�elements.�Similarly,�
the element 1 of the second row can be brought into the second column, and so on.
Example 1. Find the rank of the following matrix by reducing it to normal form

  A = 

1 2 – 1 3
4 1 2 1
3 – 1 1 2
1 2 0 1

 
 
 
 
 
 

Solution. 

1 2 – 1 3
4 1 2 1
3 – 1 1 2
1 2 0 1

 
 
 
 
 
 

 = 2 2 1

3 3 1

4 4 1

1 2 – 1 3
0 – 7 6 – 11 – 4
0 – 7 4 – 7 – 3
0 0 1 – 2 –

R R R
R R R
R R R

 
  → 
  →
 

→ 

 

1 2 1 3
0 – 7 6 – 11
0 – 7 4 – 7
0 0 1 – 2

− 
 
 
 
 
 

  = 
3 3 2

1 2 1 3
0 – 7 6 – 11

–0 0 – 2 4
0 0 1 – 2

R R R

− 
 
 

→ 
 
 

 C2 → C2 – 2 C1, C3 → C3 + C1, C4 → C4 – 3C1

 

1 0 0 0
0 – 7 6 11
0 0 – 2 4
0 0 1 – 2

 
 
 
 
 
 

  = 

4 4 3

1 0 0 0
0 – 7 6 11
0 0 – 2 4

1
0 0 0 0

2
R R R

 
 
 
 
  → + 

 C3 → C3 + 
6
7

 C2, C4 → C4 – 
11
7

C2,

 C4 → C4 + 2C3 

1 0 0 0
0 – 7 0 0
0 0 – 2 0
0 0 0 0

 
 
 
 
 
 

  = 2 2

3 3

1 0 0 0
– 1/ 70 1 0 0
– 1/ 20 0 1 0

0 0 0 0

R R
R R

 
  → 
  →
 
 

 Rank of A = 3 Ans.
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Example 2. For which value of ‘b’ the rank of the matrix

 A = 
1 5 4
0 3 2
b 13 10

 
 
 
  

 is 2, (U.P. I Semester 2016)

 Solution. Here, we have

 A = 
1 5 4
0 3 2

13 10b

 
 
 
  

 = 

3 3 1

1 5 4
0 3 2
0 13 – 5 10 – 4 R R – Rb b b

 
 
 
  → 

 ~ 
1 0 0
0 3 2
0 13 – 5 10 – 4b b

 
 
 
  

 2 2 1

3 3 1

5
4

C C C
C C C

→ −
→ −

 ~ 

3 3 2

1 0 0
0 3 2

2(2 – ) 13 – 50 0 R R – R
3 3

b b

 
 
 
 

→  

 If rank of A is 2, then 
2(2 – )

3
b

 must be zero. 

i.e; 
2(2 – )

3
b

 = 0  ⇒ 2 – b = 0 ⇒ b = 2 Ans.

31.16 RANK OF MATRIX BY TRIANGULAR FORM

Rank = Number of non-zero row in upper triangular matrix.

Note. Non-zero row is that row which does not contain all the elements as zero.

Example 1. Find the rank of the matrix

   
1 2 3 2
2 3 5 1
1 3 4 5

 
 
 
  

Solution.  2 2 1

3 3 1

1 2 3 2 1 2 3 2
2 3 5 1 0 – 1 1 – 3 – 2
1 3 4 5 0 1 1 3 –

R R R
R R R

   
   − →   
    →   



   
3 3 2

1 2 3 2
0 – 1 – 1 – 3
0 0 0 0 R R R

 
 
 
  → + 



Rank = Number of non zero rows = 2. Ans.

Example 2. Find the rank of the matrix

   

– 1 2 3 – 2
2 – 5 1 2
3 – 8 5 2
5 – 12 – 1 6
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Solution. 

– 1 2 3 – 2
2 – 5 1 2
3 – 8 5 2
5 – 12 – 1 6

 
 
 
 
 
 

~ 
2 2 1

3 3 1

4 4 1

– 1 2 3 – 2
20 – 1 7 – 2
30 – 2 14 – 4
50 – 2 14 – 4

R R R
R R R
R R R

 
  → + 

→ + 
  → + 

   ~ 
3 3 2

4 4 2

– 1 2 3 – 2
– 20 – 1 7 – 2

20 0 0 0
0 0 0 0

R R R
R R R

 
  → 
  → −
 
 

Here the 4th order and 3rd order minors are zero. But a minor of second order

 
3 – 2

– 6 14
7 – 2

= +  = 8 ≠ 0

Rank = Number of non-zero rows = 2. Ans.
Example 3. Use elementary transformation to reduce the following matrix A to triangular 
from and hence find the rank of A.

 A = 

2 3 – 1 1
1 – 1 – 2 – 4
3 1 3 – 2
6 3 0 – 7

− 
 
 
 
 
 

  

(R.G.P.V. Bhopal June 2018, U.P. I Semester Dec. 2018)

Solution. We have,

 A = 1 2

2 3 – 1 1 1 – 1 – 2 – 4
1 – 1 – 2 – 4 2 3 – 1 – 1
3 1 3 – 2 3 1 3 – 2
6 3 0 – 7 6 3 0 – 7

R R

−   
   
   ≈ ←→
   
   
   

 ≈ 2 2 1

3 3 23 3 1

4 4 24 4 1

1 – 1 – 2 – 4 1 – 1 – 2 – 4
0 5 3 7 0 5 3 7– 2
0 4 9 10 0 0 33 / 5 22 / 5 – 4 / 53
0 9 12 17 0 0 33 / 5 22 / 5 – 9 / 5– 6

R R R
R R RR R R
R R RR R R

   
   →   ≈
    →→ −
   

→→   

 ≈ 

4 4 3

1 – 1 – 2 – 4
0 5 3 7
0 0 33 / 5 22 / 5
0 0 0 0 –R R R

 
 
 
 
 

→ 

 R(A) = Number of non-zero rows.

∴ R(A) = 3 Ans.
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EXERCISE 31.5
Find the rank of the following matrices:

 1. 
1 2 3
2 4 7
3 6 10

 
 
 
  

 2. 
1 2 1

– 1 0 2
2 1 – 3

 
 
 
  

 3. 
0 1 2 – 2
4 0 2 6
2 1 3 1

 
 
 
  

 4. 
2 4 3 – 2

– 3 – 2 – 1 4
6 – 1 7 2

 
 
 
  

 5. 

3 4 1 1
2 4 3 6

– 1 – 2 6 4
1 – 1 2 – 3

 
 
 
 
 
 

 6. 

1 4 3 – 2 1
– 2 – 3 – 1 4 3
– 1 6 7 2 9
– 3 3 6 6 12

 
 
 
 
 
 

Reduce the following matrices to Echelon form and find out the rank

 7. 
1 1 2
1 2 2
2 2 3

 
 
 
  

  8. 

1 2 3 0
2 4 3 2
3 2 1 3
6 8 7 5

 
 
 
 
 
 

 9. 
3 2 5 7 12
1 1 2 3 5
3 3 6 9 15

 
 
 
  

  10. 

2 – 4 3 1 0
1 – 2 1 – 4 2
0 1 – 1 3 1
4 – 7 4 – 4 5

 
 
 
 
 
 

 3 0
, Rank = 3

0 0
I 
 
 

  Using elementary transformations, reduce the following matrices to the canonical form  
(or row-reduced Echelon form):

 11. 

0 0 0 0 0
0 1 2 3 4
0 2 3 4 1
0 3 4 1 2

A

 
 
 =
 
 
 

 12. 

0 4 – 12 8 9
0 2 – 6 2 5
0 1 – 3 6 4
0 – 8 24 3 1

A

 
 
 =
 
 
 

Using elementary transformations, reduce the following matrices to the normal form:

 13. 
1 2 0 – 1
3 4 1 2

– 2 3 2 5
A

 
 =  
  

 14. 
1 2 3 4
3 4 1 2
4 3 1 2

A
 
 =  
  

Obtain a matrix N in the normal form equivalent to

 15. 

0 0 0 0 0
0 4 5 0 0
0 9 1 – 1 2
0 10 0 1 11

A

 
 
 =
 
 
 

� � Hence�find�non-singular�matrices�P and Q such that PAQ = N.

 16. 
1 – 3 1 2
0 1 2 3
3 4 1 – 2
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Find the rank of the following matrix by reducing it into normal form:

 17. 

1 3 2 5 1
2 2 – 1 6 3
1 1 2 3 – 1
0 2 5 2 – 3

A

 
 
 =
 
 
 

 18. 

1 2 3 1
1 3 3 2
2 4 3 3
1 1 1 1

A

 
 
 =
 
 
 

Choose the correct answer:

 19. Rank of matrix 
1 2 3
1 4 2
2 6 5

A
 
 =  
  

 is

  (a) 0 (b) 1 (c) 3 (d) 2 (D.U. 2018)

ANSWERS
 1. 2 2. 3 3. 2
 4. 3 5. 4 6. 2

 7. 
1 0 0
0 1 0
0 0 1

 
 
 
  

, Rank = 3  8. 3 0
, Rank = 3

0 0
I 
 
 

 9. 2 0
, Rank = 2

0 0
I 
 
 

   10. 3 0
, Rank = 3

0 0
I 
 
 

 13. 
1 0 0 0
0 1 0 0
0 0 1 0

A
 
 =  
  

   14. 
1 0 0 0
0 1 0 0
0 0 1 0

A
 
 =  
  

 17. 3   18. 4

 19. (d)

31.17 SOLUTION OF SIMULTANEOUS EQUATIONS

�The�matrix�of�the�coefficients�of�x, y, z is reduced into Echelon form by elementary row 
transformations. At the end of the row transformation the value of z is calculated from the 
last equation and value of y and the value of x are calculated by the backward substitution.
Solve with the help of matrices, the simultaneous equations.
 (Vidyasagar Univercity 2018)
Example 1. Solve: x + y + z = 3
 x + 2y + 3z = 4
 x + 4y + 9z = 6
Solution. Above equations written in matrix form

2 2 1

3 3 1

1 1 1 3
1 2 3 4
1 4 9 6

x
R R R

y
R R R

z

     
→ −     =      → −
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3 3 2

1 1 1 3
0 1 2 1 2
0 2 6 2

x
y R R R
z

     
     = → −     
          

1 1 1 3
0 1 2 1
0 0 2 0

x
y
z

     
     =     
          

x + y + z = 3 ...(1)
y + 2z = 1 ...(2)
2z = 0 ⇒ z = 0

putting z = 0 in (2), we get
 y = 1
putting the value of y and z in (1), we get
 x = 2
Hence x = 2, y = 1, z = 0 Ans
Example 2.  Find the general solution of the system of equations:
  3x1 + 2x3 + 2x4 = 0
  – x1 + 7x2 + 4x3 + 9x4 = 0
  7 x1 – 7x2 – 5x4 = 0
Solution. The system of equations in the matrix form is expressed as

  

1

2

3

4

3 0 2 2
1 7 4 9
7 7 0 5

x
x
x
x

 
   
   −   
 − −   

 

 = 
0
0
0

 
 
 
  

  

1

2

3

4

1 7 4 9
3 0 2 2
7 7 0 5

x
x
x
x

 
−   
   
   
 − −   

 

 = 1 2

0
0
0

R R
 
  ↔ 
  

  

1

2

3

4

1 7 4 9
0 21 14 29
0 42 28 58

x
x
x
x

 
−   
   
   
    

 

 = 2 2 1

3 3 1

0
3

0
7

0

R R R
R R R

 
→ + 

  → +
  

  

1

2

3

4

1 7 4 9
0 21 14 29
0 0 0 0

x
x
x
x

 
−   
   
   
    

 

 = 3 3 2

0
0 2
0

R R R
 
  → − 
  

  – x1 + 7 x2 + 4 x3 + 9 x4 = 0 ... (1)
     21 x2 + 14 x3 + 29 x4 = 0 ... (2)
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Let  x4 = a, x3 = b

From (2), 21 x2 + 14 b + 29 a = 0 or x2 = 
2 29
3 21
b a

− −

From (1), 1
2 297 4 9
3 21
b ax b a − + − − + +    = 0

 x1 = 
2 2
3 3
a b

− −

 x1 = 
2 ( )
3

a b− + , x2 = 
1 (29 14 )
21

a b− +

 x3 = b, x4 = a Ans.

31.18 TYPES OF LINEAR EQUATIONS
 (1) Consistent. A system of equations is said to be consistent, if they have one or more 

solution i.e.
  x + 2y = 4 x + 2y = 4
  3x + 2y = 2 3x + 6y = 12

� � � Unique�solution� Infinite�solution
 (2) Inconsistent. If a system of equation has no solution, it is said to be inconsistent i.e.

 x +2 y = 4
 3x + 6y = 5

31.19 CONSISTENCY OF A SYSTEM OF LINEAR EQUATIONS
 a11 x1 + a12 x2 + . . . a1n xn = b1
 a21 x1 + a22 x2 + . . . a2n xn = b2

        ...........................................................................
  am1 x1 + am2 x2 + ... amn xn= bm

⇒	

11 12 1
1

21 22 2
2

1 2

..........
..........

..............................
...

..........

n

n

m m mn
m

a a a
x

a a a
x

a a a
x

 
  
  
  
  
  
   

 = 

1

2

....

m

b
b

b

 
 
 
 
 
 

and C = [A, B] = 

11 12 1 1

21 22 2 2

1 2

..........
..........

.....................................
..........

n

n

m m mn m

a a a b
a a a b

a a a b

 
 
 
 
 
 

⇒ AX = B
is called the augmented matrix.

  [ : ]A B C=

(a) Consistent equations. If Rank A = Rank C
 (i) Unique solution: Rank A = Rank C = n [where n = number of unknown.]
 (ii) Infinite solution: Rank A = Rank C = r, r < n
(b) Inconsistent equations. If Rank A ≠ Rank C.
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In Brief:

A system of non-homogeneous linear equations

=AX B

Find R (A) and R (C)

Solution exists, system

is consistent

No solution, system

is inconsistent

Infinite no. of

solutions

Unique

solution

R (A) R (C)≠R (A) = R (C)

R (A) = R (C) < n (no. of unknowns)
R (A) = R (C)
= n (no. of unknowns)

Example 1. Show that the equations
  2x + 6y = – 11, 6x + 20y – 6z = – 3, 6y – 18z = – 1

  are not consistent.
Solution. Augmented matrix C = [A, B]

 = 2 2 1

2 6 0 : 11 2 6 0 : 11
6 20 6 : 3 ~ 0 2 6 : 30 3
0 6 18 : 1 0 6 18 : 1

R R R
− −   

   − − − → −   
   − − − −   

   
2 6 0 : 11
0 2 6 : 30
0 0 0 : 91

− 
 − 
 − 

 R3 → R3 – 3 R2 

The rank of C is 3 and the rank of A is 2.
Rank of A ≠ Rank of C.       The equations are not consistent. Ans.
Example 2. Test the consistency and hence solve the following set of equations.

  x1 + 2x2 + x3 = 2

  3x1 + x2 – 2x3 = 1

  4x1 – 3x2 – x3 = 3

  2x1 + 4x2 + 2x3 = 4

Solution. The given set of equations is written in the matrix form:

 
1

2

3

1 2 1
3 1 2
4 3 1
2 4 2

x
x
x

 
  −   
  − −
    

 

 = 

2
1
3
4

 
 
 
 
 
 

 AX = B
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Here, we have augmented matrix C = 

1 2 1 2
3 1 2 1

[ , ] ~
4 3 1 3
2 4 2 4

A B

 
 − 
 − −
 
 

2 2 1

3 3 1

4 4 1

1 2 1 2
30 5 5 5

~
40 11 5 5
20 0 0 0

R R R
R R R
R R R

 
  → −− − − 

→ − − − −
  → − 

 2 2

1 2 1 2
10 1 1 1

~ 50 11 5 5
0 0 0 0

R R
 
  → − 
 − − −
 
 

3 3 2

1 2 1 2
0 1 1 1

~
110 0 6 6

0 0 0 0
R R R

 
 
 
  → +
 
 

 
3 3

1 2 1 2
0 1 1 1

~ 10 0 1 1
6

0 0 0 0
R R

 
 
 
  →
 
 

 Number of non-zero rows = Rank of matrix.
 	 ⇒ R(C) = R(A) = 3
 Hence, the given system is consistent and possesses a unique solution. In matrix form 
the system reduces to

 
1

2

3

1 2 1
0 1 1
0 0 1
0 0 0

x
x
x

 
  
  
  
    

 

 = 

2
1
1
0

 
 
 
 
 
 

 x1 + 2x2 + x3 = 2 ... (1)
 x2 + x3 = 1 ... (2)
 x3 = 1
From (2), x2 + 1 = 1 ⇒  x2 = 0
From (1), x1 + 0 + 1 = 2 ⇒  x1 = 1
Hence,  x1 = 1, x2 = 0 and x3 = 1 Ans.

Example 3. Investigate the values of λ and µ so that the equations:
 2x + 3y + 5z = 9
 7x + 3y – 2z = 8
 2x + 3y + λz = µ
  have (i) no solution     (ii) a unique solution
 (iii) an infinite number of solutions. (R.G.P.V. Bhopal I Semester June 2007)
Solution. Here, we have,
 2x + 3y + 5z = 9
 7x + 3y – 2z = 8
 2x + 3y + λz = µ
The above equations are written in the matrix form

 
2 3 5
7 3 2
2 3

x
y
z

   
   −   
   λ   

 = 
9
8
 
 
 
 µ 
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 AX = B

 C = [A : B] = 
2 3 5 9
7 3 2 8
2 3

 
 − 
 λ µ 







 = 2 2 1

3 3 1

2 3 5 : 9
15 39 47 70 :
2 2 2 2

0 0 5 : 9

R R R

R R R

 
 
 − − − → −
 
 λ − µ − → − 

(i) No solution.   Rank (A) ≠ Rank (C)
 λ – 5 = 0  or λ = 5   and  µ – 9 ≠ 0 ⇒   µ ≠ 9
(ii) A unique solution.   Rank (A) = R (C) = Number of unknowns
 λ – 5 ≠ 0    ⇒ 			λ ≠ 5 and µ ≠ 9
(iii) An infinite number of solutions.   Rank (A) = Rank (C) = 2
 λ – 5 = 0   and   µ – 9 = 0
 λ = 5   and   µ = 9 Ans.

31.20 HOMOGENEOUS EQUATIONS
For a system of homogeneous linear equations AX = O

 (i) X = O is always a solution. This solution in which each unknown has the value zero 
is called the Null Solution or the Trivial solution. Thus a homogeneous system is 
always consistent.

  A system of homogeneous linear equations has either the trivial solution or an 
infinite�number�of�solutions.

 (ii) If R (A) = number of unknowns, the system has only the trivial solution.
 (iii) If R (A)�<�number�of�unknowns,�the�system�has�an�infinite�number�of�non-trivial�

solutions.
A system of homogeneous linear equations

= OAX

Always has a

solution

Infinite no. of non-trivial

solutions

Unique or trivial

solution
(each unknown equal to zero)

Find R (A)

R (A) = n (no. of unknowns) R (A) < n (no. of unknowns)

Example 1. Determine ‘b’ such that the system of homogeneous equations
 2x + y +2z = 0 
 x + y +3z = 0
 4x +3y + bz = 0
has (i) Trivial solution
 (ii) Non-Trivial solution. Find the Non-Trivial solution using matrix method.
 (U.P. I Sem Dec 2008)
Solution. Here, we have 
 2x + y + 2z = 0
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 x + y + 3z = 0
 4x + 3y + bz = 0
(i)  For trivial solution: We know that x = 0, y = 0 and z = 0. So, b can have any 

value.
(ii) For non-trivial solution: The given equations are written in the matrix form as :

 
2 1 2
1 1 3
4 3 b

x
y
z

   
   
   
      

 =  
0
0
0

 
 
 
  

 A X = B
 R1 ↔ R2, R2 → R2 – 2R1, R3 → R3 – 4R1, R3 → R3 – R2

C = 
2 1 2 : 0 1 1 3 : 0 1 1 3 : 0 1 1 3 : 0
1 1 3 : 0 ~ 2 1 2 : 0 ~ 0 1 4 : 0 ~ 0 1 4 : 0
4 3 : 0 4 3 : 0 0 1 12 : 0 0 0 8 : 0b b b b

       
       − − − −       
       − − −       

For�non�trivial�solution�or�infinite�solutions�R (C) = R (A) = 2 < Number of unknowns
 b – 8 = 0,    b = 8 Ans.

31.21 CRAMER’S RULE
 a1x + b1y + c1z = d1

 a2x + b2y + c2z = d2

 a3x + b3y + c3z = d3

then D = 
1 1 1

2 2 2

3 3 3

,
a b c
a b c
a b c

 D1 = 
1 1 1

2 2 2

3 3 3

d b c
d b c
d b c

 D2 = 
1 1 1

2 2 2

3 3 3

,
a d c
a d c
a d c

 D3 = 
1 1 1

2 2 2

3 3 3

a b d
a b d
a b d

 x = 1 ,D
D

 y = 2 ,D
D

 z = 3D
D

Equations with three unknowns

D or D or D 01 ≠2 3

Inconsistent

D 0≠
Consistent with unique

solution

D = 0

Consistent with infinitely
many solutions

D = D = D = 01 2 3

EXERCISE 31.6
Test the consistency of the following equations and solve them if possible.

 1. 3x + 3y + 2z = 1,   x + 2y = 4,   10y + 3z = – 2,   2x – 3y – z = 5
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 2. x1 – x2 + x3 – x4 + x5 = 1, 2x1 – x2 + 3x3 + 4x5 = 2, 
  3x1 – 2x2 + 2x3 + x4 + x5 = 1, x1 + x3 + 2x4 + x5 = 0
 3. Find the value of k for which the following system of equations is consistent.
  3x1 – 2x2 + 2x3 = 3,  x1 + kx2 – 3x3 = 0,  4x1 + x2 + 2x3 = 7
 4. Find the value of λ for which the system of equations
  x + y + 4z = 1, x + 2y – 2z = 1,  λx + y + z = 1
  will have a unique solution. 

 5. Determine the values of a and b for which the system 
3 2 1
5 8 9 3
2 1 1

x b
y

a z

−     
     − =     
     −     

  (i) has a unique solution, (ii) has no solution and,  (iii)�has�infinitely�many�solutions.
 6. Choose λ� that�makes� the� following�system�of� linear�equations�consistent�and�find� the�general�

solution of the system for that λ.
  x + y – z + t = 2, 2y + 4z + 2t  = 3, x + 2y + z + 2t = λ
 7. Show that the equations 
  3x + 4y + 5z = a, 4x + 5y + 6z = b, 5x + 6y + 7z = c
  don’t have a solution unless a + c = 2b. 
  Solve the equations when a = b = c = – 1
 8. Find the values of k, such that the system of equations
  4 x1 + 9x2 + x3 = 0 ,  kx1 + 3x2 + kx3 = 0, x1 + 4x2 + 2x3 = 0 
� � has�non-trivial�solution.�Hence,�find�the�solution�of�the�system.
 9. Find values of λ for which the following system of equations has a non-trivial solution.
  3x1 + x2 – λx3 = 0, 2x1 + 4x2 + λx3 = 0, 8x1 – 4x2 – 6x3 = 0 (U.U. Odisha 2016)
 10. Find value of λ so that the following system of homogeneous equations have exactly two linearly 

independent solutions
  λx1 – x2 – x3 = 0,   – x1 + λx2 – x3 = 0,  – x1 – x2 + λx3 = 0,
 11. Find the values of k for which the following system of equations has a non-trivial solution.
  (3k – 8) x + 3y + 3z = 0, 3x + (3k – 8) y + 3z = 0,  3x + 3y + (3k – 8) z = 0 
 (AMIETE June 2010)
 12. Solve the homogeneous system of equations :
  4x + 3y – z = 0, 3x + 4y + z = 0, x – y – 2z = 0, 5x + y – 4z = 0

 13. If A = 
1 2 1
3 1 2
0 1

− 
 − 
 λ 

� � find� the�values�of�λ for which equation AX = 0 has (i) a unique solution, (ii) more than one 
solution.

 14. Show that the following system of equations:
  x + 2y – 2u = 0,   2x – y – u = 0,   x + 2z – u = 0,   4x – y + 3z – u = 0 
  do not have a non-trivial solution.
 15. Determine the values of λ and µ such that the following system has (i) no solution (ii) a unique 

solution (iii) infinite�number�of�solutions:�
  2x – 5y + 2z = 8,     2x + 4y + 6z = 5,     x + 2y + λz = µ 
 16. Test the following system of equations for consistency. If possible, solve for non-trivial solutions. 
  3x + 4y – z – 6t = 0,  2x + 3y + 2z – 3t = 0,   2x + y – 14z – 9t = 0,  x + 3y + 13z + 3t = 0
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 17. Given the following system of equations 
  2x – 2y + 5z + 3z = 0,  4x – y + z + w = 0,   3x – 2y + 3z + 4w = 0, x – 3y + 7z + 6w = 0
� � Reduce� the�coefficient�matrix�A� into�Echelon� form�and�find� the� rank�utilising� the�property�of�

rank,� test� the�given�system�of�equation�for�consistency�and�if�possible�find�the�solution�of� the�
given system.

 18. Find the values of λ for which the equations 
  (2 – λ) x + 2y + 3 = 0,     2x + (4 – λ) y + 7 = 0,      2x + 5y + (6 – λ) = 0
� � are�consistent�and�find�the�values�of�x and y corresponding to each of these values of λ.

ANSWERS
 1. Consistent, x = 2,  y = 1,  z = – 4
 2. x1 = – 3k1 + k2 – 1, x2 = –3k1 – 1, x3 = k1 – 2k2 + 1, x4 = k1, x4 = k1, x5 = k2 

 3. k = 
1
4

 4. λ	≠ 
7

10

 5. (i) a ≠ –3, (ii) a = –3, b ≠ 
1
3

, (iii) a = –3, b = 
1
3

 

 6. λ = 
7
2

 , x = 2
1 3
2

k+ , y = 2 1
3 2
2

k k− − , z = k2, t = k1

 7. x = k + 1, y = – 2 k – 1,z = k 8. k = 1, x1 = 2λ , x2 = –λ, x3 = λ
 9. λ = 1 10. λ = – l

 11. k = 
2 11,
3 3

 12. x = k, y = – k, z = k

 13. (i) λ ≠ 1, (ii) λ	– 1

 15. (i) λ = 3, 
5
2

µ ≠  (ii) λ ≠ 3,  (iii) λ = 3, µ = 
5
2

 16. x = 11k1 + 6k2, y = –8k1 – 3k2, z = k1  t = k2

 17. x = 5k, y = 36k, z = 7k, w = 9k 18. λ = 1, – 1, 12.
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32.1 INTRODUCTION

Eigen values and eigen vectors are used in the study of ordinary differential equations, 
analysing population growth and finding powers of matrices.

32.2 EIGEN VALUES

Let 

11 12 13 1 1

21 22 23 2 2

31 32 33 3 3

1 2 3

n

n

n

n n n nn n

a a a a x
a a a a x
a a a a x

a a a a x

   
   
   
   
   
   
      







     



 = 

1

2

3

n

y
y
y

y

 
 
 
 
 
 
  



  AX = Y ...(1) 
Where A is the matrix, X is the column vector and Y is also column vector.
 Here column vector X is transformed into the column vector Y by means of the square   
matrix A.
 Let X be a such vector which transforms into λX by means of the transformation (1). Sup-
pose the linear transformation Y = AX transforms X into a scalar multiple of itself i.e. λX.
  AX = Y = λ X
  AX – λ IX = 0
  (A – λI) X = 0 ...(2) 
 Thus the unknown scalar λ is known as an eigen value of the matrix A and the  
corresponding non zero vector X as eigen vector. 
The eigen values are also called characteristic values or proper values or latent values.

Let    
2 2 1
1 3 1
1 2 2

A
 
 =  
  

2 2 1 1 0 0 2 2 1
1 3 1 0 1 0 1 3 1
1 2 2 0 0 1 1 2 2

A I
−λ     

     − λ = −λ = −λ     
     − λ     

 is characteristic matrix

1

Eigen Values And  
Eigen VectorsCHAPTER

3232
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(a) Characteristic Polynomial: The determinant | A – λI | when expanded will give a 
polynomial, which we call as characteristic polynomial of matrix A.

     For example; 
2 2 1
1 3 1
1 2 2

− λ
− λ

− λ

   = ( 2 – λ) (6 – 5 λ + λ2 – 2) – 2 (2 – λ – 1) + 1( 2 – 3 + λ)
   = – λ3 + 7 λ2 – 11 λ + 5
(b) Characteristic Equation: The equation | A – λI | = 0 is called the characteristic 

equation of the matrix A e.g.
   λ3 – 7λ2 + 11 λ – 5 = 0
(c) Characteristic Roots or Eigen Values: The roots of characteristic equation 

| A – λI | = 0 are called characteristic roots of matrix A. e.g.
    λ3 – 7 λ2 + 11 λ – 5 = 0
⇒  (λ – 1) (λ – 1) (λ – 5) = 0 ∴ λ = 1, 1, 5
 Characteristic roots are 1, 1, 5.

Some Important Properties of Eigen Values (Gawhati 2018, PTU. 2017)
(1) Any square matrix A and its transpose A′ have the same eigen values.
(2) The sum of the eigen values of a matrix is equal to the trace of the matrix.
(3) The product of the eigen values of a matrix A is equal to the determinant of A.
(4) If λ1, λ2, ... λn are the eigen values of A, then the eigen values of

 (i) k A are kλ1, kλ2,   .....,   kλn (ii) Am are 1 2, ,.......,m m m
nλ λ λ

 (iii) A–1 are  
1 2

1 1, , ...., .
n

1
λ λ λ

Note. The sum of the elements on the principal diagonal of a matrix is called the trace 
of the matrix.

Example 1. Find the characteristic roots of the matrix  
6 2 2
2 3 1
2 1 3

− 
 − − 
 − 

Solution. The characteristic equation of the given matrix is (M.U. 2018)

     
6 2 2
2 3 1 0
2 1 3

− λ −
− − λ − =

− − λ

 ⇒ (6 – λ) (9 – 6λ + λ2 – 1) + 2 (–6 + 2λ + 2) + 2(2 – 6 + 2λ) = 0
 ⇒             –λ3 + l2 λ2 – 36λ + 32 = 0
  By trial, λ = 2 is a root of this equation.
 ⇒ (λ – 2) (λ2 – 10λ + 16) = 0  ⇒  (λ – 2) (λ – 2) (λ – 8) = 0
 ⇒ λ = 2, 2, 8 are the characteristic roots or Eigen values. Ans.
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Example 2. Find the eigen values of the matrix:

 
2 1 1
1 2 1
0 0 1

 
 
 
  

 (R.G.P.V. Bhopal, I Semester, June 2007)

Solution. Let 
2 1 1
1 2 1
0 0 1

A
 
 =  
  

The characteristic equation of A is
    | A – λI | = 0

  
2 1 1
1 2 1 0
0 0 1

− λ
− λ =

− λ

Expanding the determinant with the help of third row, we have

⇒  ( ) ( )21 2 1 0 − λ − λ − =    ⇒  ( )( )21 4 4 1 0− λ λ − λ + − =

⇒  ( )( )21 4 3 0− λ λ − λ + =    ⇒      ( )( )( )1 3 1 0− λ λ − λ − =

⇒        λ = 1, 1, 3
The eigen values of the given matrix are 1, 1 and 3. Ans.

Example 3. The matrix A is defined as 
1 2 3
0 3 2
0 0 2

A
− 

 =  
 − 

Find the eigen values of 3 A3 + 5 A2 – 6A + 2I.
Solution.     | A – λI | = 0

      
1 2 3
0 3 2 0
0 0 2

− λ −
− λ =

− − λ

 ⇒ (1 – λ) (3 – λ) (–2 – λ) = 0  or  λ = 1, 3, – 2

Eigen values of A3 = 1, 27, –8;  Eigen values of A2 = 1, 9, 4

Eigen values of A = 1, 3, –2;  Eigen values of I = 1, 1, 1

∴  Eigen values of 3 A3 + 5A2 – 6A + 2I

First eigen value = 3 (1)3 + 5 (1)3 – 6 (1) + 2(1) = 4

Second eigen value = 3 (27) + 5 (9) – 6 (3) + 2(1) = 110

Third eigen value = 3 (–8) + 5 (4) – 6 (–2) + 2 (1) = 10

Required eigen values are 4, 110, 10 Ans.
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Example 4. Show that for any square matrix A, the product of all the eigen values of A 
is equal to det (A), and the sum of all the eigen values of A is equal to the sum of the 
diagonal elements.

Solution. Let A = 
11 12 13 11 12 13

21 22 23 21 22 23

31 32 33 31 32 33

,| |  
a a a a a a
a a a A I a a a
a a a a a a

− λ 
  − λ = − λ 
  − λ 

       | A – λI | 

= (a11 – λ) [(a22 – λ) (a33 – λ) – a32 a23] – a12 [a21 (a33 – λ) – a31 a23] + 

a13 [a21 a32 – a31 (a22 – λ)]
= (a11 – λ) [a22 a33 – (a22 + a33) λ + λ2 – a32 a23] – a12 [a21 a33 – a21 λ – a31 a23] +

a13 (a21 a32 – a31a22 + a31 λ)
= a11 a22 a33 + (– a11 a22 – a11 a33) λ + a11 λ

2 – a11 a32 a23 + (– a22 a33 + a32 a23) λ +
 (a22 + a33) λ

2 – λ3  – a12 a21 a33 + a12 a31 a23+ a12 a21 λ +  
a13 a21 a32 – a13 a31 a22 + a13 a31 λ 

 = – λ3 + λ2 (a11 + a22
 + a33) + λ(– a11 a22

 – a11 a33 + a12 a21 – a22 a33 + a23 a32 + a13 a31)
    – [a11 (a22 a33 – a23 a32) – a12 (a21 a33 – a23 a31) + a13 (a21 a32 – a31 a22)] …(1)

If λ1, λ2, λ3 be the roots of the equation (1) then
Sum of the roots = λ1 + λ2 + λ3 = a11 + a22 + a33 = Sum of the diagonal elements. 
Product of the roots
 = λ1λ2λ3 = [a11 (a22 a33 – a23 a32) – a12 (a21 a33 – a23 a31) + a13 (a21 a32 – a31 a22)]
 = Determinant A. Proved.
Example 5. Let λ be an eigen value of a matrix A. Then prove that
    (i)  λ + k is an eigen value of A + kI
    (ii)  kλ is an eigen value of kA.  (Gujarat II Semester June 2009)
Solution. Here, A has eigen value λ.     ⇒   | A – λ I | = 0  ... (1)
(i)  Adding and subtracting kI from (1) we get
 | A + kI – λI – kI | = 0
⇒ | (A + kI) – (λ + k) I | = 0  ⇒    A + kI has λ + k eigen value.
(ii)  Multiplying (1), by k, we get
 k | A – λ I | = 0     ⇒   | kA – kλ I | = 0
⇒ kA has eigen value kλ. Proved.
Example 6. If λ1, λ2, .... λn are the eigen values of A, find the eigen values of the martrix  

 (A – λI)2.
Solution. (A – λ I)2 = A2 – 2λ AI + λ2 I2 = A2 – 2 λA + λ2 I

Eigen values of A2 are 2 2 3 2
1 2 3, , ... nλ λ λ λ

Eigen values of 2λ A are 2λ λ1,      2λ λ2,       2λ λ3 ... 2λ λn.
Eigen values of λ2 I are λ2.
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∴  Eigen values of A2 – 2λ A + λ2 I 

  2 2 2 2 2 2
1 1 2 2 3 32 , 2 , 2 ......λ − λλ + λ λ − λλ + λ λ − λλ + λ

⇒  ( ) ( ) ( )22 2 2
1 2 3, , , ... ( )nλ − λ λ − λ λ − λ λ − λ  Ans.

Example 7. Prove that a matrix A and its transpose A′ have the same characteristic roots.
Solution. Characteristic equation of matrix A is
   | A – λI | = 0 ... (1)
Characteristic equation of matrix A′ is
   | A′ –  λI | = 0 ...(2)
Clearly both (1) and (2) are same, as we know that
   | A | = | A′ |
i.e., a determinant remains unchanged when rows be changed into columns and columns 
into rows. Proved.
Example 8. If A and P be square matrices of the same type and if P be invertible, show 
that the matrices A and P–1 AP have the same characteristic roots.
Solution. Let us put B = P–1 AP and we will show that characteristic equations for both 
A and B are the same and hence they have the same characteristic roots.
    B – λI = P–1 AP – λI = P–1 AP – P–1 λlP = P–1 (A – λI) P
∴    | B – λI | = |P–1 (A – λI) P | = | P –1 | |A – λI| | P |
    = |A – λI | | P–1 | | P | = |A – λI| | P–1P|
    = |A –λI | | I | = | A – λI| as | I | = 1
Thus the matrices A and B have the same characteristic equations and hence the same 
characteristic roots. Proved.
Example 9. If A and B be two square invertible matrices, then prove that AB and BA 
have  the same characteristic roots.
Solution. Now AB = IAB = B–1 B (AB) = B –1 (BA) B ...(1)
But by Ex. 8, matrices BA and B–1 (BA) B have same characteristic roots or matrices BA 
and AB by (1) have same characteristic roots. Proved.
Example 10. If A and B be n rowed square matrices and if A be invertible, show that 
the matrices A–1 B and BA–1 have the same characteristics roots.
Solution. A–1 B = A–1 BI = A–1 B (A–1A) = A–1 (BA–1) A. ...(1)
But by Ex. 8, matrices BA–1 and A–1 (BA–1)A have same characteristic roots or matrices  
BA–1 and A–1 B by (1) have same characteristic roots.  Proved.
Example 11. Show that 0 is a characteristic root of a matrix, if and only if, the matrix 
is singular.
Solution. Characteristic equation of matrix A is given by
             | A – λI | = 0
If λ = 0, then from above it follows that | A | = 0 i.e. Matrix A is singular.
Again if Matrix A is singular i.e., | A | = 0 then
 | A – λI | =  0   ⇒   | A | – λ | I | = 0, 0 – λ · 1 = 0   ⇒   λ = 0. Proved.
Example 12. Show that characteristic roots of a triangular matrix are just the diagonal 
elements of the matrix.
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Solution. Let us consider the triangular matrix.

    

11

21 22

31 32 33

41 42 43 44

0 0 0
0 0

0

a
a a

A
a a a
a a a a

 
 
 =
 
 
 

Characteristic equation is |A – λI| = 0

or  

11

21 22

31 32 33

41 42 43 44

0 0 0
0 0

0
0

a
a a
a a a
a a a a

− λ
− λ

=
− λ

− λ

On expansion it gives
       (a11 – λ) (a22 – λ) (a33 – λ) (a44 – λ) = 0
∴             λ = a11,    a22,    a33,    a44

which are diagonal elements of matrix A. Proved.

Question  If λ is an eigen value of an orthogonal matrix, then 
1
λ

 is also eigen value.

 [Try Yourself]

[Hint: AA′  = I if λ is the eigen value of A, then 
11,2λ = λ =
λ

]

Example 13. Find the eigen values of the orthogonal matrix.

        –
–

1 2 2
1B =  2 1 2
3

2 2 1

 
 
 
  

Solution. The characteristic equation of

 
1 2 2
2 1 2
2 2 1

A
 
 = − 
 − 

 is 
1 2 2
2 1 2 0
2 2 1

− λ
− λ − =

− − λ
  

⇒ ( ) ( )( ) ( ) ( )1 1 1 4 2 2 1 4 2 4 2 1 0− λ  − λ − λ −  −  − λ +  + − − − λ  =     
⇒   (1–λ) (1 – 2λ + λ2 – 4) – 2(2 – 2λ + 4) + 2 (– 4 – 2 + 2λ) = 0

⇒ 3 23 9 27 0λ − λ − λ + =            ⇒      ( ) ( )23 3 0λ − λ + =

The eigen values of A are 3, 3, –3, so the eigen values 
1
3

B A=  are 1, 1, –1.

Note.  If λ = 1 is an eigen value of B then its reciproc
1 1 1

1
= =

λ
 is also an eigen value 

of B. Ans.
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EXERCISE 32.1

 1.  If λ be an eigen value of a non singular matrix A, show that 
| |A
λ

 is an eigen value of  

matrix adj A.
 2. There are infinitely many eigen vectors corresponding to a single eigen value.

 3. Find the eigen values of the matrix 
2 3 1
3 1 3
5 2 4

− 
 
 
 − − 

 4. Find the eigen value 
4 2 2
5 3 2
2 4 1

− 
 − 
 − 

 5. Find the product of the eigen value of the matrix 
3 3 3
2 1 1
1 5 6

− 
 
 
  

 6. Find the sum of the eigen values of the matrix 
3 2 1
1 3 2
4 1 5

 
 
 
  

 7. Find the eigen value of the inverse of the matrix 
4 6 6
1 3 2
1 4 3

 
 
 
 − − − 

 8. Find the eigen value of the square of the matrix 
1 0 1
1 2 1
2 2 3

− 
 
 
  

 9. Find the eigen values of the matrix 

33 1 4
0 2 6
0 0 5

 
 
 
  

 

 10. The sum and product of the eigen values of the matrix 
2 2 1
1 3 1
1 2 2

A
 
 =  
  

 are respectively

  (a) 7 and 7  (b) 7 and 5         (c) 7 and 6      (d) 7 and 8    (AMIETE June 2010)

ANSWERS
 3. Eigen values are 0, 1, –2 4. 1, 2, 5 5. 18

 6. 11 7.  –1, 
1
4

 8. 1, 4, 9

 9. 8, 27, 125 10. (b)
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32.3 CAYLEY-HAMILTON THEOREM
Satement. Every square matrix satisfies its own characteristic equation.

If ( ) ( )1 2
1 2| | 1 n n n n

nA I a a a− −− λ = − λ + λ + λ + +  be the characteristic polynomial of  

n × n matrix A = (aij), then the matrix equation

 1 2
1 2 0n n n

nX a X a X a I− −+ + + + =  is satisfied by X = A i.e

 1 2
1 2 0n n n

nA a A a A a I− −+ + + + =

Proof. Since the elements of the matrix A – λ I are at most of the first degree in λ, the 
elements of adj. (A – λI) are at most degree (n –1) in λ. Thus, adj. (A – λI) may be 
written as a matrix polynomial in λ, given by

   ( ) 1 2
0 1 1

n n
nAdj A I B B B− −
−− λ = λ + λ + +

where 0 1 1, , , nB B B −  are n × n matrices, their elements being polynomial in λ.

We know that ( ) ( ) | |A I Adj A I A I I− λ − λ = − λ

( )( ) ( ) ( )1 –2 1
0 1 1 1.... 1 ...nn n n n

n nA I B B B a a I− −
−− λ λ + λ + + = − λ + λ + +

Equating coefficient of like power of λ on both sides, we get

         

( )
( )
( )

( )

0

0 1 1

1 2 2

1

1

1

1
.................................

1

n

n

n

n
n n

IB I

AB IB a I

AB IB a I

AB a I−

− = −

− = −

− = −

= −

On multiplying the equation 1, ,...,n nA A I−  respectively and adding, we obtain

          ( ) 1
10 1 ...n n n

nA a A a I− = − + + + 

Thus    1
1 ... 0n n

nA a A a I−+ + + =

for example, Let A be square matrix and if 3 22 3 4 0λ − λ + λ − =  ...(1)
be its characteristic equation, then according to Cayley Hamilton Theorem (1) is satisfied  
by A.
        A3 – 2A2 + 3A – 4I = 0 ...(2)
We can find can A–1 from equation (2). On premultiplying equation (2) by A–1, we get

  2 1– 2 3 4 0A A I A−+ − =

 1 21 [ 2 3 ]
4

A A A I− = − +

Example 1.  Verify Cayley-Hamilton theorem for the matrix 
 (Vidyasagar University 2018)

   A = 
1 2
2 1
 
 − 

 and hence find A–1. (U.P.I Sem. Dec 2008)
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Solution. The characteristic equation of the matrix is |A – λ I| = 0

  
1 2

2 1
− λ

− − λ
 = 0

 (1– λ) (– 1– λ) – 4 = 0 ⇒ –1 + λ2 – 4 = 0 ⇒ λ2 – 5 = 0

By Cayley-Hamilton Theorem,   A2 – 5I = 0 ...(1)

Now,  A2 = A.A = 
1 2 1 2 5 0
2 1 2 1 0 5
     

=     − −     

  A2 – 5I = 
5 0 1 0 5 0 5 0 0 0

5 0
0 5 0 1 0 5 0 5 0 0

−         
− = + + =         −         

 ....(2) 

From (1) and (2), Cayley-Hamilton theorem is verified. 
Again from (1), we have 
  A2 – 5I = 0
Multiplying by A–1, we get 

              A – 5 A–1 = 0 ⇒ A–1 = 
1
5

 A   ⇒   A–1 = 

1 2
1 21 5 5
2 1 2 15

5 5

 
  

=   −   −  

 Ans.

Example 2.  Verify Cayley-Hamilton Theorem for the following matrix:

  A = 
2 1 1
1 2 1
1 1 2

− 
 − − 
 − 

          and use the theorem to find A–1.  (Delhi University April 2010)

Solution.  We have  A = 
2 1 1
1 2 1
1 1 2

− 
 − − 
 − 

Characteristic equation
 | A – λ I | = 0

 
2 1 1
1 2 1
1 1 2

− λ −
− − λ −

− − λ
 = 0

⇒ (2 – λ) (4 + λ2 – 4λ – 1) + (λ – 2 + 1) + (1 + λ – 2) = 0
⇒   2λ2 –8λ + 6 – λ3 + 4 λ2 – 3λ + 2 λ – 2 = 0
⇒  – λ3 + 6λ2 – 9λ + 4 = 0
⇒  λ3 – 6λ2 + 9λ – 4 = 0
By Cayley-Hamilton theorem
    A3 – 6A2 + 9A – 4 I = 0 ... (1)
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  A2 = 
2 1 1 2 1 1 6 5 5
1 2 1 1 2 1 5 6 5
1 1 2 1 1 2 5 5 6

− − −     
     − − − − = − −     
     − − −     

  A3 = A2.A = 
6 5 5 2 1 1 22 21 21
5 6 5 1 2 1 21 22 21
5 5 6 1 1 2 21 21 22

− − −     
     − − − − = − −     
     − − −     

From equation (1), we get

 L.H.S. = 
22 21 21 6 5 5 2 1 1 4 0 0
21 22 21 6 5 6 5 9 1 2 1 0 4 0
21 21 22 5 5 6 1 1 2 0 0 4

− − − −       
       − − − − − + − − + −       
       − − − −       

           = 
22 36 18 4 21 30 9 21 30 9 0 0 0

21 30 9 22 36 18 4 21 30 9 0 0 0 R.H.S
21 30 9 21 30 9 22 36 18 4 0 0 0

− + − − + − − +   
   − + − − + − − + − = =   
   − + − + − − + −   

Verify Cayley-Hamilton Theorem.
From (1),    A3 – 6A2 + 9A – 4I = 0
⇒ A2 – 6A + 9I – 4A–1  = 0

⇒                                  A–1 = 21 [ 6 9 ]
4

A A I− +

  = 
6 5 5 2 1 1 9 0 0

1 5 6 5 6 1 2 1 0 9 0
4

5 5 6 1 1 2 0 0 9

 − −      
      − − − − − +      
      − −      

   = 
3 1 1

1 1 3 1
4

1 1 3

− 
 
 
 − 

 Ans.

32.4 POWER OF MATRIX (by Cayley Hamilton Theorem)

Any positive integral power Am of matrix A is linearly expressible in terms of those of 
lower degree, where m is a positive integer and n is the degree of characteristic equa-
tion such that  m > n.
Example 1. Find A4 with the help of Cayley Hamilton Theorem, if

       
1 0 1
1 2 1
2 2 3

A
− 

 =  
  

Solution.  Here, we have 
1 0 1
1 2 1
2 2 3

A
− 

 =  
  

  

Characteristic equation of the matrix A is

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



Eigen Values Eigen Vectors 11

 
1 0 1
1 2 1 0
2 2 3

− λ −
− λ =

− λ
 ( )( )( )

3 26 11 6 0
1 2 3 0

⇒ λ − λ − λ − =
⇒ λ − λ − λ − =

Eigen values of A are 1, 2, 3.

Let ( ) ( ) ( )4 3 2 26 11 6 0Q a b cλ = λ − λ − λ − λ + λ + λ + =  ...(1)

(where Q (λ) is quotient)

Put λ = 1 in (1), (1)4 = a + b + c     ⇒         a + b + c = 1 ...(2)

Put λ = 2 in (1), (2)4 = 4a + 2b + c     ⇒      4a + 2b + c = 16 ... (3)

Put λ = 3 in (1), (3)4 = 9a + 3b + c     ⇒      9a + 3b + c = 81 ... (4)

Solving (2), (3) and (4), we get 

a = 25,  b = – 60,  c = 36

Replacing λ by matrix A in (1), we get

 ( ) ( ) ( )4 3 2 26 11 6A A A A Q A aA bA c= − + − + + +

 = O + aA2 + bA + cI

 ( )
1 0 1 1 0 1 1 0 –1 1 0 0

25 1 2 1 1 2 1 60 1 2 1 36 0 1 0
2 2 3 2 2 3 2 2 3 0 0 1

− −       
       = + − +       
              

 
25 50 100 60 0 60 36 0 0

125 150 100 60 120 60 0 36 0
250 250 225 120 120 180 0 0 36

− − − −     
     = + − − − +     
     − − −     

  
25 60 36 50 0 0 100 60 0 49 50 40
125 60 0 150 120 36 100 60 0 65 66 40

250 120 0 250 120 0 225 180 36 130 130 81

− − + − + + − + + − − −   
   = − + − + − + =   
   − + − + − +   

 Ans.

EXERCISE 32.2
 1. Find the characteristic polynomial of the matrix

   A = 
3 1 1
1 5 1
1 1 3

 
 − − 
 − 

  Verify Cayley-Hamilton Theorem for this matrix. Hence find A–1.
 2. Use Cayley-Hamilton Theorem to find the inverse of the matrix

    
cos sin
sin cos

θ θ 
 − θ θ 

 

 3. Using Cayley-Hamilton Theorem, find A–1, given that
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    A = 
2 1 3
1 0 2
4 2 1

− 
 
 
 − 

 4. Find the characteristic equation of the matrix

   
1 3 7
4 2 3
1 2 1

A
 
 =  
  

 and show that the equation is also satisfied by A.

 5. Using, Cayley-Hamilton Theorem obtain the inverse of the matrix

    
1 1 3
1 3 3
2 4 4

 
 − 
 − − − 

 6. Show that the matrix  
1 2 2
1 2 3
0 1 2

A
− 

 =  
 − 

  satisfies its characteristic equation. Hence find A–1.
 7. Verify Cayley-Hamilton Theorem for the matrix

    A = 
1 1 2
3 1 1
2 3 1

 
 
 
  

 Hence evaluate A–1.

 8. Verify Cayley-Hamilton theorem for the matrix

     A = 
1 2 3
2 4 2
1 1 2

− 
 − 
 − 

 9. Find adj. A by using Cayley-Hamilton thmeorem where A is given by

     A = 
1 2 1
0 1 1
3 1 1

 
 − 
 − 

 (R.G.P.V., Bhopal, April 2010)

 10. If a matrix 
1 0 0
0 1 0 ,
1 0 1

A
 
 = − 
  

 find the matrix A32, using Cayley Hamilton Theorem.

ANSWERS

 1. 1
7 2 3

1 1 4 1
20

2 2 8
A−

− − 
 =  
 − 

  2. 
cos sin
sin cos

θ − θ 
 θ θ 

 3. 
4 5 2

1 7 10 1
5

2 0 1

− − 
 − − − 
 − 

 4. 3 2– 4 – 20 – 35 0λ λ λ = .  5. 
12 4 6

1 5 1 3
4

1 1 1

 
 − − − 
 − − − 

 6. 
7 2 10

1 2 2 1
9

1 1 4

− 
 − − 
 − 
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 7. 
2 5 1

1 1 3 5
11

7 1 2

− − 
 − − 
 − − 

 9. 
0 3 3
3 2 1
3 7 1

− − 
 − − 
 − 

 10. 
1 0 0
0 1 0

32 0 1

 
 
 
  

32.5 CHARACTERISTIC VECTORS OR EIGEN VECTORS

A column vector X is transformed into column vector Y by means of a square matrix A.
Now we want to multiply the column vector X by a scalar quantity λ so that we can find 
the  same transformed column vector Y.
i.e.,    AX = λX 
X is known as eigen vector. 
Example. Show that the vector (1, 1, 2) is an eigen vector of the matrix

           
3 1 1
2 2 1
2 2 0

A
− 

 = − 
  

 corresponding to the eigen value 2.

Solution. Let X = (1, 1, 2).

Now,     
3 1 1 1 3 1 2 2 1
2 2 1 1 2 2 2 2 2 1 2
2 2 0 2 2 2 0 4 2

AX X
− + −         

         = − = + − = = =         
         + +         

Corresponding to each characteristic root λ, we have a corresponding non-zero vector X 
which satisfies the equation [A – λI] X = 0. The non-zero vector X is called characteristic 
vector or Eigen vector.

32.6 PROPERTIES OF EIGEN VECTORS

(1) The eigen vector X of a matrix A is not unique.
(2) If λ1, λ2, ...., λn be distinct eigen values of an n × n matrix then corresponding eigen 

vectors X1, X2, ......., Xn form a linearly independent set.
(3) If two or more eigen values are equal it may or may not be possible to get linearly 

independent eigen vectors corresponding to the equal roots.
(4) Two eigen vectors X1 and X2 are called orthogonal vectors if X1

′ X2= 0.
(5) Eigen vectors of a symmetric matrix corresponding to different eigen values are  

orthogonal.

 Normalised form of vectors. To find normalised form of 
a
b
c

 
 
 
  

, we divide each element 

by 2 2 2 .a b c+ +

For example, normalised form of 
1 1/ 3
2 is 2 / 3
2 2 / 3

   
   
   
      

 2 2 21 2 2 3 + + =  
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32.7 ORTHOGONAL VECTORS

Two vectors X and Y are said to be orthogonal if 1 2 2 1 0.T TX X X X= =

Example. Determine whether the eigen vectors of the matrix

        
1 0 –1
1 2 1
2 2 3

A
 
 =  
  

 are orthogonal.

Solution. Characteristic equation is | A – λI | = 0

 
1– 0 –1
1 2 – 1 0
2 2 3 –

λ
λ =

λ

⇒ (1– )[(2 – )(3 – ) – 2] – 0 –1[2 – 2(2 – )] 0λ λ λ λ =

⇒ 2(1– )(6 – 5 – 2) – (2 – 4 2 ) 0λ λ + λ + λ =  ⇒ (λ – 1) (λ2 – 5λ + 4) + 2 (λ – 1) = 0

⇒ 2(1– ) ( – 5 4) – 2( –1) 0λ λ λ + λ =  ⇒ 2( –1) [ – 5 4 2] 0λ λ λ + + =

⇒ 2( –1) ( – 5 6) 0λ λ λ + =  ⇒ ( –1) ( – 2) ( – 3) 0λ λ λ =

So, λ = 1, 2, 3 are three distinct eigen values of A.
For λ = 1

 
1

2

3

1 0 1 0
1 2 1 0
2 2 3 0

x
x
x

− λ −     
    − λ =    
    − λ    

⇒ 
1 1 0 1
1 2 1 1
2 2 3 1

− − 
 − 
 − 

 
1

2

3

0
0
0

x
x
x

   
   =   
     

 ⇒ 
1

2

3

0 0 –1 0
1 1 1 0
2 2 2 0

x
x
x

    
    =    
        

⇒         x3 = 0
                              x1 + x2 + x3= 0 ⇒ x2 = – x3 – x1

Let x1 = k then x2 = 0 – k = – k

 1 1

1
–1

0 0

k
X k X k

   
   = − ⇒ =   
      

For λ = 2

 
1 1

2 2

3 3

1 2 0 1 0 –1 0 –1 0
1 2 2 1 0 1 0 1 0
2 2 3 2 0 2 2 1 0

x x
x x
x x

− −           
          − = ⇒ =          
          −          

⇒     x1 + 0x2 + x3 = 0

   2x1 + 2x2 + x3 = 0

                    31 2
0 2 2 1 2 0

xx x k= = =
− − −
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⇒ 1 2 32 , , 2x k x k x k= = − = −

 2

2
–1
–2

X k
 
 =  
  

For λ = 3

 
1

2

3

1 3 0 1 0
1 2 3 1 0
2 2 3 3 0

x
x
x

− −     
    − =    
    −    

 ⇒  
1

2

3

–2 0 –1 0
1 –1 1 0
2 2 0 0

x
x
x

    
    =    
        

 1 2 3 31 2

1 2 3

2 0 0
0 0 1 1 2 2 0

x x x xx x k
x x x

− + − = 
⇒ = = =− + = − − + −

⇒    x1 = k,   x2 = – k,    x3 = – 2k 
1

3 2

3

1
1

2 –2

x k
X x k k

x k

     
     = = − = −     
     −    

X´1 X2 = [1, –1, 
2
1
2

 
 − 
 − 

] = 3,   X´2
 X3 

1
[2, 1, 2] 1 7

2

 
 − − − = 
 − 

, = 3 1

1
[1, 1, – 2] 1

0
X X

 
 = − −′  
  

 = 2

Since 1 2 3 0,TX X = ≠  2 3 7 0,TX X = ≠  3 1 2 0TX X = ≠

Thus, there are three distinct eigen vectors. So X1, X2, X3 are not orthogonal eigen vectors. 

32.8 NON-SYMMETRIC MATRICES WITH NON-REPEATED EIGEN VALUES

Example 1. Show that if 1 2, , ....., nλ λ λ  be the eigen values of the matrix A, then An has 

the eigen values 21, , ..... .n n n
nλ λ λ

Solution. Let λ be an eigen value of the matrix A.

Therefore,     AX = λX …(1)

By premultiplying both sides of (1) by An–1, we get

 1 1( ) ( )n nA AX A X− −= λ  ⇒ 1( )n nA X A X−= λ   ... (2)

But 2 ( ) ( )A X A AX A X= = λ

        2( ) ( )AX X X= λ = λ λ = λ   (From (AX = λX))

 2 2 3( ) ( )A X A A X X X3 = = λ λ = λ

Similarly,        A4 X = λ4 X
       .....................

       .....................

         An X = λnX

⇒ λn is an eigen value of An.
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Hence, if 1 2, , ........ nλ λ λ  be the eigen values of A, then 1 2 3, , ,................n n n n
nλ λ λ λ  be the 

eigen values of An. Proved.

Example 2. If λ be an eigen value of matrix A (non-zero matrix), show that λ–1 is an 
eigen value of A–1.

Solution. We hav λ, is an eigen value of matrix A.

      AX = λX ... (1)

where X is eigen vector

Premultiplying both sides of (1) by A–1, we get

  1 1( ) ( )A AX A X− −= λ  ⇒ 1 1( ) ( )A A X A X− −= λ

⇒      1( )I X A X−= λ  ⇒ 1( )X A X−= λ

⇒     11 X A X−=
λ

 ⇒ 1 1A X X− −= λ

Henc λ–1, is an eigen value of A–1.  Proved.

Example 3. Find the eigen value and corresponding eigen vectors of the matrix

  A = 
5 2

2 2
− 
 − 

 (U.P.I Sem. Dec. 2008)
Solution.  |A– λI| = 0

⇒ 
5 2

0
2 2

− − λ
=

− − λ
  ⇒ (– 5 – λ) (–2 – λ) – 4 = 0

⇒ λ2 + 7λ + 10 – 4 = 0 ⇒ λ2 + 7λ + 6 = 0

 (λ + 1) (λ + 6) = 0    ⇒ λ = –1 , –6

The eigen values of the given matrix are –1 and –6. 
(i) When λ = –1, the corresponding eigen vectors are given by

 1 1

2 2

5 1 2 0 4 2 0
2 2 1 0 2 1 0

x x
x x

− + −          
= ⇒ =          − + −          

⇒ 2x1 – x2 = 0 ⇒ 1 2
1
2

x x=

Let x1 = k, then x2 = 2k. Hence, eigen vector X1 = 
2
k
k

 
 
 

(ii) When λ = –6 , the corresponding eigen vectors are given by

 1 1

2 2

5 6 2 0 1 2 0
2 2 6 0 2 4 0

x x
x x

− +           
= ⇒ =          − +          

⇒ x1 + 2x2 = 0      ⇒ x1 = – 2x2

Let x1 = k1, then x2 = 1
1
2

k−
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Hence eigen vector  X2 = 
1

1
2

k
k

 
 
 −
 

 or 1

1

2k
k

 
 − 

Hence eigen vectors are 
2
k
k

 
 
 

 and 1

1

2k
k

 
 − 

 Ans. 

Example 4. Find the eigen values and eigen vectors of matrix 
3 1 4
0 2 6
0 0 5

A
 
 =  
  

(Mumbai University 2018, AMIETE June 2010, 2009)

Solution. 
3 1 4

| | 0 2 6 (3 ) (2 ) (5 )
0 0 5

A I
− λ

− λ = − λ = − λ − λ − λ
− λ

Hence the characteristic equation of matrix A is given by
 | | 0A I− λ =   ⇒ (3 ) (2 ) (5 ) 0− λ − λ − λ =

∴ λ = 2, 3, 5.
Thus the eigen values of matrix A are 2, 3, 5.
The eigen vectors of the matrix A corresponding to the eigen value λ is given by the 
non-zero solution of the equati (A – λI) X = 0.

or       
1

2

3

3 1 4 0
0 2 6 0
0 0 5 0

x
x
x

− λ     
    − λ =    
    − λ    

 ... (1)

When λ = 2, the corresponding eigen vector is given by

       
1

2

3

3 2 1 4 0
0 2 2 6 0
0 0 5 2 0

x
x
x

−     
    − =    
    −    

⇒ 
1

2

3

1 1 4 0
0 0 6 0
0 0 3 0

x
x
x

    
    =    
        

⇒ 
1 2 3

1 2 3

4 0
0 0 6 0

x x x
x x x

+ + =

+ + =

 31 2
6 0 0 6 0 0

xx x k= = =
− − −

 ⇒ 31 2
1 1 0

xx x k= = =
−

 ⇒ 1 2 3, , 0x k x k x= = − =

Hence X1 = 
1
1

0 0

k
k k

   
   − = −   
      

 can be taken as an eigen vector of A corresponding to the 
eigen  value λ = 2

When λ = 3, substituting in (1), the corresponding eigen vector is given by
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1

2

3

3 3 1 4 0
0 2 3 6 0
0 0 5 3 0

x
x
x

−     
    − =    
    −    

 ⇒ 
1

2

3

0 1 4 0
0 1 6 0
0 0 2 0

x
x
x

    
    − =    
        

     0x1 + x2 + 4x3 = 0

     0x1 – x2 + 6x3 = 0

 31 2
6 4 0 0 0 0

xx x
= =

+ − −
 ⇒ 31 2

10 0 0 10
xx x k

= = =

 x1 = k, x2 = 0,  x3 = 0

Hence, 2

1
0 0
0 0

k
X k

   
   = =   
      

 can be taken as an eigen vector of A corresponding to the 

eigen value λ = 3.
When λ = 5.
Again, when λ = 5, substituting in (1), the corresponding eigen vector is given by

 
3 – 5 1 4
0 2 – 5 6
0 0 5 – 5

 
 
 
  

 
1

2

3

0
0
0

x
x
x

   
   =   
     

  ⇒  
1

2

3

–2 1 4 0
0 –3 6 0
0 0 0 0

x
x
x

    
    =    
        

   –2x1 + x2 + 4x3 = 0
         –3x2 + 6x3 = 0
By cross-multiplication method, we have

 31 2
6 12 0 12 6 – 0

xx x
= =

+ +
  ⇒  31 2

18 12 6
xx x

= =   ⇒  31 2
3 2 1

xx x k= = =

x1 = 3k,   x2 = 2k,   x3 = k

 Hence, 3

3 3
2 2

1

k
X k k

k

   
   = =   
      

 can be taken as an eigen vector of A corresponding to the 

eigen value λ = 5. Ans.

EXERCISE 32.3
Non-symmetric matrix with different eigen values:
Find the eigen values and the corresponding eigen vectors for the following matrices:

 1. 
4 2 2
5 3 2
2 4 1

− 
 − 
 − 

 2. 
2 2 3
1 1 1
1 3 1

− 
 
 
 − 

.

 3. 
9 2 6
5 0 3

16 4 11

− 
 − 
 − 

 4. 
4 6 6
1 3 2
1 4 3

 
 
 
 − − − 
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ANSWERS

 1. 
2 1 0

1, 2, 5; 1 , 1 , 1
4 2 1

     
     
     
          

 2. 
11 1 1

2,1, 3; 1 , 1 , 1
14 1 1

−     
     −      
          

 3. 
2 1 2

1,1, 2; 1 , 1 , 1
3 2 4

     
     − − − −     
          

 4. 
6 0 3

1,1, 4; 2 , 1 , 1
7 1 1

−     
     − −     
     − −     

32.9 NON-SYMMETRIC MATRIX WITH REPEATED EIGEN VALUES

Example. Find the eigen values and eigen vectors of the matrix:

    
2 1 1
1 2 1
0 0 1

 
 
 
  

Solution. We have, 
2 1 1
1 2 1 .
0 0 1

A
 
 =  
  

Characteristic equation of A is | A – λI | = 0

  
2 1 1
1 2 1 0
0 0 1

− λ
− λ =

− λ

On expanding the determinant by the third row, we get

⇒ (1 ) {(2 ) (2 ) 1} 0− λ − λ − λ − =    ⇒  2(1 ) {(2 ) 1} 0− λ − λ − =

⇒ (1 ) (2 1) (2 1) 0− λ − λ + − λ − =   ⇒  (1 ) (3 ) (1 ) 0− λ − λ − λ =

⇒        λ = 1, 1, 3
when λ = 1

 
2 1 1 1 0
1 2 1 1 0
0 0 1 1 0

x
y
z

−     
     − =     
     −     

 ⇒ 
1 1 1 0
1 1 1 0
0 0 0 0

x
y
z

     
     =     
          

        2 2 1

1 1 1 0
0 0 0 0
0 0 0 0

x
y R R R
z

     
     = → −     
          

 ⇒ x + y + z = 0

Let x = k1 and y = k2

      k1 + k2 + z = 0 ⇒ z = – (k1 + k2)

 
1

1 2

1 2

1
= 1

2( )

k
X k k

k k

   
   =    
   −− +   

 [If k1 = k2 = k]
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Again λ = 1, 2

1
0
1

X
 
 =  
 − 

 [Again if  k1 = 1,  k2 = 0,  – (k1 + k2) = –1]

when λ = 3

     
2 3 1 1 0
1 2 3 1 0
0 0 1 3 0

x
y
z

−     
     − =     
     −     

  ⇒  
1 1 1 0
1 1 1 0
0 0 2 0

x
y
z

−     
     − =     
     −     

              
1 1 1 0
0 0 2 0
0 0 2 0

x
y
z

−     
     =     
     −     

 R2 → R2 + R1

     – x + y + z = 0

         2z = 0 ⇒ z = 0

     – x + y + 0 = 0 ⇒ x = y = k (say)

   3

1
1

0 0

k
X k k

   
   = =   
      

   Ans.

EXERCISE 32.4
Non-symmetric matrices with repeated eigen values:

Find the eigen values and eigen vectors of the following matrices:

 1. 
2 2 2
1 1 1
1 3 1

− 
 
 
 − 

 2. 
2 2 1
1 3 1
1 2 2

 
 
 
  

  3. 
2 1 1
2 3 2
3 3 4

 
 
 
  

 4. 
9 4 4
8 3 4

16 8 7

− 
 − 
 − 

  5. 

1 3 3
3 5 3
6 6 4

− 
 − 
 − 

 6. 
1 3 3
3 5 3
6 6 4

− 
 − 
 − 

ANSWERS

 1. –2, 2, 2; 
4 0
1 , 1
7 1

−   
   −   
      

 2. 1, 1, 5; 
0 1
1 , 0
2 1

   
   
   
   − −   

 3. 
0 1 1

1,1, 7; 1 , 0 , 2
1 1 3

     
     
     
     − −     

 4. 
0 1 1

1, 1, 3; 1 , 1 , 1
1 1 2

     
     − −      
     −     

 5. , 1, 1,

1
1 0

1

 
 
 
  

 6. , 2, 4,

1 1 1
2 1 , 1 , 1

0 2 2
−

     
     − −     
     −     
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32.10 SYMMETRIC MATRICES WITH NON REPEATED EIGEN VALUES

Example 29. Find the eigen values and the corresponding eigen vectors of the matrix

    
2 5 4

5 7 5
4 5 2

− 
 
 
 − 

Solution. | A – λI | = 0

 
2 5 4
5 7 5 0
4 5 2

− − λ
− λ =

− − λ
 ⇒ 3 23 90 216 0λ − λ − λ − =

By trial:    Take λ = –3, then –27 – 27 + 270 – 216 = 0
By synthetic division
   –3  1  –3  –90  –216
      –3   18    216
                        
      1  –6  –72       0

      2 6 72 0λ − λ − =   ⇒  ( 12) ( 6) 0λ − λ + =   ⇒  3, 6, 12λ = − −

Matrix equation for eigen vectors [A – λI] X = 0

 
2 5 4 0
5 7 5 0
4 5 2 0

x
y
z

− − λ     
     − λ =     
     − − λ     

 ...(1)

Eigen Vector   
On putting λ = –3 in (1), it will become

   
1 5 4 0
5 10 5 0
4 5 1 0

x
y
z

     
     =     
          

 ⇒  
5 4 0

5 10 5 0
x y z
x y z
+ + =

 + + =

  
25 40 5 20 10 25

x y z
= =

− − −
 or 

1 1 1
x y z
= =
−

Eigen vector 1

1
1 .
1

X
 
 = − 
  

Eigen vector corresponding to eigen value λ = 6.
Equation (1) becomes

   
4 5 4 0
5 13 5 0
4 5 4 0

x
y
z

     
     =     
          

 or 
4 5 4 0

5 13 5 0
x y z

x y z
+ + =

 + + =

  
25 52 20 20 52 25

x y z
= =

− − −
 or 

1 0 1
x y z
= =

−
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eigen vector 2

1
0
1

X
 
 =  
 − 

Eigen vector corresponding to eigen value λ = 12.
Equation (1) becomes

  
14 5 4 0

5 5 5 0
4 5 14 0

x
y
z

−     
     − =     
     −     

 or 
14 5 4 0
5 5 5 0

x y z
x y z

− + + =
 − + =

  
25 20 20 70 70 25

x y z
= =

+ + −
 or 

1 2 1
x y z
= =

Eigen vector 3

1
2
1

X
 
 =  
  

 Ans.

EXERCISE 32.5
Symmetric matrices with non-repeated eigen values:
Find the eigen values and eigen vectors of the following matrices:

 1. 
5 0 1
0 2 0
1 0 5

 
 − 
  

  2. 
3 1 1
1 5 1
1 1 3

− 
 − − 
 − 

 3. 
8 6 2
6 7 4
2 4 3

− 
 − − 
 − 

 (U.P., I Semester Jan 2011)

 4. 
2 4 6
4 2 6
6 6 15

− 
 − 
 − − − 

 5. 
1 1 3
1 5 1
3 1 1

 
 
 
  

ANSWERS

 1. 
0 1 1

2, 4, 6; 1 , 0 , 0
0 1 1

     
     −      
     −     

 2. 

1 1 1
2, 3, 6; 0 , 1 , 2

1 1 1

−     
     −     
          

 3. 
1 2 2

0, 3,15; 2 , 1 , 2
2 2 1

     
     −     
     −     

 4.  –2, 9, –18; 
1 2 1
1 , 2 , 1
0 1 4

     
     −     
     −     

  5. 
1 1 1

2, 3, 6; 0 , 1 , 2
1 1 1

−     
     − −     
          

32.11 SYMMETRIC MATRICES WITH REPEATED EIGEN VALUES

Example. Find all the eigen values and eigen vectors of the matrix 
2 1 1
1 2 1
1 1 2

− 
 − − 
 − 
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Solution. The characteristic equation 
2 1 1

1 2 1 0
1 1 2

− λ −
− − λ − =

− − λ

⇒ 2(2 )[(2 ) 1] 1[ 2 1] 1[1 2 ] 0− λ − λ − + − + λ + + − + λ =

⇒           2(2 ) (4 4 1) ( 1) 1 0− λ − λ + λ − + λ − + λ − =

⇒    2 2 38 8 2 2 4 4 2 2 0− λ + λ − − λ + λ − λ + λ + λ − =

⇒            3 26 9 4 0−λ + λ − λ + =

⇒             3 26 9 4 0λ − λ + λ − =  ... (1)
 On putting λ = 1 in (1), the equation (1) is satisfied. So λ = –1 is one factor of the 
equation (1). The other factor (λ2 – 5λ + 4) is got on dividing (1) λ – 1.

⇒ 2( 1) ( 5 4) 0λ − λ − λ + =  or ( 1) ( 1) ( 4) 0λ − λ − λ − =  ⇒ λ = 1, 1, 4
The eigen values are 1, 1, 4.

When λ = 4 
1

2

3

2 4 1 1 0
1 2 4 1 0
1 1 2 4 0

x
x
x

− −     
   − − − =        − −     

 ⇒ 
1

2

3

2 1 1 0
1 2 1 0
1 1 2 0

x
x
x

− −     
   − − − =        − −     

   –2x1 – x2 + x3 = 0
     x1 – x2 – 2x3 = 0

⇒ 31 2
2 1 1 4 2 1

xx x
= =

+ − +
  ⇒ 31 2

1 1 1
xx x k= = =

−
⇒ 1 2 3, ,x k x k x k= = − =

     1 1

1 1
1 or 1
1 1

k
X k k X

k

     
     = − = − = −     
          

When λ = 1 
1

2

3

2 1 1 1
1 2 1 1 0
1 1 2 1

x
x
x

− −   
  − − − =    − −   

⇒ 
1

2

3

1 1 1
1 1 1 0
1 1 1

x
x
x

−   
  − − =    −   

 ⇒ 
1

2 2 2 1

3 3 13

1 1 1
0 0 0 0,
0 0 0

x
x R R R

R R Rx

−   
   = → +     → −   

 x1 – x2 + x3 = 0

Let x1 = k1 and x2 = k2

     k1 – k2 + x3 = 0        or         x3 = k2 – k1

  

1
1

2 2 2
2

2 1

1
1

1
1

0

k
k

X k X
k

k k

   
=    = ⇒ =      =    −   
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Let 3

l
X m

n

 
 =  
  

As X3 is orthogonal to X1 since the given matrix is symmetric

     [1, 1,1] 0
l
m
n

 
 − = 
  

 or l – m + n = 0  ... (2)

As X3 is orthogonal to X2 since the given matrix is symmetric

     [1,1, 0] 0
l
m
n

 
  = 
  

 or l + m + 0 = 0  ... (3)

Solving (2) and (3), we get 
0 1 1 0 1 1 1 1 2

l m n l m n
= = ⇒ = =

− − + −
  

       3

1
1
2

X
− 
 =  
  

 Ans.

EXERCISE 32.6
Symmetric matrices with repeated eigen values
Find the eigen values and the corresponding eigen vectors of the following matrices:

 1. 
1 2 3
2 4 6
3 6 9

 
 
 
  

   2. 
2 0 1
0 3 0
1 0 2

 
 
 
  

 3. 
6 2 2
2 3 1
2 1 3

− 
 − − 
 − 

 4. 
6 3 3
3 6 3
3 3 6

− 
 − − 
 − 

ANSWERS

 1. 
2 3 1

0, 0,14; 1 , 6 , 2
0 5 3

−     
     
     
     −     

 2. 
1 1 1

1, 3, 3; 0 , 1 , 2
1 1 1

     
     −     
     −     

 3. 
2 1 2

8, 2, 2; 1 , 0 , 5
1 2 1

     
     −     
     −     

 4. 3, 3, 12 
0 0 1

, ,0 0 1
0 0 1

     
     −     
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32.12 MATRIX HAVING ONLY ONE LINEARLY INDEPENDENT EIGEN VECTOR

Example. Find the eigen values and eigen vectors of 

        
3 7 5
2 4 3
1 2 2

A
− − − 
 =  
  

has less than three linearly independent eigen vectors. It is possible to obtain a similarity 
transformation that will diagonalise this matrix.
Solution. The characteristic equation of the given matrix is
    | A – λI | = 0

⇒  
3 7 5
2 4 3 0
1 2 2

− − λ − −
− λ =

− λ

⇒ ( 3 )[(4 ) (2 ) 6] 7[2(2 ) 3] 5[4 (4 )] 0− − λ − λ − λ − + − λ − − − − λ =

⇒ 3 23 3 1 0λ − λ + λ − =    ⇒ (λ – 1)3 = 1 ⇒ λ = 1, 1, 1
Eigen values of the given matrix A are 1, 1, 1.  Eigen vector when λ = 1

 
1

2

3

3 1 7 5 0
2 4 1 3 0
1 2 2 1 0

x
x
x

− − − −     
    − =    
    −    

 ⇒ 
1

2

3

4 7 5 0
2 3 3 0
1 2 1 0

x
x
x

− − −     
    =    
        

⇒   – 4x1 – 7x2 – 5x3 = 0 ... (1)
     2x1 + 3x2 + 3x3 = 0 ... (2)

⇒         31 2
21 15 10 12 12 14

xx x
= =

− + − + − +

⇒         31 2
6 2 2

xx x k= = =
−

  (say)

Thus, x1 = –6k, x2 = 2k and x3 = 2k

    
1

2

3

6 3
2 2 1
2 1

x k
X x k k

kx

− −     
     = = =     
         

All the eigen vectors are same and hence linearly independent.  Ans.

32.13 MATRIX HAVING ONLY TWO EIGEN VECTORS

Example. Find the eigen values and eigen vectors of 
3 10 5
2 3 4

3 5 7
A

 
 = − − − 
  

has less than three linearly independent eigen vectors. Is it possible to obtain a similarity 
transformation that will diagonalise this matrix?
Solution. The characteristic equation of the given matrix A is
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    | A – λI | = 0

  
3 10 5
2 3 4 0
3 5 7

− λ
− − − λ − =

− λ

⇒ (3 )[( 3 ) (7 ) 20] 10[ 2(7 ) 12] 5[ 10 3( 3 )] 0− λ − − λ − λ + − − − λ + + − − − − λ =

⇒ 2(3 )[ 21 3 7 20] 10[ 14 2 12] 5[ 10 9 3 ] 0− λ − + λ − λ + λ + − − + λ + + − + + λ =

⇒ 2(3 ) ( 4 1) 10 (2 2) 5 (3 1) 0− λ λ − λ − − λ − + λ − =

⇒ 3 27 16 12 0λ − λ + λ − =  ⇒  ( 3) ( 2) ( 2) 0λ − λ − λ − =   ⇒  λ = 3, 2, 2
Eigen values of the given matrix A are 3, 2, 2.
Eigen vector, when λ = 3

   
1

2

3

3 3 10 5 0
2 3 3 4 0
3 5 7 3 0

x
x
x

−     
    − − − − =    
    −    

 ⇒ 
1

2

3

0 10 5 0
2 6 4 0
3 5 4 0

x
x
x

    
    − − − =    
        

   1 2 32 6 4 0x x x− − − =   ... (1)
      1 2 33 5 4 0x x x+ + =   ... (2)
Solving (1) and (2) by cross multiplication method, we have

            31 2
24 20 12 8 10 18

xx x
= =

− + − + − +

⇒         31 2
4 4 8

xx x k= = =
− −

 (say)

Thus, x1 = – 4k, x2 = – 4k and x3 = 8k

           
1

2

3

4 1
4 4 1
8 2

x k
X x k k

kx

− −     
     = = − = −     
         

Eigen vector when λ = 2

     
1

2

3

3 2 10 5 0
2 3 2 4 0
3 5 7 2 0

x
x
x

−     
    − − − − =    
    −    

   ⇒ 
1

2

3

1 10 5 0
2 5 4 0
3 5 5 0

x
x
x

    
    − − − =    
        

⇒      1 2 310 5 0x x x+ + =  ... (3)
    1 2 32 5 4 0x x x− − − =  ... (4)
Solving (3) and (4) by cross multiplication method, we have

  31 2
40 25 10 4 5 20

xx x
= =

− + − + − +
    ⇒   31 2

15 6 15
xx x k= = =

− −
 (say)

⇒         x1 = –15k,         x2 = –6k, x3 = 15k

           
1

2

3

15 5
6 3 2

15 5

x k
X x k k

kx

− −     
     = = − = −     
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We get one eigen vector corresponding to repeated root λ2 = 2 = λ3.
Eigen vectors corresponding to λ2 = 2 = λ3 are not linearly independent. Similarity 
transformation is not possible. Ans.

32.14 COMPLEX EIGEN VALUES

Example 1.  Show that if 0 < θ < π, then 
cos sin
sin cos

A
θ − θ 

=  θ θ 
 has no real eigen values 

and consequently no eigen vector. (Gujarat II Semester June 2009)

Solution.  The characteristic equation of A is 
cos sin

0
sin cos
θ − λ − θ

=
θ θ−λ

⇒ (cos θ – λ)2 + sin2 θ = 0
⇒ cos2 θ – 2λ cos θ + λ2 + sin2 θ = 0
⇒ λ2 – 2λ cos θ + 1 = 0

⇒ 
22cos 4cos 4

2
θ ± θ −

λ =  = 
22 cos 2 1 cos

2
iθ ± − θ

 = cos θ ± i sin θ 

 Hence, the given matrix A has no real eigen values and consequently no eigen vector. 
 Proved.
Example 2. If a matrix A is non-singular. Then λ = 0 is not its eigen value.
Solution. Since matrix A is non-singular then | A | ≠ 0
⇒    | A – 0I | ≠ 0
Hence λ = 0 is not its eigen value.  Proved.

32.15 ALGEBRAIC MULTIPLICITY

Algebraic multiplicity of an eigen value is the number of times of repetition of an  
eigen value.
It is denoted by multa (λ).

For example, the eigen values of a matrix 
2 2 3
2 1 6
1 2 0

− − 
 − 
 − − 

  are –3, –3, 5.

The multa (–3) = 2 and multa (5) = 1 

32.16  GEOMETRIC MULTIPLICITY 

Geometric multiplicity of an eigen value is the number of linearly independent eigen 
vectors corresponding to λ. It is denoted by Multg(λ)

In previous example two linearly independent eigen vectors corresponding to 

   λ = –3 are 
0
3
2

 
 
 
  

 and 
3
0
1

 
 
 
  

.

so the multg (– 3) = 2
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And the eigen vector corresponding to λ = 5 is 
1
2
1

 
 
 
 − 

 so the multg (5) = 1.

32.17  REGULAR EIGEN VALUE

If the algebraic multiplicity and geometric multiplicity of an eigen value are equal, then 
the eigen value is called regular.
Example. Find the algebraic multiplicity and geometric multiplicity of an eigen value 

of the matrix 
3 10 5
2 3 4
3 5 7

A
 
 = − − − 
  

 and show geometric multiplicity cannot be 

greater than algebraic multiplicity.

Solution. The characteristic equation of the given matrix is

  
3 10 5
2 3 4 0
3 5 7

− λ
− − − λ − =

− λ

⇒          3 27 16 12 0λ − λ + λ − =

⇒        ( 2) ( 2) ( 3) 0λ − λ − λ − =

⇒                 λ = 2, 2, 3

Therefore 2 is a multiple eigen value repeating 2 times. So Algebraic Multiplicity of 2 is 2.

            Multa (2) = 2. ...(A)

We shall find the eigen vector corresponding to the eigen value 2.

        
1

2

3

3 2 10 5 0
2 3 2 4 0
3 5 7 2 0

x
X x

x

−     
    = − − − − =    
    −    

⇒          
1

2

3

1 10 5 0
2 5 4 0

3 5 5 0

x
x
x

    
    − − − =    
        

     x1 + 10x2 + 5x3 = 0 ...(1)

   – 2x1 – 5x2 – 4x3 = 0 ...(2)

Solving (1) and (2) by cross multiplication method, we have

            31 2
40 25 10 4 5 20

xx x
= =

− + − + − +

⇒         31 2
15 6 15

xx x k= = =
− −

 (say)
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Thus x1 = –15 k,      x2 = –6 k,      x3 = –15 k.

1

2

3

15 5
6 3 2

15 5

x k
X x k k

x k

− −     
     = = − = −     
         

Here the linearly independent eigen vector is 1.

So the, geometric multiplicity of eigen value 2 is 1 

            Multg (2) = 1 ...(B)

Hence from (A) and (B) Ans. 

Geometric multiplicity < Algebraic multiplicity

Notes: (1) If the values of x1, x2, x3 are in terms of k (one independent value), then there is 
only one linearly independent eigen vector. So the geometric multiplicity is 1.

 (2) If the values of x1, x2, x3 are in terms of k1, k2 two independent values, then there 
are two linearly independent eigen vectors. So the geometric multiplicity is 2.

EXERCISE 32.7
From the following matrices; find eigen value, Algebraic multiplicity and Geometric multiplicity.

 1. 
2 1
5 4

− − 
 
 

 2. 
1 1 1
0 1 1
0 0 1

 
 
 
  

 3. 
0 0 1
1 0 3
0 1 3

 
 − 
  

 4. 
1 2 3
0 2 3
0 0 2

 
 
 
  

 

 5. 
2 2 1
1 3 1
1 2 2

 
 
 
  

 6. 
1 2 2
0 2 1

–1 2 2

 
 
 
  

 7. 
5 4 4
4 5 4
1 1 2

− 
 − 
 − − 

 8. 

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 
 
 
 
 
 

 (M.U. 2018)

ANSWERS
 1. λ = – 1, Multa (–1) = 1, Multg (–1) = 1 2.  λ = 1, Multa (1) = 3, Multg (1) = 1

   λ = 3, Multa (3) = 1, Multg (3) = 1
 3.  λ = 1, Multa (1) = 3, Multg (1) = 1 4. λ = 2, Multa (2) = 2, Multg (2) = 1
 5. λ = 5, Multa (5) = 1, Multg (5) = 1 6. λ = 1, Multa (1) = 2, Multg (1) = 1

  λ = 2, Multa (2) = 2, Multg (2) = 1
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 7. λ = 1, Multa (1) = 2, Multg (1) = 2 8. λ = 1, Multa(1) = 4, Multg(1) = 3
  λ = 10, Multa (10) = 1, Multg (10) = 1

32.18  SIMILARITY TRANSFORMATION

Let A and  B be two square matrices of order n. Then B is said to be similar to A if there 
exists a non-singular matrix P such that

            B = P–1 AP ...(1)
Equation (1) is called a similar transformation.

32.19  DIAGONALISATION OF A MATRIX

 Diagonalisation of a matrix A is the process of reduction of A to a diagonal form ‘D’. If 
A is related to D by a similarity transformation such that D = P–1 AP then A is reduced 
to the diagonal matrix D through modal matrix P. D is also called spectral matrix of A.

32.20  ORTHOGONAL TRANSFORMATION OF A SYMMETRIC MATRIX TO 
DIAGONAL FORM

Let A be a symmetric matrix, then
       A · A′ = I  ...(1)
and       A · A–1 = I ...(2)
From (1) and (2), we have       A–1 = A′

We know that, diagonalisation transformation of a symmetric matrix is
      P–1AP = D
If we normalize each eigen vector and use them to form the normalized modal matirx 
N then N is an orthogonal matrix.
Then,       N′ AN = D
Transforming A into D by means of the transformation N′ AN = D is called as orthogonal 
transformation.
Note. To normalize eigen vector divide each element of the vector by the square root 
of the sum of the squares of all the elements of the vector.
Example. Show that similar matrices have same trace. (D.U. April 2010)
Solution. As we know that similar matrices have eigen value.
 Trace of matrices is sum of all eigen value. Hence similar matrices have same trace. 
 Proved.

32.21  THEOREM ON DIAGONALIZATION OF A MATRIX

Theorem. If a square matrix A of order n has n linearly independent eigen vectors, then a 
matrix P can be found such that P–1 AP is a diagonal matrix.

Proof. We shall prove the theorem for a matrix of order 3. The proof can be easily  
extended to matrices of higher order.
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Let            
1 1 1

2 2 2

3 3 3

a b c
A a b c

a b c

 
 =  
  

and let λ1, λ2, λ3 be its eigen values and X1, X2, X3 the corresponding eigen vectors, where

   
1

1 1

1

,
x

X y
z

 
 =  
  

       
2

2 2

2

,
x

X y
z

 
 =  
  

  
3

3 3

3

x
X y

z

 
 =  
  

For the eigen value λ1, the eigen vector is given by

  
1 1 1 1 1 1 1

2 1 2 1 1 2 1

3 1 3 1 3 1 1

( ) 0
( ) 0

( ) 0

a x b y c z
a x b y c z
a x b y c z

− λ + + = 
+ − λ + = 
+ + − λ = 

 ...(1)

∴ We have

   
1 1 1 1 1 1 1 1

2 1 2 1 2 1 1 1

3 1 3 1 3 1 1 1

a x b y c z x

a x b y c z y
a x b y c z z

+ + = λ 


+ + = λ 
+ + = λ 

 ...(2)

Similarly, for λ2 and λ3, we have

  
1 2 1 2 1 2 2 2

2 2 2 2 2 2 2 2

3 2 3 2 3 2 2 2

a x b y c z x
a x b y c z y
a x b y c z z

+ + = λ 
+ + = λ 
+ + = λ 

 ...(3)

and  
1 3 1 3 1 3 3 3

2 3 2 3 2 3 3 3

3 3 3 3 3 3 3 3

a x b y c z x

a x b y c z y
a x b y c z z

+ + = λ 


+ + = λ 
+ + = λ 

 ...(4)

We consider the matrix 
1 2 3

1 2 3

1 2 3

x x x
P y y y

z z z

 
 =  
  

whose columns are the eigen vectors of A.

Then  
1 1 1 1 2 3

2 2 2 1 2 3

3 3 3 1 2 3

a b c x x x
AP a b c y y y

a b c z z z

   
   =    
      

   
1 1 1 1 1 1 1 2 1 2 1 2 1 3 1 3 1 3

2 1 2 1 2 1 2 2 2 2 2 2 2 3 2 3 2 3

3 1 3 1 3 1 3 2 3 2 3 2 3 3 3 3 3 3

a x b y c z a x b y c z a x b y c z
a x b y c z a x b y c z a x b y c z
a x b y c z a x b y c z a x b y c z

+ + + + + + 
 = + + + + + +
 

+ + + + + + 

  
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

x x x
y y y
z z z

λ λ λ 
 = λ λ λ
 
λ λ λ 

 [Using results (2), (3) and (4)]
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1 2 3 1

1 2 3 2

1 2 3 3

0 0
0 0
0 0

x x x
y y y PD
z z z

λ   
   = λ =
   

λ   

where D is the Diagonal matrix 
1

2

3

0 0
0 0
0 0

λ 
 λ ⋅
 

λ 

∴   AP = PD
⇒   P–1 AP = P–1 PD = D

 Notes (1) The square matrix P, which diagonalises A, is found by grouping the eigen vectors 
of A into square-matrix and the resulting diagonal matrix has the eigen values of A 
as its diagonal elements.

 (2) The transformation of a matrix A to P–1 AP is known as a similarity transformation.
 (3) The reduction of A to a diagonal matrix is, obviously, a particular case of similarity 

transformation.
 (4) The matrix P which diagonalises A is called the modal matrix of A and the resulting 

diagonal matrix D is known as the spectra matrix of A.
Example. Find the eigen values, eigen vectors the modal matrix and diagonalise the 
matrix given below.

      
1 0 0
0 3 1
0 1 3

 
 − 
 − 

Solution. The characteristic equation of the given matrix is

  
1 0 0
0 3 1 0
0 1 3

− λ
− λ − =

− − λ

⇒   2(1 ) {(3 ) 1} 0− λ − λ − =  ⇒ (1 ) (3 1) (3 1) 0− λ − λ + − λ − =  

⇒ (1 ) (4 ) (2 0− λ − λ − λ) =  ⇒ λ = 1, 2, 4
Eigen vectors

When λ = 1,

 
1 1

2 2 3 3 2

3 3

0 0 0 0 0 0 0 0
10 2 1 0 ~ 0 2 1 0
2

0 1 2 0 3 00 0
2

x x
x x R R R
x x

          
          − = − = → +          
          −          

⇒ 2x2 – x3 = 0  ... (1)

3
3
2

x   =  0  ⇒  x3 = 0  ... (2)

Putting x3= 0 from (2) in (1), we get 2x2 – 0 = 0 ⇒ x2 = 0
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  Eigen Vector = 
1
0
0

 
 
 
  

When λ = 2,

         
1

2

3

1 0 0 0
0 1 1 0
0 1 1 0

x
x
x

−     
    − =    
    −    

  ⇒  
1

1 1
2

3 3 2
3

1 0 0 0
0 1 1 0
0 0 0 0

x
R R

x
R R R

x

    
→ −    − =     → +

        
x1 = 0

x2 – x3 = 0 ⇒ x2 = x3 , Eigen vector = 
0
1
1

 
 
 
  

When λ = 4,

  
1

2

3

3 0 0 0
0 1 1 0
0 1 1 0

x
x
x

−     
    − − =    
    − −    

     –3x1 = 0
 –x2 – x3 = 0
         x2 = –x3

  Eigen Vector = 
0
1
1

 
 
 
 − 

 Modal matrix = 
1 0 0
0 1 1
0 1 1

 
 
 
 − 

  Ans.

Let us diagonalise the given matrix:

  1
2 0 0 1 0 0 1 0 0

1 0 1 1 0 3 1 0 1 1
2

0 1 1 0 1 3 0 1 1
P AP−

−     
     = − − − −     
     − − −     

           
2 0 0 1 0 0 2 0 0 1 0 0

1 10 1 1 0 2 4 0 4 0 0 2 0
2 2

0 1 1 0 2 4 0 0 8 0 0 4

− −       
       = − − − = − − =       
       − − −       

EXERCISE 32.8
 1. Find the matrix B which transforms the matrix

  
8 8 2
4 3 2
3 4 1

A
− − 

 = − − 
 − 

 to a diagonal matrix.
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 2. For the matrix 
4 1 0
1 4 1 ,
0 1 4

A
 
 =  
  

 determine a matrix P such that P–1AP is diagonal matrix.

 3. Determine the eigen values and the corresponding eigen vectors of the matrix
5 7 5
0 4 1
2 8 3

A
− 

 = − 
 − 

 

  Hence find the matrix P such that P–1AP is diagonal matrix.
 4. Reduce the following matrix A into a diagonal matrix 

8 6 2
6 7 4
2 4 3

A
− 

 = − − 
 − 

ANSWERS

 1. 
4 3 2
3 2 1
2 1 1

B
 
 =  
  

 2. 

1 1 1

0 2 2
1 1 1

P

− 
 

= − 
 
 

 3. 
2 1 1
1 1 1
3 2 1

P
− 

 =  
  

 4. 
0 0 0
0 3 0
0 0 15

 
 
 
  

32.22  POWERS OF A MATRIX (By diagonalisation)

We can obtain powers of a matrix by using diagonalisation.
We know that          D = P–1 AP
Where A is the square matrix and P is a non-singular matrix.
    D2 = (P –1 AP) (P –1 AP) = P –1 A (P P –1) AP = P –1 A2 P
Similarly    D3 = P–1 A3 P
In general   Dn = P–1 An P ...(1)
Pre-multiply (1) by P and post-multiply by P–1

    P Dn P–1 = P (P–1 An P) P–1

     = (P P –1) An (P P –1)
     = An

Procedure: (1) Find eigen values for a square matrix A.
  (2) Find eigen vectors to get the modal matrix P.
  (3) Find the diagonal matrix D, by the formula D = P–1 AP
  (4) Obtain An by the formula An = P Dn P–1.
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Example.  Find a matrix P which transform the matrix 
1 0 1
1 2 1
2 2 3

A
− 

 =  
  

 to diagonal 
form. Hence A4.

Solution. Characteristic equation of the matrix A is

  
1 0 1
1 2 1 0
2 2 3

− λ −
− λ =

− λ
 

3 2or 6 11 6 0
or ( 1) ( 2) ( 3) 0

1, 2, 3

λ − λ + λ − =
λ − λ − λ − =

⇒ λ =

For λ = 1, eigen vector is given by

  
1

2

3

1 1 0 1 0
1 2 1 1 0
2 2 3 1 0

x
x
x

− −     
    − =    
    −    

 ⇒ 
1

2

3

0 0 1 0
1 1 1 0
2 2 2 0

x
x
x

−     
    =    
        

 
1 2 3

1 2 3

0 0 0

0

x x x

x x x

+ − = 


+ + = 
     ⇒ 31 2

0 1 1 0 0
xx x

= =
+ − +

 or x1 = 1, x2 = –1, x3 = 0

Eigen vector is [1, –1, 0].
For λ = 2, eigen vector is given by

  
1

2

3

1 2 0 1 0
1 2 2 1 0
2 2 3 2 0

x
x
x

− −     
    − =    
    −    

  ⇒   
1

2

3

1 0 1 0
1 0 1 0
2 2 1 0

x
x
x

− −     
    =    
        

⇒               
1

2

3

0 0 0 0
1 0 1 0
2 2 1 0

x
x
x

    
    =    
        

 R1 → R1 + R2

  1 2 3

1 2 3

0 0
2 2 0
x x x
x x x
+ + = 

+ + = 

⇒     31 2
0 2 2 1 2 0

xx x
= =

− − −
        ⇒    x1 = –2,     x2 = 1,    x3 = 2

Eigen vector is [–2, 1, 2].

For λ = 3, eigen vector is given by

   
1

2

3

1 3 0 1 0
1 2 3 1 0
2 2 3 3 0

x
x
x

− −     
    − =    
    −    

    ⇒    
1

2

3

2 0 1 0
1 1 1 0
2 2 0 0

x
x
x

− −     
    − =    
        

  1 2 3

1 2 3

2 0 0
0

x x x
x x x

− + − = 
− + = 

⇒     31 2
0 1 1 2 2 0

xx x
= =

− − + −
  ⇒  x1 = –1,    x2 = 1,    x3 = 2

Eigen vector is [–1, 1, 2].

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



36   Mathematical Physics

Modal matrix 
1 2 1
1 1 1
0 2 2

P
− − 

 = − 
  

 and  1
0 2 1

1 2 2 0
2

2 2 1
P−

− 
 = −  
 − − − 

Now    1

10 1 1 0 1 1 2 1 1 0 02
1 1 0 1 2 1 1 1 1 0 2 0

1 2 2 3 0 2 2 0 0 31 1
2

P AP D−

 −  − − −     
       = − − − = =       
             
 

  4 4 1

10 11 2 1 1 0 0 49 50 402
1 1 1 0 16 0 1 1 0 65 66 40
0 2 2 0 0 81 1 130 130 811 1

2

A PD P−

 − − − − − −     
      = = − − − =      
            
 

 Ans.

EXERCISE 32.9
 Find a matrix P which transforms the following matrices to diagonal form. Hence calculate the 
power matrix.

 1. If A = 
1 1 3
1 5 1 ,
3 1 1

 
 
 
  

 calculate A4. 2. If  
3 1 1
1 5 1 ,
1 1 3

A
− 

 = − − 
 − 

 calculate 

A4.

 3. If 
2 1 1
1 2 1 ,
1 1 2

A
− 

 = − − 
 − 

 calculate A6. 4. If 
1 1 1
0 2 1 ,
4 4 3

A
 
 =  
 − 

 calculate A8. 

 5. Show that the matrix A is diagonalisable 
3 1 1
2 1 2
0 1 2

A
− 

 = − 
  

. If so obtain the matrix P such 
that P–1 AP is a diagonal matrix. (AMIETE June 2010)

ANSWERS

 1. 
251 405 235
405 891 405
235 405 251

 
 
 
  

 2. 
251 405 235
405 891 405
235 405 251

− 
 − − 
 − 

 3. 
1366 1365 1365
1365 1366 1365
1365 1365 1366

− 
 − − 
 − 

 4. 
12099 12355 6305
12100 12356 6305
13120 13120 6561

− 
 − 
 − 

32.23 COMPLEX MATRICES

Conjugate of a Complex Number
z = x + i y is called a complex number where 1−  = i, x, y are real numbers. z x iy= −  
is called the conjugate of the complex number z, e.g.,
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Complex number Conjugate number
2 + 3i 2 – 3i

– 4 – 5i – 4 + 5i
6i – 6i
2 2

Conjugate of a matrix. The matrix formed by replacing the elements of a matrix by 
their respective conjugate numbers is called the conjugate of A and is denoted by A .

   ( ) ,ij m nA a ×=  then ( )ij m nA a ×=
Example

If 
3 4 2 4

2 3
i i

A
i i
+ − 

=  − 
 then 

3 4 2 4
2 3

i i
A

i i
− + 

=  − 

THEOREM

If A and B be two matrices and their conjugate matrices are andA B  respectively, then 

(i) ( )A A=  (ii) ( )A B A B+ = +  (iii) ( )k A k A=  (iv) ( )AB AB=
Proof. Let     A = [aij]m × n, then
    [ ]ij m nA a ×=  where ija  is the conjugate complex of aij.

The (i, j) th element of ( )A  = the conjugate complex of the (i, j)th element of A

    = the conjugate complex of ija
    = aij = the (i, j)th element of A.

Hence  ( ) .A A=  Proved.
(ii) Let         A = [aij]m × n and B = [bij]m × n

    [ ]ij m nA a ×=  and [ ]ij m nB b ×=

 (i, j) th element of ( )A B+  = conjugate complex of (i, j) th element of (A + B)
   = conjugate complex of (aij + bij)
   ( ) ij ijij ija b a b= + = +

   = (i, j)th element of A  + (i, j)th element of B

   = (i, j)th element of  ( )A B+

Hence,  ( )A B A B+ = +  Proved. 
(iii) Let       A = [aij]m × n, let k be any complex number.

The (i, j)th element of  ( )kA  = conjugate complex of the (i, j)th element of kA
    = conjugate complex of kaij

    = ij ijka k a= ⋅

    = ( , )thk i j⋅  element of ( , )thA i j=  element of .k A⋅

Hence,   kA k A= ⋅  Proved.
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(iv) Let     A = [aij]m × n, B = [bij]n × p

Then    [ ] ,ij m nA a ×=  [ ]ij n pB b ×=

The (i, j)th element of ( )AB  = conjugate complex of (i, j)th element of AB

 = conjugate complex of 
1

n

ij jk
j

a b
=
∑  = 

1 1

n n

ij jk ij jk
j j

a b a b
= =

 
= ⋅ 

 
∑ ∑

 = (i, j)th element of A B⋅

Hence,   ( )AB A B= ⋅  Proved.

32.24 TRANSPOSE OF CONJUGATE OF A MATRIX

The transpose of a conjugate of a matrix A is denoted by

       ( )A Aθ=′

The (i, j)th element of Aθ  = (j, i)th element of A  

   = conjugate complex of (j, i)th element of A.

Example. If 
2 3 1 2 2 4
3 4 4 3 2 6 ,

5 5 6 3

i i i
A i i i

i

+ − + 
 = − + − 
 + 

 find Aθ

Solution. We have
2 3 1 2 2 4
3 4 4 3 2 6

5 5 6 3

i i i
A i i i

i

+ − + 
 = − + − 
 + 

   ⇒   
1 0
2 2

1 0
2 2

0 0 1

i

iA

 
− 

 
 −

=  
 
 
 
 

 

         
2 3 3 4 5

( ) 1 2 4 3 5 6
2 4 2 6 3

i i
A A i i i

i i

θ
− + 

 = = + − −′  
 − + 

  Ans.

EXERCISE 32.10

 1. If the matrix 
1 3 5

,
2 5

i i
A

i
+ − 

=  
 

 find (i) A        (ii) ( )A ′      (iii) Aθ     (iv) (Aθ)θ

Show that 

1 0
2 2

1 0
2 2

0 0 1

i

iA

 
− 

 
 −

=  
 
 
 
 

 is a unifary matrix, find A-1

 (Vidyasagar University 2018)
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ANSWERS

 1. (i) 
1 3 5

2 5
i i

A
i

− + 
=  − 

   (ii) 
1 2

( )
3 5 5

i i
A

i
− − 

=′  + 
 

  (iii) 
1 2
3 5 5

i i
A

i
θ − − 
=  + 

   (iv) 
1 3 5

( )
2 5

i i
A

i
θ θ + − 

=  
 

32.25 HERMITIAN MATRIX

Definition. A square matrix A = [aij] is said to be Hermitian if the (i, j)th element of A, i.e.,

        jiija a=   for all i and j.

For example 
2 3 4

,
3 4 1

i a b id
i b id c

+ −   
   − +   

Hence all the elements of the principal diagonal are real.
A necessary and sufficient condition for a matrix A to be Hermitian is that A = Aθ.
Example 1. Prove that the following

(i) (Aθ)θ = A    (ii) (A + B)θ = Aθ + Bθ  (iii) ( )kA k Aθ θ=   (iv) (AB)θ = Bθ · Aθ

where Aθ and Bθ be the transposed conjugates of A and B respectively, A and B being 
conformable to multiplication.
Solution.

(i)       ( ) [{( ) }] [ ]A A A Aθ θ ′ ′= = =   as { }( )A A′ =′  

(ii)   ( ) ( ) ( )A B A B A Bθ+ = + = +′ ′

    ( ) ( )A B A Bθ θ= + = +′ ′

(iii)   ( ) ( ) ( ) ( )kA kA k A k A k Aθ θ= = = =′ ′ ′

(iv)  ( ) ( ) ( ) ( ) ( )AB AB A B B A B Aθ θ θ= = ⋅ = ⋅ = ⋅′ ′ ′ ′   Proved.

Example 2. Prove that matrix 
1 1 2
1 3
2 0

i
A i i

i

− 
 = + 
 − 

 is Hermitian.

Solution.   
1 1 2

1 3
2 0

i
A i i

i

+ 
 = − − 
  

 ⇒ 
1 1 2

( ) 1 3
2 0

i
A i i

i

− 
 = +′  
 − 

      Aθ = A   ⇒ A is Hermitian matrix. Proved.

Example 3. Show that 
3 2 2

3 2 0 3 4
2 3 4 2

i i i
A i i

i i i

− + − − 
 = − + − 
 − − − − 

  is Skew-Hermitian matrix.

Solution. 
3 2 2

3 2 0 3 4
2 3 4 2

i i i
A i i

i i i

− − + 
 = − − + 
 + − + 
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3 2 2

( ) 3 2 0 3 4
2 3 4 2

i i i
A i i

i i i

− − + 
 = − − +′  
 − + + 

⇒    
3 2 2

3 2 0 3 4
2 3 4 2

i i i
A i i

i i i

θ
− − + 

 = − − + 
 − + + 

 [Q ( )A Aθ = ′ ]

     
3 2 2

3 2 0 3 4
2 3 4 2

i i i
i i A

i i i

− + − − 
 = − − + − = − 
 − − − − 

 

Aθ = – A 
⇒ A is Skew-Hermitian matrix. Proved.
Example 4. Show that the matrix Bθ AB is Hermitian or Skew-Hermitian according as 
A is Hermitian or Skew-Hermitian.
Solution. (i) Let A be Hermitian  ⇒ Aθ = A

Now          ( ) ( ) ( )B AB AB Bθ θ θ θ θ=

             B A Bθ θ= ⋅ ⋅

                      B A Bθ= ⋅ ⋅   (Aθ = A)
Hence, Bθ AB is Hermitian.
(ii) Let A be Skew-Hermitian  ⇒  Aθ = – A

Now,            ( ) ( ) ( )B AB AB Bθ θ θ θ θ= ⋅

   B A Bθ θ= ⋅ ⋅

   B A Bθ= − ⋅  (Aθ = – A)
Hence Bθ AB is Skew-Hermitian. Proved.

THE CHARACTERISTIC ROOTS OF A HERMITIAN MATRIX ARE ALL REAL

We know that matrix A is Hermitian if

   Aθ = A i.e., where Aθ ( ) ( )orA A ′′

Also         ( )A Aθ θλ = λ  and (AB)θ = BθAθ.

If λ is a characteristic root of matrix A then AX = λ X.  …(1)

∴   (AX)θ = (λX)θ  or XθAθ λ Xθ.
But A is Hermitian.  ∴ Aθ = A.

∴ X A X X AX X Xθ θ θ θ= λ ∴ = λ   ...(2)

Again from (1) X AX X X X Xθ θ θ= λ = λ   ...(3)

Hence from (2) and (3) we conclude that λ = λ  showing that λ is real.
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Deduction 1. From above we conclude that characteristic roots of real symmetric matrix 
are all real, as in this case, real symmetric matrix will be Hermitian.

For symmetric, we know that A′ = A. ( )A A=′

∴ or Aθ = A           A A=   as A is real. Rest as above.

32.26 SKEW-HERMITIAN MATRIX

Definition. A square matrix A = (aij) is said to be Skew-Hermitian matrix if the (i, j)th 
element of A is equal to the negative of the conjugate complex of the (j, i)th element of 
A, i.e., ij jia a= −  for all i and j.

If A is a Skew-Hermitian matrix, then
         ii iia a= −  

             0ii iia a+ =

Obviously, aii is either a pure imaginary number or must be zero.

For example 
0 3 4

3 4 0
i

i
− + 

 + 
 and 

0
0

a ib
a ib

− 
 − − 

 are Skew-Hermitian matrixes. 

A necessary and sufficient condition for a matrix A to be Skew-Hermitian is that Aθ = – A.
Deduction 2. Characteristic roots of a skew Hermitian matrix is either zero or a pure 
imaginary numbers. (D.U. III Sem. 2012, April 2010)
If A is skew Hermitian, then iA is Hermitian.
Also λ be a characteristic root of A then AX = λX.
∴    (i .A) X = (iλ) X.
Above shows that iλ is characteristic root of matrix iA, which is Hermitian and hence iλ 
should be real, which will be possible if λ is either pure imaginary or zero.
Example 1. Show that every square matrix can be expressed as R + iS uniquely where 
R and S are Hermitian matrices.
Solution. Let A be any square matrix. It can be rewritten as

 
1 1( ) ( )
2 2

A A A i A A R iS
i

θ θ   = + + − = +   
   

where 
1 1( ), ( )
2 2

R A A S A A
i

θ θ= + = −

Now we have to show that R and S are Hermitian matrices.

 
1 1 1 1( ) [ ( ) ] ( ) ( )
2 2 2 2

R A A A A A A A A Rθ θ θ θ θ θ θ θ= + = + = + = + =

Thus R is Hermitian matrix.

Now, 
1 1( ) ( )
2 2

S A A A A
i i

θ
θ θ θ θ = − = − −  

     
1 1 1[ ( ) ] ( ) ( )
2 2 2

A A A A A A S
i i i

θ θ θ θ θ−
= − − = − = − =

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



42   Mathematical Physics

Thus S is a Hermitian matrix.
Hence A = R + iS, where R and S are Hermitian matrices.
Now, we have to show its uniqueness.
Let A = P + iQ be another expression, where P and Q are Hermitian matrices, i.e.,

 ,P P Q Qθ θ= =

Then  ( ) ( )A P iQ P iQ P iQ P iQθ θ θ θ θ θ= + = + = − = −

     A = P + iQ and A P iQθ= −

  
1 ( )
2

P A A Rθ= + =  and 
1 ( )
2

Q A A S
i

θ= − =

Hence A = R + iS is the unique expression, where R and S are Hermitian matrices. Proved.

Example 2.  Express the matrix A 
2 3 4 5

6 0 4 5
2 2

i i i
i i

i i i

− + 
 + − 
 − − + 

  as a sum of Hermitian and 

Skew Hermitian matrix.           (U.P.I Sem Dec 2009)
Solution.  Here, we have 

  A = 
2 3 4 5

6 0 4 5
2 2

i i i
i i

i i i

− + 
 + − 
 − − + 

 ... (1)

                                     
2 3 4 5

6 0 4 5
2 2

i i i
A i i

i i i

− + − 
 = − + 
 + − 

                                 ( )
6

2 3 0 2
4 5 4 5 2

i i i
A i i

i i i

− − 
 = + + 
 − + − 

                                   Aθ = 
6

2 3 0 2
4 5 4 5 2

i i i
i i
i i i

− − 
 + + 
 − + − 

  ... (2)

On adding (1) & (2), we get

  A + Aθ = 

0 8 4 4 6
8 4 0 6 4
4 6 6 4 4

i i
i i
i i

− + 
 + − 
 − + 

Let       R = [ ]
0 4 2 2 3

1 4 2 0 3 2
2

2 3 3 2 2

i i
A A i i

i i

θ
− + 

 + = + − 
 − + 

 ... (3) 

On subtracting (2) from (1), we get 
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  A – Aθ = 
2 4 2 4 4

4 2 0 2 6
4 4 2 6 2

i i i
i i
i i i

− − + 
 − − 
 − + − − 

 

 ( )1
2

A Aθ−  = 
2 2 2

2 0 1 3
2 2 1 3

i i i
i i

i i i

− − + 
 − − 
 − + − − 

 ... (4) 

From (3) and (4), we have 

A = 
0 4 2 2 3 2 2 2

4 2 0 3 2 2 0 1 3
2 3 3 2 2 2 2 1 3

Hermitian matrix Skew-Hermitian matrix

i i i i i
i i i i
i i i i i

− + − − +   
   + − + − −   
   − + − + − −   

 

Example 3.  Express the matrix 
1 2 5 5
2 2 4 2
1 4 7

i i
A i i i

i

+ − 
 = + + 
 − + − 

 as the sum of Hermitian 

matrix and Skew-Hermitian matrix.

Solution. 
1 2 5 5
2 2 4 2
1 4 7

i i
A i i i

i

+ − 
 = + + 
 − + − 

  ⇒ 
1 2 5 5
– 2 2 4 2
1 4 7

i i
A i i i

i

− + 
 = − − 
 − − − 

  ...(1)

 
1 2 1

( ) 2 2 4
5 5 4 2 7

i i i
A i

i i

− − − − 
 = − −′  
 + − 

  ⇒ 

1 2 1
2 2 4

5 5 4 2 7

i i i
A i

i i

θ
− − − − 

 = − − 
 + − 

  ...(2)

On adding (1) and (2), we get

    
2 2 2 4 6

2 2 4 2
4 6 2 14

i i
A A i i

i i

θ
− − 

 + = + 
 + − 

Let   
1 1 2 3

1 ( ) 1 2
2

2 3 7

i i
R A A i i

i i

θ
− − 

 = + = + 
 + − 

  ...(3)

On subtracting (2) from (1), we get

    
2 2 2 6 4

2 2 2 8 2
6 4 8 2 0

i i i
A A i i i

i i

θ
+ − 

 − = − + + 
 − − − + 

        Let    S 
1 3 2

1 ( ) 1 4
2

3 2 4 0

i i i
A A i i i

i i

θ
+ − 

 − = − + + 
 − − − + 

  ...(4)

From (3) and (4), we have
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1 1 2 3 1 3 2
1 2 1 4
2 3 7 3 2 4 0

 Hermitian matrix Skew-Hermitian matrix

i i i i i
A i i i i i

i i i i

− − + −   
   = + + − + +   
   + − − − − +   

  Ans.

Example 4. For any square matrix, AAθ = I show that Aθ = I. 

Solution. AAθ = I So A is invertible. (given)

Let B be another matrix such that

            AB = BA = I ...(1)

Now          B = BI = B(AAθ) (AAθ = I)

   = (BA) Aθ

   = IAθ = Aθ [Using (1)]

We know that BA = I [From (1)]

Putting the value of B from (2) in (1), we get

⇒  Aθ A = I Proved. 

  CHARACTERISTIC ROOTS OF A SKEW-HERMITIAN MATRIX IS EITHER 
ZERO OR PURELY AN IMAGINARY NUMBER

Since A is a skew-Hermitian matrix: ∴ i A is Hermitian matrix.
Let λ be a characteristic root of A.
Then,  AX = λX ⇒ (iA) X = (iλ) X
⇒ iλ is a characteristic root of matrix iA.
But  iλ is a characteristic root of Hermitian matrix.
Therefore, iλ should be real.
Hence, λ is either zero or purely imaginary. Proved.

32.27 PERIODIC MATRIX

A square matrix is said to be periodic, if Ak+1 = A, where k is a positive integer. If k is 
the least positive integer for which Ak+1 = A, then A is said to be of period k.

32.28 IDEMPOTENT MATRIX

A square matrix is said to be idempotent provided A2 = A.

 PROVE THAT THE EIGEN VALUES OF AN IDEMPOTENT MATRIX ARE 
 EITHER ZERO OR UNITY

 (R.G.P.V. Bhopal I Semester June 2007)

Solution. Let A be an idempotent matrix
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∴    A2 = A
Let λ be a characteristic root of A and the corresponding vector be X. Hencce X ≠ 0 and

          AX = λX ...(1)

⇒     ( ) ( ) ( )A AX A X AX= λ = λ

⇒     ( ) ( )AA X X= λ λ  [Q From (1), AX = λX]

⇒       2 2A X X= λ

⇒         2AX X= λ          [Q A2 = A]

⇒          2X Xλ = λ         [From (1) AX = λX]

⇒      2( ) 0Xλ − λ =             ⇒       λ2 – λ = 0

⇒     λ(λ – 1) = 0            ⇒  λ2 = 0, 1                         [Q X ≠ 0]

Hence, the eigen values of an idempotent matrix are either zero or unity. Proved.

Example. Determine all the idempotent diagonal matrices of order n.

Solution. Let A = diag. [d1, d2, d3, ... dn] be an idempotent matrix of order n.

Here, for the matrix ‘A’ to be idempotent A2 = A

 

1 1 1

2 2 2

3 3 3

0 0........0 0 0........0 0 0........0
0 0........0 0 0........0 0 0........0
0 0 .......0 0 0 .......0 0 0 .......0
0 0 0........ 0 0 0........ 0 0 0........n n n

d d d
d d d

d d d
d d d

     
     
     =     
     
          

⇒                          

2
1 1

2
2 2

2
33

2

0 0........0 0 0........0
0 0........0 0 0........0

0 0 .......00 0 .......0
0 0 0........0 0 0........ nn

d d
d d

dd
dd

         =            

 

   2 2 2
1 1 2 2; ......... n nd d d d d d= = =

i.e.,    d1 = 0, 1; d2 = 0, 1; d3 = 0, 1 ............ dn = 0, 1.
Hence diag. [d1, d2, d3 … dn], is the required idempotent matrix where
    d1 = d2 = d3 = ... dn = 0 or 1. Ans.

EXERCISE 32.11
 1. Which of the following matrices are Hermitian:

  (a) 
1 2 3

2 2 4
3 4 3

i i
i i
i i

+ − 
 + − 
 + + 

    (b) 
2 3 1
4 1 6
3 7 2

i

i

 
 − 
  

  (c) 
4 2 5 2

2 1 2 5
5 2 2 5 2

i i
i i
i i

− + 
 + − 
 − + 

   (d) 
0 3
7 0 5
3 1 0

i
i

i

 
 − 
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 2. Which of the following matrices are Skew-Hermitian:

  (a) 
2 3 4
3 3 5
4 5 4

i
i

i

− 
 − 
 − 

    (b) 
3 1 2
1 2 6
4 6 3

i
i

i

− 
 − 
 − 

 

  (c) 
0 1 2 3

1 0 6
2 3 6 4

i i
i i
i i i

− + 
 − − 
 − + 

    (d) 
1 3 7
3 6

7 8 0

i
i i
i

+ 
 − 
 − 

 

 3. Give an example of a matrix which is Skew-symmetric but not Skew-Hermitian.
 4. If A be a Hermitian matrix, show that iA is Skew-Hermitian. Also show that if B be a 

Skew-Hermitian matrix, then iB must be Hermitian.
 5. If A and B are Hermitian matrices, then show that AB + BA is Hermitian and AB – BA is 

Skew-Hermitian.
 6. If A is any square matrix, show that A + Aθ is Hermitian.

 7. If 
3 5 2 3

5 2 7 4 ,
3 4 5

i
H i i

i

+ − 
 = − 
 − − 

 show that H is a Hermitian matrix.

  Verify that iH is a Skew-Hermitian matrix.
 8. Show that for any complex square matrix A,
  (i) (A + A*) is a Hermitian matrix, where A* = A–T

  (ii) (A – A*) is Skew-Hermitian matrix.
  (iii) A*A* and A*A are Hermitian matrices.
 9. Show that any complex square matrix can be uniquely expressed as the sum of a Hermitian 

matrix and a Skew-Hermitian matrix.

 10. Express 
2 3 4 5

6 0 4 5
2 2

i i i
A i i

i i i

− + 
 = + − 
 − − + 

 as the sum of Hermitian and Skew-Hermitian matrices.

 11. Prove that the latent roots of a Hermitian matrix are all real.

 12. If A = 
2 3 1 3

5 4 2
i i

i i
+ − + 

 − − 
 show that AA* is a Hermitian matrix; where A* is the conjugate 

transpose of A. (AMIETE June 2010)

ANSWERS

 1. (c) 2. (a), (c) 3. 
0 2 3

2 3 0
i

i
+ 

 − − 

32.29 UNITARY MATRIX

A square matrix A is said to be unitary matrix if

     A A A A Iθ θ⋅ = =

Example 1. If A is a unitary matrix, show that AT is also unitary.
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Solution. ,A A A A Iθ θ⋅ = =  since A is a unitary matrix.

   ( ) ( )AA A A Iθ θ θ θ θ= =      (Iθ = I)

   ( ) ( )AA A A Iθ θ θ θ= =  

          ( ) ( )A A A A Iθ θ θ θ θ θ= =  

       AA A A Iθ θ= =     [since (Aθ)θ = A]

           ( ) ( ) ( )T T TAA A A Iθ θ= =

         ( ) ( )T T T TA A A A Iθ θ= =  

        ( ) ( )T T T TA A A A Iθ θ⋅ = =  
Hence, AT is a unitary matrix. Proved.
Example 2. If A is a unitary matrix, show that A–1 is also unitary.    (DU, III Sem. 2012)

Solution. ,AA A A Iθ θ= =  since A is a unitary matrix.

 1 1 1( ) ( ) ( )AA A A Iθ − θ − −= ⋅ =  taking inverse

    1 1 1 1( ) ( )A A A A Iθ − − − θ −⋅ = =  

    1 1 1 1( ) ( )A A A A I− θ − − − θ⋅ = =  
Hence, A–1 is a unitary matrix. Proved.
Example 3. If A and B are two unitary matrices, show that AB is a unitary matrix.

Solution. A A A A Iθ θ⋅ = =  since A is a unitary matrix.  ...(1)

Similarly,               B B B B Iθ θ⋅ = =   ...(2)

Now,        ( )( ) ( )( )AB AB AB B Aθ θ θ= ⋅  

        ( )A BB Aθ θ= ⋅

        AI Aθ=    [From (2)]

        AA Iθ= =    [From (1)]

Again,  ( ) ( ) ( ) ( )AB AB B A ABθ θ θ⋅ = ⋅

        ( )B A A Bθ θ=    [From (1)]

        B I Bθ=

          = BθB
        = I    [From (2)]
Hence, AB is a unitary matrix. Proved.

Example 4. Prove that the matrix 
1 11

1 13
i

i
+ 

 − − 
 is unitary.

Solution. Let 
1 11

1 13
i

A
i

+ 
=  − − 
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1 11

1 13
i

A
i

θ + 
=  − − 

 

    
1 1 1 11 1

1 1 1 13 3
i i

A A
i i

θ + +   
⋅ = ×   − − − −   

 

 
1 (1 1) (1 ) (1 ) 3 0 1 01 1

(1 ) 1(1 ) (1 1) 1 0 3 0 13 3
i i

I
i i
+ + + − +     

= = = =     − − − + +     
Hence, A is a unitary matrix.  Proved.

Example 5. Show that the matrix 
i i

A
i i

α + γ −β + δ 
=  β + δ α − γ 

 is a unitary matrix if

          2 2 2 2 1α +β + γ + δ =  (U.P. I Semester Dec. 2005)

Solution. We have,         
i i

A
i i

α + γ −β + δ 
=  β + δ α − γ 

 

       
– –

– –
i i

A
i i

θ α γ β δ 
=  β δ α + γ 

 

We know that, a square matrix A is said to be unitary if A Aθ = I
– – 1 0

0 1
i i i i
i i i i

α + γ β + δ α − γ β δ     
=     β + δ α − γ −β − δ α + γ     

2 2 2 2

2 2 2 2

1 0
0 1

i i i i

i i i i

 α + γ + β + δ αβ − αδ + βγ + γδ − αβ − βγ + αδ − δγ  
=   

αβ − βγ + αδ + γδ − αβ − αδ + βγ − δγ β + δ + α + γ    

⇒ 
2 2 2 2

2 2 2 2

0 1 0
0 10

 α +β + γ + δ  
=   

α +β + γ + δ    

⇒ 2 2 2 2 1α +β + γ + δ =   Proved.

Example 6. Define a unitary matrix. If 
0 1 2

1 2 0
i

N
i

+ 
=  − + 

 is a matrix, then show that 

(I – N) (I + N)-1 is a unitary matrix, where I is an identity matrix.
 (D.U. April 2010)
Solution. Unitary matrix: A square matrix ‘A’ is said to be unitary if Aθ A = I, where

( )TA Aθ =  and I is an identity matrix.

we have  
0 1 2

1 2 0
i

N
i

+ 
=  − + 

 

  
1 0 0 1 2 1 1 2
0 1 1 2 0 1– 2 1

i i
I N

i i
+ − −     

− = − =     − +     
  ...(1)

Now we have to find (I + N)–1

    
1 0 0 1 2 1 1 2
0 1 1 2 0 1 2 1

i i
I N

i i
+ +     

+ = + =     − + − +     
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 | I + N | = 1 – (–1 – 4) = 6

     Adj. 
1 1 2

( )
1 2 1

i
I N

i
− − 

+ =  − 

         1 1 1 2( ) 1( )
1 2 1| | 6

iAdj I NI N
iI N

− − − +
+ = =  −+  

  ...(2)

For unitary matrix Aθ A = I

From (1) and (2), we get

∴ 1 1 1 2 1 1 2 4 2 41 1( – ) ( )
1 2 1 1 2 1 2 4 46 6

i i i
I N I N B

i i i
− − − − − − − −     

+ = = =     − − − −     
 (say)

Now   
4 2 41( )

2 4 46
T i

B
i

− + 
=  − + − 

 
4 2 4 4 2 4 36 01 1( ) .

2 4 4 2 4 4 0 3636 36
T i i

B B I
i i

− + − − −     
= = =     − + − − −     

 

Hence the result. Proved.

35.30.   THE MODULUS OF EACH CHARACTERISTIC ROOT OF A UNITARY 
MATRIX IS UNITY

(D.U. April 2010 U.P.)
Solution. Suppose A is a unitary matrix. Then

      .A A Iθ =

Let λ be a characteristic root of A. Then

       AX X= λ   ...(1)

Taking conjugate transpose of both sides of (1), we get

    ( )AX Xθ θ= λ     ...(2)

⇒    X A Xθ θ θ= λ  

From (1) and (2), we have

⇒     ( ) ( )X A AX X Xθ θ θ= λλ

⇒       ( )X A A X X Xθ θ θ= λλ

⇒    X IX X Xθ θ= λλ  (Q Aθ . A = I)

⇒     X X X Xθ θ= λλ

⇒     ( 1) 0X Xθ λ λ − =  ...(3)

Since  Xθ X ≠ 0 therefore (3) gives

 1 0.λλ − =  or 1λλ =  or | λ |2 = 1  ⇒  | λ | = 1 Proved.
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EXERCISE 32.12

 1. Show that the matrix 
11

12
i

A
i

 
=  − − 

 is unitary.

 2. Prove that a real matrix is unitary if it is orthogonal.

 3. Prove that the following matrix is unitary:

                 

1 1(1 ) ( 1 )
2 2
1 1(1 ) (1 )
2 2

i i

i i

 + − + 
 
 + −  

 4. Show that 2

2

1 1 1
1 1
3

1

U

 
 

= ω ω 
 

ω ω 

 is a unitary matrix, where w is the complex cube root of 

unity.

 5. Prove that the latent roots of a unitary matrix have unit modulus.

 6. Verify that the matrix

     
1 11
1 12

i i
A

i i
+ − 

=  − + 

  has eigen values with unit modulus.

Tick () the correct answer:

 7. If λ is an eigen value of the matrix ‘M’ then for the matrix (M – λI) , which of the following 
statement (s) is/are coorrect ? 

  (i) Skew symmetric  (ii) Non singular  (iii) Singular   (iv) None of these

 (U.P. I Sem. Dec. 2009)

 8. A square matrix A is idempotent if :

  (i) A′ = A  (ii) A′ = – A (iii) A2 = A (iv) A2 = I 

   (R.G.P.V. Bhopal I Semester June 2007)

 9. If a square matrix U such tha 1U U −′=  then U is

  (i) Orthogonal (ii) Unitary (iii) Symmetric (iv) Hermitian

   (R.G.P.V. Bhopal I Semester June 2007)

 10. If λ is an eigen value of a non-singular matrix A then the eigen value of A–1 is 

  (i) 1/λ  (ii) λ  (iii) –λ  (iv) –1/λ

(AMIETE June 2010)

ANSWERS
 7. (iii) 8. (iii)
 9. (ii) 10. (i)
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33.1 DOUBLE INTEGRATION

We know that

( )
b

a
f x dx∫  = 1 1 2 2 3 3

0

lim [ ( ) ( ) ( )
n
x

f x x f x x f x x
→∞

δ →

δ + δ + δ  +...

 + f (xn) δ xn]
 Let us consider a function f (x, y) of two variable x 
and y defined in the finite region A of xy-plane. Divide 
the region A into elementary areas.
	 δA1, δA2, δA3, ...... δAn

Then  ( , )
A

f x y dA∫∫  = 1 1 1 2 2

20

( , ) ( , )
lim

..... ( , )n n n nA

f x y A f x y
A f x y A→∞

δ →

δ + 
 δ + + δ 

33.2 EVALUATION OF DOUBLE INTEGRAL

 Double integral over region A may be evaluated by two 
successive integrations.
If A is described as f1 (x) ≤ y ≤ f2 (x) [y1 ≤ y ≤ y2]
and  a ≤ x ≤ b,

Then   ( , )A f x y dA∫ ∫  = 2

1
( , )

b y

a y
f x y dx dy∫ ∫

(1) First Method

 ( , )A f x y dA∫ ∫  = 2

1
( , )

b y

a y
f x y dy dx∫ ∫

 f (x, y) is first integrated with respect to y 
 treating x as constant between the limits  
a and b.
 In the region we take an elementary area δxδy.
Then integration w.r.t y (x keeping constant), 
converts small rectangle δxδy into a strip PQ 
(y δx). While the integration of the result 
w.r.t. x corresponding to the sliding to the 
strip PQ, from AD to BC covering the whole 
region ABCD.
Second method

 ( , )
A

f x y dxdy∫ ∫  = 2

1
( , )

d x

c x
f x y dx dy∫ ∫

O

Y

X

�A

1

CHAPTER
3333  

Multiple Integrals
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 Here f (x,y) is first integrated w.r.t. x keeping y constant between the limits x1 and x2 
and then the resulting expression is integrated with 
respect to y between the limits c and d.
 Take a small area δxδy. The integration w.r.t. x 
between the limits x1, x2 keeping y fixed indicates 
that integration is done, along PQ. Then the in-
tegration of result w.r.t y corresponds to sliding 
the strips PQ from BC to AD covering the whole 
region ABCD.
 Note. For constant limits, it does not matter 
whether we first integrate w.r.t. x and then w.r.t. 
y or vice versa.

Example 1. Evaluate ,
1 x 2 2
0 0

(x y ) dA+∫ ∫ where dA indicates small area in xy-plane.
 (Gujarat I Semester Jan. 2009)

Solution.   Let I = 
1 2 2
0 0

( )
x

x + y dy dx∫ ∫  = 
31 2

0
0

3

x
yx y + dx

 
 
 

∫

   = 
1 2 3
0

1( 0) ( 0)
3

x x x dx − + −  ∫  = 
31 3

0 3
xx dx

 
+ 

 
∫

   = 
1 3
0

4
3

x dx∫  = 
14

0

4 1 1[1 0]
3 4 3 3

x 
= − = 

 
 sq units. Ans.

Example 2. Evaluate 
1 1 x 1/ 3 1/ 2 1/ 2
1 0

x y (1 x y) dy dx
− −

−
− −∫ ∫ .

Solution. Here, we have

   I = 
1 1 1/3 1/2 1/2
1 0

(1 )
x

x y x y dy dx
− −

−
− −∫ ∫  ...(1)

Putting (1 – x) = c in (1), we get

   I = 
1 1/3 1/2 1/2
1 0

( )
c

x dx y c y dy−
−

−∫ ∫  ...(2)

Again putting y = ct ⇒ dy = c dt in (2), we get

  I = 
1 1 1 1

1 13 2 2 2
1 0

( )x dx c t c ct c dt
− −

−
−∫ ∫

   = 
1 11/3 1/2 1/2 1/2 1/2
1 0

(1 )x dx c t c t c dt− −
−

−∫ ∫

   = 
1 1 1 11/3 1/2 1/2 1/3 1/2 1 3/2 1
1 0 1 0

(1 ) (1 )c x dx t t dt c x dx t t dt− − −
− −

− = −∫ ∫ ∫ ∫

   = 
1

1 3
1

1 3,
2 2

c x dx
−

 β   ∫  
1 1 1
0

(1 ) ( , )l mx x dx l m− − − = β  ∫
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   = 
1 1/3

1

1 3
2 2

1 3
2 2

c x dx
−

+
∫  = 

1 11/3 1/3
1 1

1 1 1 1.
2 2 2 2

12
c x dx c x dx

− −

π π
=∫ ∫

   = 
1 1/3
1 2
c x dx

−

π
∫  = 

1 1/3
1

.
2

x c dx
−

π
∫

Putting the value of c, we get

  I = 
14/3 7/31 11/3 1/3 4/3

1 1

1

(1 ) ( ) 4 72 2 2
3 3

x xx x dx x x dx
− −

−

 π π π
− = − = − 

 
 

∫ ∫

   = 
3 3 3 3 9 9(1) (1) ( 1) ( 1)

2 4 7 4 7 2 14 28
π π π   − − − + − = =      

 Ans.

Example 3. Evaluate = 
R

(x y) dy dx+∫∫  is the region bounded by x = 0, x = 2, y = x, 
        y = x + 2.  (Gujarat I Semester Jan. 2009)
 Solution.  Let  I = ( )

R
x y dy dx+∫∫

  The limits are x = 0, x = 2, y = x and  
y = x + 2

I = 
2 2

0
( )

x

x
dx x y dy

+
+∫ ∫  = 

222

0 2

x

x

yxy dx
+

 
+ 

 
∫

 = 
22 2 2

0

1( 2) ( 2)
2 2

xx x x x dx
 

+ + + − − 
 

∫

 = 
22 2 2 2

0

12 ( 4 4)
2 2

xx x x x x dx
 

+ + + + − − 
 

∫

 = 
2

0∫ [2x + 2x + 2] dx

 = 
2 2 2

00
2 (2 1) 2 [ ]x dx x x+ = +∫  = 2 [4 + 2] = 12 Ans.

 Example 4. Evaluate ∫∫ R
xy dx dy where R is the quadrant of the circle x2 + y2 = a2 

where x  ≥ 0 and y ≥ 0.
Solution. Let the region of integration be the first quadrant of the circle OAB.

  2 2 2 2 2( )
R

xy dx dy x y a y a x+ = ⇒ = −∫ ∫
First we integrate w.r.t. y and then w.r.t. x.

 The limits for y are 0 and 2 2a x−  and for x, 0 to 

a.

 = 
2 2

0 0

a a x
x dx y dy

−

∫ ∫   = 

2 2
2

0
0

2

a x
a yx dx

−
 
 
 

∫

x
=

a

X
x
 =

 2
X´

Y

2

y = x

y
=

x
+

2

0 1 2–1–2

dy

y
=

a
–x

2

2

2

P

Q y = 0 A

B

Y

X
O

dx
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4   Mathematical Physics

 = 2 2
0

1 ( )
2

a
x a x dx−∫   = 

2 2 4

0

1
2 2 4

a
a x x 

− 
 

 = 
4

8
a

   Ans.

Example 5. Evaluate ,2
s

xy y dy dx−∫∫
 where S is a triangle with vertices  
(0, 0), (10, 1) and (1, 1).
 Solution. Let the verties of a triangle 
OBA be (0, 0) (10, 1) and (1, 1).
Equation of OA is x = y.   
Equation of OB is x = 10 y.   
The region of ∆OBA, given by the limits 
 y < x < 10 y and 0 < y < 1. 

 2
s

xy y dy dx−∫∫  = 
1 10 2 ½
0

( )
y

y
dy xy y dx−∫ ∫

  = 
10

1 12 3/2 2 3/2
0 0

2 1 2 1( ) (9 )
3 3

y

y
dy xy y y dy

y y
 

− = 
 

∫ ∫  = 
1 2
0

18 y dy∫

  = 
13

0

1818 6
3 3
y 

= = 
 

 Ans.

 Example 6. Evaluate ,2
A

x dx dy∫∫  where A is the region in the first quadrant bounded 

by the hyperbola xy = 16 and the lines y = x, y = 0 and x = 8. 
Solution. The line OP, y = x and the curve PS, xy = 16 intersect at (4, 4).
The line SN, x = 8 intersects the hyperbola at S (8, 2). y = 0 is x-axis.
The area A is shown shaded.
 Divide the area in to two part by PM 
perpendicular to OX.
 For the area OMP, y varies from 0 to x, 
and then x varies from 0  to 4.
 For the area PMNS, y -series from 0 
to 16/x and then x varies from 4 to 8.

∴  2
A

x dx dy∫∫  = 
4 8 16/2 2
0 0 4 0

x x
x dx dy x dx dxy+∫ ∫ ∫ ∫

 = 
4 8 16/2 2
0 0 4 0

x x
x dx dy x dx dy+∫ ∫ ∫ ∫  = [ ] [ ]4 8 16/2 2

0 00 4
x xx y dx x y dx+∫ ∫

 = 
4 84 24 83

0 4
0 4

16 16
4 2
x xx dx x dx

   
+ = +   

   
∫ ∫  = 64 + 8 (82 – 42) = 64 + 384 = 448. Ans.

 Example 7. Evaluate 2(x y) dx dy+∫∫  over the area bounded by the ellipse 
2 2

2 2
x y = 1
a b

+

 (U.P. Ist Semester Compartment 2004)

Solution. For the ellipse 
2 2

2 2 1x y
a b

+ =
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⇒ 
y
b

 = 
2

2 2
21 x by a x

aa
± − ⇒ = ± −

∴ The region of integration can be expressed as

2 2 2 2and b ba x a a x y a x
a a

− ≤ ≤ − − ≤ ≤ −

∴ 2( )x y dx dy+∫∫  = 2 2( 2 )x y xy dx dy+ +∫∫

 = 
2 2

2 2

/ 2 2
( / )

( 2 )
a b a a x

a b a a x
x y xy dx dy

−

− − −
+ +∫ ∫

 = 
2 2 2 2

2 2 2 2

/ /2 2
( / ) ( / )

( ) 2
a b a a x a b a a x

a b a a x a b a a x
x y dx dy xy dy dx

− −

− − − − − −
+∫ ∫ ∫ ∫

 = 
2 2/ 2 2

0
2 ( ) 0

a b a a x

a
x y dy dx

−

−
+ +∫ ∫  

  [Since (x2 + y2) is an even function of y and 2xy is an odd function of y]

 = 

2 2
3

2

0

2
3

b a x
aa

a

yx y dx

  −  

−

  
+     

∫  = 
3

2 2 2 2 2 3/2
3

12 ( )
3

a

a

b bx a x a x dx
a a−

 
× − + − 

 
∫

 = 
3

2 2 2 2 2 3/2
30

4 ( )
3

a b bx a x a x dx
a a
 

− + − 
 

∫
 [On putting x = a sin θ and dx = a cos θ dθ]

 = 
3

2 2 3 32
30

4 . sin . cos cos cos
3

b ba a a a d
a a

π  
θ θ + θ × θ θ  ∫

 = 
3

3 2 2 42
0

4 sin cos cos
3

aba b d
π  

θ θ + θ θ  ∫  = 
3

3 1 1 3 14 . . . . .
4 2 2 3 4 2 2

. aba b
 π π

+ 
 

 = 3 3 2 2( ) ( )
4 4

a b ab ab a bπ π
+ = +  Ans.

Example 8. Evaluate 2 2(x y ) dx dy+∫∫  

throughout the area enclosed by n the 
 curves y = 4x, x + y = 3, y = 0 and y 
= 2.
Solution. Let OC represent y = 4x; BD, x 
+ y = 3; OB, y = 0, and CD, y = 2. The 
given integral is to be evaluated over the 
area A of the trapezium OCDB. 
Area OCDB consists of area OCE, area 
ECDF and area FDB.

The co-ordinates of C, D and B are 
1 , 2
2

 
    (1, 2) and (3, 0) respectively. 

x
=

a

x
=

–
a

X

Y

O
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6   Mathematical Physics

∴ 2 2( )
A

x y dy dx+∫∫
 = 2 2 2 2 2 2( ) ( ) ( )

OCE ECDE FDB
x y dy dx x y dy dx x y dy dx+ + + + +∫∫ ∫∫ ∫∫

 = 
½ 4 1 2 3 32 2 2 2 2 2
0 0 ½ 0 1 0

( ) ( ) ( )
x x

dx x y dy dx x y dy dx x y dy
−

+ + + + +∫ ∫ ∫ ∫ ∫ ∫
 I1 I2 I3

Now,  I1 = 
½ 4 2 2
0 0

( )
x

dx x y dy+∫ ∫  = 
43½ ½2 3

0 0
0

76
3 3

x
yx y dx x dx

 
+ = 

 
∫ ∫

   = 
½4½ 3

0
0

76 76
3 3 4

xx dx
 

=  
 

∫  = 
76 1 1 19.
3 4 16 48
  =  

 I2 = 
1 2 2 2
½ 0

( )dx x y dy+∫ ∫  = 
231 12 2

½ ½
0

82
3 3
yx y dx x dx

   + = +     
∫ ∫

  = 
13

½

2 8 2 8 2 1 8 1 23. .
3 3 3 3 3 8 3 2 12
x x

      + = + − + =           

 I3 = 
3 3 2 2

1 0
( )

x
dx x y dy

−
+∫ ∫  = 

33 33 32 2
1 1

0

(3 )(3 )
3 3

x
y xx y dx x x dx

−
   −

+ = − +   
   

∫ ∫

  = 
33 4 43 2 3 3

1
1

(3 ) (3 )3
3 4 3 4

x x xx x dx x
   − −

− + = − −   ×   
∫  = 

81 1 16 2227 0 1
4 4 12 3

 − − − + + =  

∴ 2 2
1 2 3( )

A
x y dy dx I I I+ = + +∫ ∫  = 

19 23 22 463 319 .
48 12 3 48 48

+ + = =  Ans.

EXERCISE 33.1
Evaluate

 1. 
22

0 0

y
x xe dy dx∫ ∫   2. 

0 0

a ay
xy dx dy∫ ∫

 3. 
2 2

0 0

a a y
dx dy

−

∫ ∫   4. 2

1 2

0
(1 )

y

y
xy dx dy+∫ ∫

 5. 
22

0 0

ax xa
xy dy dx

−

∫ ∫   6. 
22 2 2

0 0

a ax x
x dy dx

−

∫ ∫

 7. 

2 2
2 2 2

0 0

a xa
a x y dy dx

−

− −∫ ∫  8. 

1 2(1 )
1 2

2 2
0 0 1

y
dx dy

x y

−

− −
∫ ∫

 9. 

2 2

2 2 2
0 0 (1 )

a xa

y

dx dy

e a x y

−

+ − −
∫ ∫  10. 

2 2
0

a a

y

x dx dy

x y+
∫ ∫

 11 
1 2

2 2

0 0
( 3 )

x y
x x y dx dy

= =

+∫ ∫               (A.M.I.E.T.E. June 2009)  
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Multiple Integrals 7

 12. (5 2 ) ,
A

x y dx dy− −∫ ∫  where A is given by y = 0, x + 2y = 3, x = y2.

 13. ,
A

xy dx dy∫ ∫  where A is given by x2 + y2 – 2x = 0, y2 = 2x, y = x.

 14. 2 24 ,
A

x y dx dy−∫ ∫  where A is the triangle given by y = 0, y = x and x = 1.

 15. 2 ,
R

x dx dy∫ ∫  where R is the two-dimensional region bounded by the curves y = x and y = x2.

 16. (1 )
A

xy x y dx dy+ −∫ ∫  where A is the area bounded by x = 0, y = 0 and x + y = 1.

ANSWERS

 1. e2 – 1 2.  
4

6
a

 3. 
2

4
aπ

 4. 
41

210
 5. 

42
3
a

 6. 
45

8
aπ

 7. 
3

4
aπ

 8. 
4
π

 9. 
2log

2 1

a

a
e
e

π

+

 10. 
2

log ( 2 1)
2

a
+  11 

14
3

 12. 
217
60

 13. 
7

12
 14. 

1 3
3 3 2
 π

+  
 15. 

1
20

 16. 2
105
π

33.3 EVALUATION OF DOUBLE INTEGRALS IN POLAR CO-ORDINATES

 We have to evalaute 2 ( )2
( )1 1

( , )r
r

f r dr d
θ θ

θ θ
θ θ∫ ∫  over the region bounded by the straight lines 

θ = θ1 and θ = θ2 and the curves r = r1 (θ) and r = r2 
(θ). We first integrate with respect to r between the 
limits r = r1(θ) and r = r2(θ) and taking θ as constant. 
Then the resulting expression is integrated with respect 
to θ between the limits θ = θ1 and θ = θ2. 
 The area of integration is ABCD. On integrating first 
with respect to r, the strip extends from P to Q and the 
integration with respect to θ means the rotation of this strip PQ from AD to BC.
Example 9. Transform the integral to cartesian form and hence evaluate

3
0 0

a
r

π

∫ ∫  sin θ cos θ dr d θ.

Solution. Here, we have
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8   Mathematical Physics

   3
0 0

sin cos
a
r dr d

π
θ θ θ∫ ∫          ...(1) 

 Here the region i.e., semicircle ABC of integration is bounded 
by r = 0, i.e., x-axis.
 r = a i.e., circle, θ = 0 and θ = π i.e., x-axis in the second 
quadrant.

   ( sin ) ( cos ) ( )r r r d drθ θ θ∫ ∫
Putting x = r cos θ, y = r sin θ, dx dy = r dθ dr in (1), we get

  
2 2

0

a a x

a
xy dy dx

−

−∫ ∫  = 
2 2

0

a a x

a
x dx y dy

−

−∫ ∫

      = 

2 2
2

02

a x
a

a

yx dx
−

−

 
  ∫  = 

2 2( )
2

a

a

a xx dx
−

−
∫

       = 2 31 ( )
2

a

a
a x x dx

−
−∫   = 0  Ans. 

Since ( ) is odd function

( ) 0
a

a

f x

f x dx
−

 
 
 =
 ∫

Example 10. Evaluate 
– 22 2x x 2 2

0 0
(x y ) dy dx+∫ ∫

Solution. 
22 2 – 2 2

0 0
( )

x x
x y dy dx+∫ ∫

Limits of y =  22 –x x  ⇒ y2 = 2x – x2

⇒  x2 + y2 – 2x = 0  ...(1)
 (1) represents a circle whose centre is (1, 0) and radius 
= 1.
Lower limit of y is 0 i.e., x-axis.
Region of integration is upper half circle.
Let us convert (1) into polar co-ordinate by putting
  x = r cos θ, y = r sin θ
  r2 – 2 r cos θ = 0 ⇒ r = 2 cos θ
Limits of r are 0 to 2 cos θ

Limits of θ are 0 to 
2
π

22 2 – 2 2
0 0

( )
x x

x y dy dx+∫ ∫  = 
2 cos 22

0 0
( )r r d dr

π
θ

θ∫ ∫  = 
2 cos42 cos 32 2

0 0 0
0

4
rd r dr d

θπ π
θ  

θ = θ  
 

∫ ∫ ∫

   = 42
0

3 1 34 cos 4
4 2 2 4

d
π × × π π

θ θ = × =
× ×∫  Ans.

Example 11. Evaluate 
– 22 2x x

0 0 2 2

x dy dx

x y+
∫ ∫  by changing to polar coordinates.

 (A.M.I.E.T.E. 2017)
Solution. In the given integral, y varies from 0 to 22 –x x and x varies from 0 to 2.

r = a

A

B

C
O

r = 2 cos θ

x = 2
X

Y

Y′

rd drθ

θ = 0

θ =
π
—
2

O
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Multiple Integrals 9

  y = 22 –x x

⇒  y2 = 2x – x2

⇒  x2 + y2 = 2x
In polar co-ordinates, we have r2 = 2r cos θ      ⇒    r = 2 cos θ.

∴ For the region of integarion, r varies from 0 to 2 cos θ and θ varies from 0 to .
2
π

In the given integral, replacing x by r cos θ, y by r sin θ, dy dx by r dr dθ, we have

 I = 
/2 2 cos /2 2 cos

0 0 0 0

cos . cosr r dr d r dr d
r

π θ π θθ θ
= θ θ∫ ∫ ∫ ∫

  = 
2 cos2/2 /2 3

0 0
0

2 4cos 2 cos 2. .
2 3 3
r d d

θ
π π 

θ θ = θ θ = = 
 

∫ ∫  Ans.

EXERCISE 33.2
Evaluate the following:

 1. 
(1 – cos ) 2

0 0
2 sin

a
r d dr

π θ
π θ θ∫ ∫

 2. 
(1 cos ) 2

0 0
cos

a
r dr d

π + θ
θ θ∫ ∫

 3. 
2 2

A

r dr d

r a

θ

+
∫ ∫ where A is a loop of r2 = a2 cos 2θ

 4. 2 sin
A

r d drθ θ∫ ∫  where A is r = 2a cos θ above initial line.

 5. Calculate the integral 
2

2 2
( )x y dx dy
x y
−

+∫∫  over the circle x2 + y2 ≤ 1.

 6. 2 2( )x y x dx dy+∫ ∫ over the positive quadrant of the circle x2 + y2 = a2 by changing to polar 

coordinates.

 7. 2 2
R

x y dx dy+∫∫  by changing to polar coordinates, R is the region in the xy-plane bounded 

by the circles x2 + y2 = 4                                                               (AMIETE Dec. 2009)
 8. Convert into polar coordinates

  
22 2 –

0 0

a ax x
dx dy∫ ∫

 9. 3 ,r dr dθ∫ ∫ over the area bounded between the circles r = 2b cos θ and r = 2b cos θ.

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



10   Mathematical Physics

 10. sinr dr dθ θ∫ ∫ over the area of the cardiod r = a (1 + cos θ) above the initial line. 

 11. 2 ,
A

x dr dθ∫ ∫ where A is the area between the circles r = a cos θ and r = 2a cos θ.

 12. Transform the integral 
1

0 0
( , )

x
f x y dy dx∫ ∫ to the integral in polar co-ordinates.

ANSWERS

 1. 38
3

aπ  2. 35
8

aπ  3. 2 –
2
aa π

 4. 
32

3
a

 5. π – 2 6. 
2

5
a

 7. 
38

3
π

 8. 
2 cos/2

0 0

a
r d dr

θπ

θ∫ ∫  9. 
3
2
π

 (a4 – b4) 10. 35
8

aπ

 11. 
328

9
a

 12. 
/4 sec

0 0
( , )f r r d dr

π θ
θ θ∫ ∫

33.4 CHANGE OF ORDER OF INTEGRATION

On changing the order of integration, the limits of integration change. To find the new 
limits, we draw the rough sketch of the region of integration.
Some of the problems connected with double integrals, which seem to be complicated, 
can be made easy to handle by a change in the order of integration.

Example 12. Evaluate 
a a

2 20 y

x dx dy
x y+∫ ∫ by changing the order of integration.

(AMIETE June 2010, Nagpur University Summer 2008)
Solution. Here we have

 I = 2 20
a a

y
x dx dy

x y+∫ ∫
Here   x = a, x = y, y = 0 and y = a
The area of integration is OAB.
 On changing the order of integration Lower limit of  
y = 0 and 
upper limit is y = x.
Lower limit of x = 0 and upper limit is x = a.

 I = 
0
a

xdx∫  2 20

1y x
dy

x y
=

+∫

  = 1
0 0

1 tan
y xa yxdx

x x

=
− 

  ∫

x = a

Ay = 0O

y 
=

x

By = a

Y

X
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Multiple Integrals 11

  = 1 1
0

tan tan 0
a x xdx

x x
− − −  ∫

  = 
00

[ ]
4 4 4

a a adx xπ π π  = =  ∫   Ans.

Example 13. Change the order of integration in

 I = 
–

2

1 2 x

0 x
xy dx dy∫ ∫  and hence evaluate the 

same.  (A.M.I.E.T.E. June 2010, 2009)

Solution. I = 2

1 2 –

0

x

x
xy dx dy∫ ∫

         
 The region of integration is shown by shaded portion in the figure bounded by parabola  
y = x2 and the line y = 2 – x.
The point of intersection of the parabola y = x2 and the line y = 2 – x is B (1, 1).
 In the figure below (left) we have taken a strip parallel to y-axis and the order of inte-
gration is

   2

1 2 –

0

x

x
x dx y dy∫ ∫

 In the second figure above we have taken a strip parallel to x-axis in the area OBC and 
second strip in the area ABC. The limits of x in the area OBC are 0 and y  and the 
limits of x in the area ABC are 0 and 2 – y.

= 
2 –2 21 2 2 – 1 2

0 0 1 0 0 1
0 0

2 2

y y
y y x xy dy x dx y dx x dx y dy y dy

   
+ = +   

   
∫ ∫ ∫ ∫ ∫ ∫

= 
131 2 22 2 2 3

0 1 1
0

1 1 1 1(2 – ) (4 – 4 )
2 2 2 3 2

yy dy y y dy y y y dy
 

+ = + + 
 

∫ ∫ ∫

= 
24

2 3

1

1 1 4 1 1 32 4 12 – 8 – 4 – 2 –
6 2 3 4 6 2 3 3 4

yy y
   + + = + + +     

= 
1 1 96 – 128 48 – 24 16 – 3 1 5 9 3
6 2 12 6 24 24 8

+ + + = + = =  
 Ans.

x = a

Ay = 0O

y 
=

x

B (a, a)y = a

Y

X
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 Example 14. Evaluate the integral –
2x

0 0
xx exp dx dy
y

∞  
 
 ∫ ∫  by changing the order of 

integration (A.M.I.E.T.E., June 2017)
Solution. Limits are given 
  y = 0 and y = x
  x = 0 and x = ∞
Here, the elementary strip PQ extends from  
y = 0 to  y = x and this vertical strip slides from 
x = 0 to x = ∞.
The region of integration is shown by shaded 
portion in the figure bounded by y = 0, y = x, 
x = 0 and x = ∞.
On changing the order of integration, we first 
integrate with respect to x along a horizontal 
strip RS which extends from x = y to x = ∞ 
and this horizontal strip slides from y = 0 to  
y = ∞ to cover the given region of integration.
New limits :
  x = y  and x = ∞
  y = 0  and y = ∞
We first integrate with respect to x.
Thus,

2
–

0

x
y

y
dy xe dx

∞ ∞

∫ ∫  = 

2
–

0

2– –
2

x
y

y

y xdy e dx
y

∞ ∞
 
 
 
 

∫ ∫

= 

2 2
– –

–
0 0 0

– 0
2 2 2

x y
yy y

y

y y ydy e dy e e dy

∞

∞ ∞ ∞
   
   = + =   
      

∫ ∫ ∫

= – –

0

1(– ) – ( )
2 2

y yy e e
∞

  
    

 (Integrating by parts)

= 
1 1(0 – 0) 0
2 2

  − − =    
 Ans.

Example 15. Change the order of the integration
x x y

0 0
e y dy dx

∞ −∫ ∫  (B.P.U.T.; I Semester 2008)

Solution. Here, we have 

   
0 0

x x ye y dy dx
∞ −∫ ∫

Here the region OAB of integration is bounded by  
y = 0 (x-axis), y = x (a straight line), x = 0, i.e., y 
axis. A strip is drawn parallel to y-axis, y varies 0 
to x and x varies 0 to ∞.

y = 0O

y
=

x

Y

X

x
=

0

Q

P

x = ∞

O

y
=

x

Y

X

Q

P

y
=

x

A

B

X

Y

O y = 0
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On changing the order of integration, first we integrate w.r.t. x and then w.r.t. y.
 A strip is drawn parallel to x-axis. On this strip x varies from y to ∞ and y varies from 
0 to ∞.

       Hence 
0 0

x xye y dy dx
∞ −∫ ∫  = 

0
xy

y
y dy e dx

∞ ∞ −∫ ∫  

   = 
0

xy

y

ey dy
y

∞−∞  
  − ∫

   = 
2

0
[0 ]yy dy e

y
∞ −−

−∫

   = 
2

0

1
2

ye dy
∞ − = π∫  Ans.

Example 16. Change the order of integration in the double integral

  
– 2

2a 2 ax

0 2ax x
V dx dy∫ ∫

Solution. Limits are given as 
  x = 0, x = 2a
  y = 2 ax

and y = 22 –ax x 	 ⇒ y2 = 2ax – x2

and  (x – a)2 + y2 = a2

 The area of integration is the shaded portion OAB. On changing the order of integra-
tion first we have to integrate w.r.t. x, The area of integration has three portions BCE, 
ODE and ACD.

2

2 2

0 2 –

a ax

ax x
dx V dy∫ ∫  

= 
2 2

2 2

2 2

/2 0 /2

+ −
+∫ ∫ ∫ ∫

a a a a a y

a y a y a
dy V dx dy V dx

   2 2

2

0 –

a a

a a y
dy V dx

+
+ ∫ ∫     Ans.

EXERCISE 33.3
Change the order of integration and hence evaluate the following:

 1. 
0 0

cos
( – ) ( – )

a x y dy dx
a x a y∫ ∫  2. 2

2 3 – 2 2
0

4

( )
a a x

x
a

x y dy dx+∫ ∫

 3. 2
1 2 2 –1/2
0

( )
x

x
x y dy dx+∫ ∫  4. 2 20 –

( , )
a y a

a y
f x y dx dy

+
∫ ∫

 5. 
2 2–

– 0
( , )

a a y

a
f x y dx dy∫ ∫  6. 

1 2

0

x

x
x dy dx
y

−
∫ ∫

x
=

y

B

A

X

Y

O

x = ∞
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 7. 2 20

b a

y
x dy dx
x y+∫ ∫  (M.P. 2003) 8. 

/

0 0

a bx a
x dy dx∫ ∫

 9. 
5 2

0 2 –
( , )

x

x
f x y dx dy

+
∫ ∫

 10. 2 2 –
0 –

( – )
y y
y

y x e dx dy
∞
∫ ∫

 11. 
1 2

0

y

y x y
yx dy

−

= =
×∫ ∫   (A.M.I.E.T.E. June 2009)

 12. 2
2 –

0

a a x

x
a

xy dx dy∫ ∫   (U.P. I Semester Dec. 2007)  

 13. 
2 2

2 2

–

0 – –

a a a y

a a y
xy dx dy

+
∫ ∫  [Hint: Put x = a sin2 θ ⇒ dx = 2 a sin θ cos θ d θ]

 14. 
1 1 – 1/3 – 1/2 1/2
0 – 1

(1 – – )
y

x y x y dx dy∫ ∫

 15. 
2

2 34
0 0

( )
xa
adx x y dy+∫ ∫

 16. 
1 2 2 –2 2 2 2
0 0 1 0

( ) ( )
y y

x y dx dy x y dx dy+ + +∫ ∫ ∫ ∫

 17. 
2 2– 2 2 2

0 0

a a x
y x y dx dy+∫ ∫ by changing into polar coordinates.

    (U.P. I Semester Dec. 2007)

 18. 
1 2 2 2

2 2 2 2 2 20 1 0
1 1 1

y R
dx dy dx dy dy dx

x y x y x y
+ =

+ + +∫ ∫ ∫ ∫ ∫ ∫
  Recognise the region R of integration on the R.H.S. and then evaluate the integral on the right 

in the order indicated.

 19. Express as single integral and evaluate :

  
2 2–

2
0 0 0

2

a x a a x
ax dx dy x dx dy+∫ ∫ ∫ ∫

 20. Express as single integral and evaluate :

 
1 2 2 –2 2 2 2
0 0 1 0

( ) ( )
y y

x y dx dy x y dx dy+ + +∫ ∫ ∫ ∫
 21. If f(x, y) dx dy, where R is the circle x2 + y2 = a2, is R equivalent to the repeated integral.

(AMIE winter 2001)
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ANSWERS

 1. 
0

cos( ) ( ) 2 sin .
( – ) ( – )

a a

y
y dxa dy b a

a x a y∫ ∫

 2. 
2 3 3 –2 2 2 2

0 0 0
( ) ( ) ( )

a ay a a y

a
a dy x y dx dy x y dx+ + +∫ ∫ ∫ ∫  

4314( ) .
35

ab

 3. 
1 2 2 – 1/2
0

( ) .
y

y
dy x y dx+∫ ∫

 4. 2 2
2

0 – –
( , ) ( , )

a a a a

a x a x a
dx f x y dy dx f x y dy+∫ ∫ ∫ ∫

 5. 
2 2

2 2

–

0 – –
( , )

a a x

a x
dx f x y dy∫ ∫

 6. 
22

0
0 1 0

4; log
y y

a dy dyxdx xdx
y y e

−

+∫ ∫ ∫ ∫

 8. 2
0 /

1( ) ( )
3

b a

ay b
a dy x dx b a b∫ ∫

 9. 
2 5 7 5

0 2 – 2 – 2
( , ) ( , )

y y
dy f x y dx dy f x y dx+∫ ∫ ∫ ∫

 10. 2 2 –
– –

( – )
x y

x
dx y x e dy

∞

∞∫ ∫

 12. 
22 –

0 0 0
3,

8
a ay a y axy dx dy xy dx dy+∫ ∫ ∫

 13. 
2 22 – ( – ) 4

0 0
2,
3

a a x a
x dx y dy a∫ ∫

 14. 
1 1 1–1 1 –3 2 2

– 1 0
3(1 – – ) , –
7

x
x dx y x y dy π

∫ ∫

 15. 
2 3

0 4
( )+∫ ∫

a a

ay
dy x y dx  16. 

1 2 – 2 2
0

5( ) ,
3

x

x
dx x y dy+∫ ∫

 17. 
5

20
aπ

 18. Region R is x = 0, x = y, y = 1 and y = 2, log 2.
4
π

 19. 
2 2 3–

2
0

5,
6 2

a a y

y
ady x dx∫ ∫  20. 

1 2 – 2 2
0

5( ) ,
3

x

x
dx x y dy+∫ ∫

 21. 
2

0 0

( , ) .
π

θ θ∫ ∫
a

f r r dr d
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33.5 CHANGE OF VARIABLES

 Sometimes the problems of double integration can be solved easily by change of inde-
pendent variables. Let the double integral as be ( , ) .

R

f x y dx dy∫ ∫ It is to be changed by 

the new variables u, v.
The relation of x, y with u, v are given as x = φ	 (u, v), y = Ψ(u, v). Then the double 
integration is converted into.

{ ( , ), ( , )} | | ,f u v u v J du dvφ Ψ∫ ∫ where

dx dy = |J| du dv = 
( , )
( , )

x x
x y u vdu dv du dv

y yu v
u v

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

 Example 17. Evaluate ,2

R

(x y) dx dy+∫ ∫ where R is the parallelogram in the xy-plane 

with vertices (1, 0), (3, 1), (2, 2), (0, 1), using the transformation u = x + y and v = x – 2y.
 Solution. The region of integration is a parallelogram ABCD, where A (1, 0), B (3, 1),  
C (2, 2) and D (0, 1) in xy-plane.
The new region of integration is a rectangle A′B′C′D′ in uv-plane

xy-plane A ≡ (x, y) B ≡ (x, y) C ≡ (x, y) D ≡ (x, y)
A ≡	(1, 0) B ≡ (3, 1) C ≡ (2, 2) D ≡ (0, 1)
A′ ≡ (u, v) B′ ≡ (u, v) C′ ≡ (u, v) D′ ≡ (u, v)

uv-plane A′ ≡ (x + y, x – 2y) B′ ≡ (x + y, x – 2y) C′ ≡ (x + y, x – 2y) D′ ≡ (x + y, x – 2y)
A′ ≡ (1 + 0, 1 – 2 × 0) B′ ≡ (3 + 1, 3 – 2 × 1) C′ ≡ (2 + 2, 2 – 2 × 2) D′ ≡ (0 +1, 0 – 2 × 1)
A′ ≡ (1, 1) B′ ≡ (4, 1) C′ ≡ (4, – 2) D′ ≡ (1, – 2) 

and  
– 2

u x y
v x y
= + 

 = 
  ⇒	   

1 (2 )
3
1and ( – )
3

x u v

y u v

= +

=

  J = 

2 1
( , ) 13 3 –

1 1( , ) 3–
3 3

x x
x y u v

y yu v
u v

∂ ∂
∂ ∂ ∂= = =

∂ ∂∂
∂ ∂
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  dx dy = 
1| |
3

J du dv du dv=

  2( )
R

x y dx dy+∫ ∫  = 
1 4 2
– 2 1

1.
3

u du dv∫ ∫  = 
431 1 1

2– 2 – 2
1

1 7 7 [ ] 7 3 21
3 3

u dv dv v
 

= = = × = 
 

∫ ∫
 Ans.

 Example 18. Using the transformation x + y = u, y = uv, show that

 – – ,1/ 2 2[xy (1 x y)] dx dy
105
π

=∫ ∫  integration being taken over  

the area of the tringle bounded by the lines x = 0, y = 0, x + y = 1.

 Solution. 1/2[ (1 – – )]xy x y dx dy∫ ∫  
 x + y = u or  x = u – y = u – uv,

 
, )

( , )
( v
x ydx dy du dv
u

∂
=
∂

 = 

x x
u v du dv
y y
u v

∂ ∂
∂ ∂
∂ ∂
∂ ∂

 dx dy = 
1 – –

.
v u

du dv u du dv
v u

=

  x = 0   ⇒ u (1 – v) = 0 
   ⇒ u = 0, v = 1
  y = 0   ⇒ uv = 0

   ⇒ u = 0, v = 0
  x + y = u  ⇒ u = 1
 Hence, the limits of u are from 0 to 1 and the limits of 
v are from 0 to 1.
The area of integration is a square OPQR in uv-plane.
 On putting x = u – uv, y = uv, dx dy = u du dv in (1), 
we get

1/2 1/2 1/2( – ) ( ) (1 – )u uv uv u u du dv∫ ∫
 

= 
3 331 111 12 1/2 1/2 1/2 3 1 2 22

0 0

3 33
2 2 2(1 – ) (1 – ) 4 (1 4) · (1 )

9 3
2

du dvu u du v v dv V b
− −−−

3
×

− − = ×∫ ∫ ∫

= 

3 1 1 1 1 1 12. .2 22 2 2 2 2 2 2
7 5 32 2 1057 5 3 3
2 2 22 2 2 2

⋅ π π π
× = × =

⋅ ⋅⋅ ⋅ ⋅
 Ans.

Y

(uv-plane)

QR

Pv = 0

v = 1

X
O′

u = 0 u = 1
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EXERCISE 33.4

 1. Evaluate –( )

0 0
sinx y ye dx dy

x y
∞ ∞ +  π

 + ∫ ∫ by means of the transformation u = x + y, v = y from 

(x, y) to (u, v)

 2. Using the transformation x + y = u, y = uv, show that 
1 1 –

0 0
1 ( – 1)
2

x
x y
y dy dx e

e + =∫ ∫

 3. Using the transformation u = x – y, v = x + y, prove that 
– 1cos sin 1

2R

x y dx dy
x y

=
+∫ ∫ where R 

is bounded by x = 0, y = 0, x + y = 1

1 1 1( ), ( – ) so that | |
2 2 2

x u v y v u J = + = =  
Hint :

ANSWERS

 1. 
1
π

33.6 AREA IN CARTESIAN CO-ORDINATES

Let the curves AB and CD be y1 = f1 (x) and y2 = f2 (x).
Let the ordinates AD and BC be x = a and x = b.
 So the area enclosed by the two curves y1 = f1 (x) and y2 = f2(x) and x = a and x = b 
is ABCD.
 Let P(x, y) and Q(x + δx, y + δy) be two neighbouring points, then the area of the small 
rectangle PQ = δx. δy. 

 Area of the vertical strip = 
2

2

1
1

0
lim

y y

yy y
x y dy

∂ →
δ δ =∑ ∫

δx the width of the strip is constant throughout. 
If we add all the strips from x = a to x = b, we get

The area ABCD = 2 2

1 10
lim

b y b y

y a yx a
x dy dx dy

∂ →
δ =∑ ∫ ∫ ∫

     = ∫ ∫ 2

1
Area

b y

a y
dx dy

Example 19. Find the area bounded by the  parabola y2 = 4ax and its latus rectum.
Solution. Required area = 2 [(area (ASL)]

  = 
2

0 0
2

a ax
dy dx∫ ∫

  = 
0

2 2
a

ax dx∫

  = 
3/2 2

0

84
3 / 2 3

a
x aa

 
=  
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Example 20. Find the area between the parabolas y2 = 4 ax and x2 = 4 ay. 
Solution. y2 = 4ax  ...(1)
  x2 = 4ay  ...(2)
On solving the equations (1) and (2) we get the point of intersection (4a, 4a).
Divide the area into horizontal strips of width δy, x varies 

from 
2

,
4
yP
a

 to , 4Q ay  and then y varies from  
O(y = 0) to  A (y = 4a).

∴ The required area = 2

4 4

0 /4

a ay

y a
dy dx∫ ∫  

  = [ ] 2

24 44
/40 0

4 –
4

a aay
y a

ydy x dy ay
a

 
=  

 
∫ ∫

  = 

4

3/2 3

0

4 –3 12
2

a

y ya
a

 
 
 
 
 

  = 
3

3/2 2 2 24 (4 ) 32 16 16(4 ) – –
3 12 3 3 3

a aa a a a
a

   = =     
 Ans.

 Example 21. Find by double integration the area enclosed by the pair of curves

  y = 2 – x and y2 = 2(2 – x)
 Solution.  y = 2 – x
  y2 = 2 (2 – x)
 On solving the equations (1) and (2), we get the points of  
intersection (2, 0) and (0, 2).

 A = dx dy∫ ∫  

 The required area = 
2 2 (2 – )

0 2 –

x

x
dx dy∫ ∫  = [ ]2 22 (2 – )

2 –0 0
[ 4 – 2 – 2 ]x

xdx y dx x x= +∫ ∫  

   = 
22

3/2

0

2 (4 2 ) – 2
3 – 2 2

xx x
 

− + × 

   = 
22

3/2

0

1– (4 – 2 ) – 2
3 2

xx x
 

+ 
 

 = 
4 8 2– 4
2 3 3

 + + =    Ans.

EXERCISE 33.5
Use double integration in the following questions:

 1. Find the area bounded by y = x – 2 and y2 = 2x + 4.

 2. Find the area between the circle x2 + y2 = a2 and the line x + y = a in the first quadrant.
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 3. Find the area of a plate in the form of quadrant of the ellipse 
2 2

2 2 1.x y
a b

+ =

 4. Find the area included between the curves y2 = 4a (x + a) and y2 = 4b(b – x). 

(A.M.I.E., Summer 2001)  

 5. Find the area bounded by (a) y2 = 4 – x and y2 = x. 

  (b) x – 2y + 4 = 0, x + y – 5 = 0, y = 0            (A.M.I.E., Winter 2001)  

 6. Find the area enclosed by the leminscate r2 = a2 cos 2 θ.

 7. Find the area common to the circles x2 + y2 = a2 and x2 + y2 = 2ax.

 8. Find the area included between the curves y = x2 – 6x + 3 and y = 2x + 9.
 (A.M.I.E., Summer 2001) 

 9. Determine the area of region bounded by the curves xy = 2, 4y = x2, y = 4.

ANSWERS

 1. 18. 2. (π – 2)a2/4 3. 
4
abπ

 4. 
8

3
ab

 5. (a) 
16 2

3
   (b) 

27
2

 6. a2 7. 23–
3 4

a
 π
 
 

 8. 
88 22

3
 9. 

28 – 4 log 2
3

33.7 AREA IN POLAR CO-ORDINATES

     Area = r d drθ∫∫   
Let us consider the area enclosed by the curve r = f (θ).
 Let P (r, θ), Q(r + δr, θ + δθ) be two neighbouring 
points.
 Draw ares PL and QM, radii r and r + δr.
           PL = rδθ, PM = δr
 Area of rectangle PLQM = PL × PM = (rδθ) (δr) = r 
δθ δr.
 The whole arca A is composed of such small rectangles.
Hence,
 A= 

0
0

lim .
r

r r r d dr
δθ→
∂ →

δθ δ = θ∑ ∑ ∫∫

 Example 22. Find by double integration, the 
area lying inside the cardioid r = a (1 + cos θ) 
and outside the circle r = a.
Solution. r = a (1 + cos θ) ...(1)
  r = a ...(2)
 Solving (1) and (2), by eliminating r, we get 
  a(1 + cos θ) = a ⇒ 1 + cos θ = 1
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    cos θ = 0  ⇒ – or
2 2
π π

θ =

limits of r are a and a(1 + cos θ)

limits of θ are – to
2 2
π π

Required area = Area ABCDA

 = 
/2 (1 cos )for cardioid

– /2 for circle

π + θ

π
θ∫ ∫

a

r
r dr d  = 

/2 (1 cos )

– /2

a

a
rdrd

π + θ

π
θ∫ ∫

 = 
(1 cos )2/2

– /2 2

+ θ
π

π

 
θ  ∫

a

a

r d  = 
2 /2 2

– /2
[(1 cos ) – 1]

2
a d

π

π
+ θ θ∫

 = 
2 /2 2

– /2
(cos 2 cos )

2
a d

π

π
θ + θ θ∫  = 

/22 2
0

(cos 2 cos )a d
π

θ + θ θ∫

 = 
/22 2

0
(cos 2 cos )a d

π
θ + θ θ∫  = 

/2 /22 2
0 0

cos 2 cosa d d
π π θ θ + θ θ  ∫ ∫

 = 2 /2 2
02 (sin ) 2

4 4
a aππ π   + θ = +      

 = 
2

( 8)
4

a
π +  Ans.

 Example 23. Find by double integration, the area lying inside the circle r = a sin θ 
and outside the cardioid r = a (1 – cos θ).
 Solution. We have,
  r = a sin θ ...(1)
  r = a (1 – cos θ) ...(2)
 Solving (1) and (2) by eliminating r, we have
  sin θ = 1 – cos θ ⇒ sin θ + cos θ = 1
 Squaring above, we get
 sin2θ + cos2θ + 2 sin θ cos θ = 1
⇒  1 + sin 2θ = 1 ⇒ sin 2θ = 0 ⇒ 2θ = 0 or π ⇒ θ = 0 or 

2
π

 The required area is shaded portion in the fig.

 Limits of r are a(1 – cos θ) and a sin θ, limits of θ are 0 and 
2
π

.

Required area  = 
sin

2
0 (1 – cos )

a

a
r dr d

π
θ

θ
θ∫ ∫

= 
sin2 /2 2 2 22

0 0
(1 – cos )

1 [sin – (1 – cos ) ]
2 2

a

a

r d a d
θπ

π

θ

 
θ = θ θ θ 

 
∫ ∫

= 
2 /2 2 2

0
(sin cos 2 cos )

2
a d

π
θ − 1 − θ + θ θ∫

= 
2 /2 2

0
(– 2 cos 2 cos )

2
a d

π θ + θ θ  ∫

= 
2 /2 /22

0 0
2 cos 2cos

2
a d d

π π − θ θ + θ θ  ∫ ∫
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= 
/ 22

02 2 (sin )
2 4

a π π  − + θ    

= 
2

– 2 sin – sin 0
2 2 2

a  π π  +     

= 
2

– 2
2 2

a π +  
 = 2 1 –

4
a π 

    Ans.

Example 24. Find by double integration, the area lying inside a cardioid r = 1 + cos 
θ and outside the parabola r (1 + cos θ) = 1.
Solution. We have, 
  r = 1 + cos θ ...(1)
  r (1 + cos θ) = 1            ...(2)
Solving (1) and (2), we get
  (1 + cos θ) (1 + cos θ) = 1
  (1 + cos θ)2 = 1
  1 + cos θ = 1

  cos θ = 0 ⇒ 
2
π

θ = ±

limits of r are 1 + cos θ and 
1

1 cos+ θ
       limits of θ are – to .

2 2
π π

Required area = Area ADCBA (Shaded portion)

= 
/2 1 cos

1– /2
1 cos

r d dr
π + θ

π
+ θ

θ∫ ∫  = 
1 cos2

2
–

1
2

1 cos
2
r d

+ θπ

π

+ θ

 
θ  ∫  = 

/2 2
2– /2

1 1(1 cos ) –
2 (1 cos )

d
π

π

 
+ θ θ 

+ θ 
∫

 = 
/2 2

2– /2
2

1 1(1 cos 2 cos ) –
2

2 cos
2

d
π

π

 
 
 + θ + θ θ
 θ     

∫

 = 
/2 2 4

0

1 12 (1 cos 2 cos ) – sec
2 4 2

d
π θ × + θ + θ θ  ∫

 = 
/2 2 2 2

0

1(1 cos 2 cos ) – 1 tan sec
4 2 2

d
π  θ θ + θ + θ + θ    
∫

 = 
/2 2 2

0

1 cos 2 11 2 cos – 1 tan sec
2 4 2 2

d
π  + θ π π   + + θ + θ        
∫

 = 
/2 2 2 2

0

1 cos 2 11 2 cos – sec tan sec
2 2 4 2 2 2

d
π  θ θ θ θ  + + + θ + × θ    
∫

 = 
23

0

sin 2 1 22 sin – 2 tan tan
2 4 4 2 3 2

π

 θ θ θ θ  θ + + + θ +    
 

 = 31 10 2sin tan tan
2 4 2 2 4 6 4
π π π π π + + + − −  

 = 
3 1 1 3 42 – –
4 2 6 4 3
π π   + = +      

 Ans.
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EXERCISE 33.6
 1. Find the area of cardioid r = a(1 + cos θ).

 2. Find the area of the curve r2 = a2 cos 2θ.

 3. Find the area enclosed by the curve r = 2 a cos θ

 4. Find the area enclosed by the curve r = 3 + 2 cos θ.

 5. Find the area enclosed by the curve

  r3 = a2 cos2θ + b2 sin2θ.

 6. Show that the area of the region included between the cardioides r = a(1 + cos θ) and r = a  

(1 – cos θ) is 
2

(3 – 8).
2

a
π

 7. Find the area outside the circle r = 2 and inside the cardioid r = 2(1 + cos θ). 

 8. Find the area inside the circle r = 2a cos θ and outside the circle r = a.

 9. Find the area inside the circle r = 4 sin θ and outside the lemniscate r2 = 8 cos 2 θ.

ANSWERS

 1. 
23

2
aπ

 2. a2 3. πa2 4. 11 π

 5. 2 2( )
2

a bπ
+  7. (π + 8) 8. 2 32

3 4
a

 π
+  

 9. 
8 4 3 – 4
3

 π +  

33.8 VOLUME OF SOLID BY ROTATION OF AN AREA (DOUBLE INTEGRAL)

When the area enclosed by a curve y = f (x) is revolved about an axis, a solid is  generated, 
we have to find out the volume of solid generated.
Volume of the solid generated about x-axis

   = 2

1

( )

( )
2

b y x

a y x
PQ dx dyπ∫ ∫  

Example 25. Find the volume of the torus generated 
by revolving the circle x2 + y2 = 4 about the line x = 3.
Solution. x2 + y2 = 4

V = (2 ) 2 (3 – )PQ dx dy x dx dyπ = π∫ ∫ ∫ ∫

 = 
2

2

2 4

2 4
2 (3 )

x

x
dx x dy

+ + −

− − −
π −∫ ∫  

 = ( )
2

2

2 4 –
– 2 – 4 –

2 3 – x

x
dx y x y

+ +π ∫

 = 

2 2 2
– 2

2 2

2 [3 4 – – 4 –

3 4 – – 4 –

dx x x x

x x x

+
π

+

∫
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= 
−

π − − −∫
2 2 2

2
4 [3 4 4 ]x x x dx

= −

−

 π − + × + −  

2
2 1 2 3/2

2

4 14 3 4 3 sin (4 )
2 2 2 3
x xx x = 24 6 6 24

2 2
π π π × + × = π  

 Ans.

Example 26. Calculate by double integration the volume generated by the revolution 
of the cardioid r = a (1 – cos θ) about its axis.  (AMIETE June 2010)
Solution. r = a (1 – cos θ)
 V = 2 2 ( )y dx dy V r d dr yπ ⇒ = π θ∫ ∫ ∫ ∫  

    = 2 ( sin )d r dr rπ θ θ∫ ∫
    = 

(1 – cos ) 2
0 0

2 sin
a

d r dr
π θ

π θ θ∫ ∫

    = 
(1 – cos )3

0
0

2 sin
3

a
rd

θ
π  

π θ θ  
 

∫  = 3 3
0

2 (1 – cos ) sin
3

a d
ππ

θ θ θ∫

    = 
3 4 3

3

0

2 (1 – cos ) 2 8[16]
3 4 12 3
a a a

π
 π θ π

= = π 
 

 Ans.

Example 27. A pyramid is bounded by the three co-ordinate planes and the plane 
x + 2y + 3z = 6. Compute this volume by double integration.
Solution.  x + 2y + 3z = 6   ...(1) 
x = 0, y = 0, z = 0 are co-ordinate planes.
The line of intersection of plane (1) and xy plane  
(z = 0) is
      x + 2y = 6      ...(2)
The base of the pyramid may be taken to be 
the triangle bounded by x-axis, y-axis and the 
line (2).
An elementary area on the base is dx dy.
Consider the elementary rod standing on this area and having height z, where

 3z = 6 – x – 2y or  z = 
6 – – 2

3
x y

Volume of the rod = dx dy, z, Limits for z are 0 and 
6 – – 2 .

3
x y

Limits of y are 0 and 
6 –

2
x

and limits of x are 0 and 6.

Required volume = 
6 – 6 –6 6

2 2
0 0 0 0

6 – – 2
3

x x x yz dx dy dx dy=∫ ∫ ∫ ∫

= ( )
6 –

6 2 2
0 0

1 6 – –
3

x

dy y xy y∫  = 
26

0

1 6(6 – ) (6 – ) 6 –– –
3 2 2 2

x x x x dx
  
    

∫

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



Multiple Integrals 25

 = 
2 26

0

1 36 – 6 6 – 36 –12– –
3 2 2 4

x x x x x dx
 +
  ∫

 = 
6 2 2
0

1 (72 – 12 – 12 2 – 36 – 12 )
12

x x x x x dx+ +∫

 = 
63 26 2

0
0

1 1 12( – 12 36) – 36
12 12 3 2

x xx x dx x
 

+ = + 
 

∫  = 
1 [72 – 216 216] 6

12
+ =  Ans.

EXERCISE 33.7
 1. Find the volume of the sphere x2 + y2 + z2 = a2 by revolving area of the circle x2 + y2 = a2.

ANSWERS

 1. 4
3
πa3

33.9 CENTRE OF GRAVITY

 x  = ,
x dx dy y dx dy

y
dx dy dx dy

ρ ρ
=

ρ ρ
∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

Example 28. Find the position of the C.G. of a semi-circular lamina of radius a if its 
density varies as the square of the distance from the diameter. (AMIETE, Dec. 2010)
Solution. Let the bounding diameter be as the x-axis and a line perpendicular to the 
diameter and passing through the centre is y-axis. Equation of the circle is x2 + y2 = a2. 
By symmetry 0.x =

  y  = 
y dx dy

dx dy

ρ

ρ
∫ ∫
∫ ∫

 

   = 

2 2

2 2

– 32
– 0

2 – 2
– 0

( )

( )

a a x

a

a a x

a

dx y dyy y dx dy

y dx dy dx y dy

λ
=

λ

∫ ∫∫ ∫
∫ ∫ ∫ ∫

 

       = 

2 2

2 2

–4

2 2 2–
0 –

2 2 3/2–3
–

–
0

3 ( – )4

4 ( – )

3

a x
a

a
a

a
aa x

a a
a

ydx
a x dx

a x dxydx

 
 
 

=
 
  

∫ ∫
∫

∫

 Put x = a sin θ

       = 

2 2 2 2 5 52 2
– –

2 2

2 2 2 3/2 4 42 2
– –

2 2

3 ( – sin ) cos 3 cos

4 ( – sin ) cos 4 cos

π π

π π

π π

π π

θ θ θ θ θ

=

θ θ θ θ θ

∫ ∫

∫ ∫

a a a d a d

a a a d a d
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  = 

4 2
3 3 8 16 325 3

3 14 4 15 3 15
4 2 2

a a a
×

 ×    = =     × π     π π 
×

Hence C.G. is 
320,
15

a 
 π 

   Ans.

Example 29. Find C.G. of the area in the positive quadrant of the curve
  x2/3 + y2/3= a2/3.

Solution. For C.G. of area; ,
x dx dy y dx dy

x y
dx dy dx dy

= =∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

x  = 
[ ]

[ ]

2/3 2/3 3/2 2/3 2/3 3/2

2/3 2/3 3/2 2.3 2/3 3/2

( – ) ( – )
00 0 0

( – ) ( – )
000 0

a a x a a x

aa a x a x

x dx dy x dx y

dx ydx dy
=

∫ ∫ ∫

∫∫ ∫
 [Put x = a cos3θ]

    = 

0 3 2/3 2/3 2 3/2 22/3 2/3 3/2
0 2

02/3 2/3 3/2 2/3 2/3 2 3/2 2
0

2

cos ( – cos ) (– 3 cos sin )( – )

( – ) ( – cos ) (– 3 cos sin )

a

a

a a a a dx dx a x

dx a x a a a d

π

π

θ θ θ θ θ
=

θ θ θ θ

∫∫
∫ ∫

    = 
3 3 3 2 4 52 2

0 0

2 3 2 4 22 2
0 0

5 6
2 2

1123 cos sin cos sin sin cos
2

5 3
3 sin cos sin sin cos 2 2

2 4

a
a d a d

a d d

π π

π π

θ θ θ θ θ θ θ θ
= =

θ θ θ θ θ θ θ

∫ ∫

∫ ∫

    = 
3 4 (2) (6) 256

1 9 7 5 3 1 3153 11
2 2 2 2 2 22 2

a a a
= =

π⋅ ⋅ ⋅ ⋅ ⋅ π
,   Similarly,  

256
315

ay =
π

Hence, C.G. of the area is 
256 256, .
315 315

a a 
 π π 

Example 30. Find by double integration, the centre of gravity of the area of the cardioid  
r = a (1 + cos θ).
Solution. Let ( , )x y be the C.G. the cardioid
By Symmetry, 0.y =

  x  = A A

A A

x dx dy x dx dy

dx dy dx dy
=

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫
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   = 

(1 cos ) (1 cos ) 2
– 0 – 0

(1 cos ) (1 cos )

– 0 0

( cos ) ( ) cos
a a

a a

r r d dr d r dr

r d dr d r dr

π + θ π + θ

π π
π + θ π + θ

π −π

θ θ θ θ
=

θ θ

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

   = 

(1 cos )3
3

3
–

–0
(1 cos ) 22 2

––
0

cos cos . (1 cos )3 3

(1 cos )
22

a

a

r ad d

ar dd

+ θ
π

π
π

π
+ θ ππ

ππ

 
θ θ   θ θ + θ  =
  θ + θθ   

∫ ∫

∫∫

   = 

33
2 2

–
22

2
–

2 cos – 1 1 2 cos – 1
3 2 2

1 2 cos – 1
2 2

a d

a d

π

π

π

π

θ θ   + θ      

θ + θ  

∫

∫
 

   = 

3
2 6

–

2
4

–

2 cos – 1 8 cos
3 2 2

4 cos
2 2

a d

a d

π

π

π

π

θ θ    θ      

θ
÷ θ

∫

∫

   = 
3

8 6 2 4
– –

8 2 cos – cos 2 cos
3 2 2 2
a d a d

π π

π π

θ θ θ  θ ÷ θ  ∫ ∫

   = 
3

8 6 2 4
0 0

2 8 2 cos – cos 4 cos
3 2 2 2

a d a d
π π× θ θ θ  θ ÷ θ  ∫ ∫

   = 
3 /2 /28 6 2 4

0 0

16 (2 cos – cos ) (2 ) 4 cos (2 )
3
a t t dt a t dt

π π
÷∫ ∫

   = 
3

232 2 7 5 3 1 5 3 1 3 1– 8
3 8 6 4 2 2 6 4 2 2 4 2 2
a a

   × × × × π × × π × π
÷   × × × × × ×  

   = 
3 3

2
2

32 35 5 3 32 15 16 5– 8
3 128 32 16 3 128 68 3
a a aa

a
π π π π   ÷ = × × =       × π

 Ans.

33.10 CENTRE OF GRAVITY OF AN ARC

Example 31. Find the C.G. of the arc of the curve
  x = a (θ + sin θ), y = a(1 – cos θ) in the positive quadrant.

Solution. We know that, ,
xds yds

x y
ds ds

= =∫ ∫
∫ ∫

Now, ds = 
2 2dx dy d

d d
   + θ      θ θ

 = 2 2 2 2 2 2{ (1 cos ) sin } 1 2 cos cos sina a d a d+ θ + θ θ = + θ + θ + θ θ

�

�
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 = 21 2 cos 1 2(1 cos ) 4 cos 2 cos
2 2

a d a d a d a dθ θ
+ θ + θ = + θ θ = θ = θ

     x  = 

2
00

0
0

2 2 cos 2 sin cos( sin ) 2 cos 2 2 22
2 cos 2 sin2 2

a da a dx ds

ds a d

ππ

ππ

θ θ θ θ θ + θθ + θ θ   
= =

θ θ θ
  

∫∫∫
∫ ∫

    = 2 22
0 0

cos 2 sin cos (2 cos 2 sin cos ) 2
2 2 2 2 2
a ad t t t t dt

π
π θ θ θ θ + θ = +  ∫ ∫

    = 
3 2

0

cos 1 42 sin cos – 2 – 1 –
3 2 3 3

ta t t t a a

π

  π   + = + = π         

    y  = 

2
0 0

0 0

(1 – cos ) 2 cos 2 sin cos
2 2 2

2 cos cos
2 2

a a d a dy ds

ds a d d

π π

π π

θ θ θ
θ θ θ

= =
θ θ

θ θ

∫ ∫∫
∫ ∫ ∫

    = 

3

0

0

4 sin
2 4 2

3 2 3
3 2 sin

2

a
a a

π

π

θ 
  

= =
×θ 

  

 Hence, C.G. of the arc is 
4 2– ,
3 3

aa  π    
 Ans.

EXERCISE 33.8
 1. Find the centre of gravity of the area bounded by the parabola y2 = x and the line  

x + y  =  2.

 2. Find the centroid of the tetrahedron bounded by the coordinate planes and the plane  
x + y + z = 1, the density at any point varying as its distance from the face z = 0.

 3. Find the centroid of the area enclosed by the parabola y2 = 4 ax, the axis of x and latus rectum.

 4. Find the centroid of the loop of curve r2 = a2 cos 2 θ.

 5. Find the centroid of solid formed by revolving about the x-axis that part of the area of the ellipse 
2 2

2 2 1x y
a b

+ =  which lies in the first quadrant.

 6. Find the average density of the sphere of radius a whose density at a distance r from the centre 

of the sphere is 
3

0 31 .rk
a

 
ρ = ρ + 

  
 7. The density at a point on a circular lamina varies as the distance from a point O on the 

 circumference. Show that the C.G. divides the diameter through O in the ratio 3 : 2.

ANSWERS

 1. 
8 1, –
5 2

 
    2. 

1 1 2, ,
5 5 5

 
    3. 

3 3,
20 16
a a 

    4. 
2 , 0

8
a π

  

 5. 
3 , 0
8
a 

    6. 0 1
2
k ρ +  
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33.11 TRIPLE INTEGRATION
Let a function f(x, y, z) be a continuous at every point of a finite region S of three di-
mensional space. Consider n sub-spaces δS1, δS2, δS3, ... δSn of the space S.
If (xr, yr, zr) be a point in the rth subspace.

The limit of the sum 
1

( , , )
n

r r r r
r

f x y z S
=

δ∑ , as n →	∞, δSr → 0 is known as the triple 

integral of f (x, y, z) over the space S.
Symbolically, it is denoted by
  ( , , )

S
f x y z dS∫∫∫

It can be calculated as 2 2 2

1 1 1
( , , )

x y z

x y z
f x y z∫ ∫ ∫  dx dy dz. First we integrate with respect 

to z treating x, y as constant between the limits z1 and z2. The resulting expression (func-
tion of x, y) is integrated with respect to y keeping x as constant between the limits y1 
and y2. At the end we integrate the resulting expression (function of x only) within the 
limits x1 and x2.

2

1
( )

x b

x a
x dx

=

=
Ψ∫  2 2 2 2

1 1 1 1

( ) ( , )

( ) ( , )
( , ) ( , , )

y x z f x y

y x z f x y
x y dy f x y z dz

= φ =

= φ =
φ∫ ∫

First we integrate from inner most integral w.r.t. z, then we integrate with respect to y 
and finally the outer most with respect to x.
But the above order of integration is immaterial provided the limits change accordingly.

Example 32. Evaluate 
R

(x y z)+ +∫∫∫  dx dy dz, where R : 0 ≤ x ≤ 1, 1 ≤ y ≤ 2, 2 ≤ z ≤ 3.

Solution. 
1 2 3

0 1 2
( )dx dy x y z dz+ +∫ ∫ ∫  = 

321 2

0 1 2

( )
2

x y zdx dy
 + +
  ∫ ∫

  = 
1 2 1 22 2
0 1 0 1

1 1[( 3) ( 2) ] (2 2 5) .1.
2 2

dx dy x y x y dx x y dy+ + − + + = + +∫ ∫ ∫ ∫

  = 
221 1 2 2

0 01

1 (2 2 5) 1 [(2 4 5) (2 2 5) ]
2 4 8

x ydx dx x x
 + +

= + + − + +  ∫ ∫

  = 
121 1

0 0 0

1 1 9(4 16) . 2 ( 4) 4 4
8 2 2 2

xx dx x dx x
 

+ = + = + = + =  ∫ ∫  Ans.

Example 33. Evaluate the integral : .
log 2 x x log y x y z
0 0 0

e dz dy dx
+ + +∫ ∫ ∫

Solution.  
log 2 log

0 0 0
.

x x y x y ze dz dy dx
+ + +∫ ∫ ∫

  = 
log 2 log log 2 log

00 0 0 0 0
( )

x x y x x yx y z x y ze dx e dy e dz e dx e dy e
+ +=∫ ∫ ∫ ∫ ∫

  = 
log 2 log 2log log
0 0 0 0

( 1) ( . 1)
x xx y x y x y y xe dx e dy e e dx e dy e e+ − = −∫ ∫ ∫ ∫
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  = 
log 2

0 0
( 1)

xx y xe dx e y e dy−∫ ∫  = 
log 2

0 0
( 1) .

xx x y x ye dx ye e e e dy − − ∫ ∫

  = 
log 2

00
( 1)

xx x y x ye dx ye e e + − − ∫  = 
log 2 2
0

[( 1) 1 ]x x x x xe dx xe e e e− − + +∫

  = 
log 2 log 22 2 3 3
0 0

[ 1 ] ( )x x x x x x x xe dx xe e e e xe e e dx− − + + = − +∫ ∫

  = 
log 2 log 23 3 3 3 3

3

0 0
1.

3 3 3 3 9 3

x x x x x
x x xe e e x e ex dx e e e

   
− − + = − − +      ∫

  = 
3 log 2 3 log 2

3 log 2 log 2log 2 1 1 1
3 9 3 9 3

e ee e− − + + + −

  = 
3 3

3 log 2 log 2
log 2 log 2log 2 1 1 1

3 9 3 9 3
e ee e− − + + + −

  = 
8 8 8 1 1 8 19log 2 2 1 log 2
3 9 3 9 3 3 9

− − + + + − = −  Ans.

Example 34. Evaluate 
log 2 x x y x y z
0 0 0

e
+ + +∫ ∫ ∫  dx dy dz.

Solution.  I = 
log 2

0 0 0

x yx x y ze e dx dy
++   ∫ ∫  

 = 
log 2

0 0
( 1)

x x y x ye e dx dy+ + −∫ ∫  = 
log 2 2( ) ( )
0 0

x x y x ye e dx dy+ + − ∫ ∫

 = 
2log 2 2

0 0
. .

2

xy
x x yee e e dx

 
−  ∫  = 

4 2log 2 2
0 2 2

x x
x xe ee e dx

 
− − +  ∫

 = 
log 24 2 2 4 log 2 2 log 2 2 log 2

log 2

0

1 1 1 1
8 2 4 8 2 4 8 2 4

x x x
xe e e e e ee e

     − − + = − − + − − − +         

 = 
log16 log 4 log 4

log 2 1 1 1 1
8 2 4 8 2 4

e e e e
   − − + − − − +     

 = 
16 4 4 1 1 1 52 1
8 2 4 8 2 4 8

   − − + − − − + =        Ans.

Example 35. Evaluate 2 2 2
R

(x y z ) dx dy dz+ +∫∫∫  where R denotes the region  bounded  

by x = 0, y = 0, z = 0 and x + y + z = a, (a > 0)

Solution. 2 2 2( )
R

x y z dx dy dz+ +∫∫∫  

  x + y + z = a  or  z = a – x – y 
Upper limit of z = a– x – y
On x-y plane, x + y + z = a becomes x + y = a
as shown in the figure.
Upper limit of y = a – x
Upper limit of x = a

x
+

y
=

a

Y

X
y = 0O x = a

x
 =

 0

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



Multiple Integrals 31

 = 2 2 2
0 0 0

( )
a a x a x y

x y z
dx dy x y z dz

− − −

= = =
+ +∫ ∫ ∫

  = 
3

2 2
0 0 03

a x y
a a x zdx dy x z y z

− −
−  

+ +  ∫ ∫

 = 
3

2 2
0 0

( )( ) ( )
3

a a x a x ydx dy x a x y y a x y
−  − −

− − + − − +  ∫ ∫

 = 
3

2 2 2 3
0 0

( )( ) ( )
3

a a x a x ydx x a x x y a x y y dy
−  − −

− − + − − +  ∫ ∫

 = 
2 2 3 4 4

2
0 0

( )( ) ( )
2 3 4 12

a x
a x y y y a x ydx x a x y a x

−
 − −

− − + − − −  ∫

 = 
2 3 4 4

2 2 2
0

( ) ( ) ( )( ) ( ) ( )
2 3 4 12

a x a x a x a xdx x a x a x a x
 − − −

− − − + − − +  ∫

 = 
2 4 4

2 2 2 3 4
0 0

( ) 1 ( )( ) ( 2 )
2 6 2 6

a ax a x a xa x dx a x a x x dx
   − −

− + = − + +   
   

∫ ∫

 = 
3 4 5 5 5 5 5 5 5

2

0

1 ( )
2 3 4 10 30 6 4 10 30 20

a
x ax x a x a a a a aa

 −
− + − = − + + = 

 
 Ans.

Example 36. Compute 
( )3

dx dy dz
x y z 1+ + +∫∫∫  if the region of integration is bounded by 

the coordinate planes and the plane x + y + z = 1. (M.U., II Semester 2007, 2006)
Solution. Let the given region be R, then R is expressed as (A.M.I.E.T.E., June 2017)
 0 ≤ z ≤ 1 – x – y, 0 ≤ y ≤ 1 – x, 0 ≤ x ≤ 1.

    3( 1)R

dx dy dz
x y z+ + +∫∫∫  = 

1 1 1
30 0 0 ( 1)

x x y dzdx dy
x y z

− − −

+ + +∫ ∫ ∫

    = 
1

1 1
20 0

0

1
2( 1)

x y
x

dx dy
x y z

− −
−  

 
− + + + 

∫ ∫

    = 
1 1

2 20 0

1 1 1
2 ( 1 1) ( 1)

x
dx dy

x y x y x y
−  

− − 
+ + − − + + + 

∫ ∫

  = 
1

1 1 1
20 0 0

0

1 1 1 1 1
2 4 2 4 1( 1)

x
x ydx dy dx

x yx y

−
−    

− − = − +   + ++ +   
∫ ∫ ∫

  = 
1 1

0 0

1 1 1 1 1 1 1 1
2 4 1 1 1 2 4 2 1

x xdx dx
x x x x

   − −
− + − = − + −   + + − + +   

∫ ∫

  = 
12

0

1 (1 ) 1 1 1 1 5log( 1) log 2 log 2
2 8 2 2 2 8 2 8

x x x
 −    − − + − + = − − + = − −          

  = 
1 5log 2
2 16

−  Ans.
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Example 37. Evaluate 2x yz∫∫∫  dx dy dz throughout the volume bounded by the planes 
x = 0,

  y = 0, z = 0, 
x y z
a b c
+ +  = 1.

Solution. Here, we have 

  I = 2x yz∫∫∫  dx dy dz ...(1)
Putting x = au,  y = bv,  z = cw
dx = a du, dy = b dv, dz = c dw in (1), we get

  I = 2 2a bc u v w∫∫∫ a bc du dv dw

   u + v + w = 1
Limits are for u = 0, 1 for v = 0, 1 – u and for w = 0, 
1 – u – v

  I = 
1 1 1 3 2 2 2

0 0

u u v

u o v w
a b c u vw du dv dw

− − −

= = =∫ ∫ ∫  

   = 
121 1 3 2 2 2

0 0 02

u v
u wa b c u v du dv

− −
−  

  ∫ ∫  = 
3 2 2 1 1 2 2

0 0
(1 )

2
ua b c u v u v du dv

−
− −∫ ∫

   = 
3 2 2 1 1 2 2 2

0 0
(1 ) 2(1 )

2
ua b c u v u u v v du dv

−  − − − + ∫ ∫

   = 
3 2 2 1 1 2 2 2 3

0 0
[(1 ) 2 (1 ) ]

2
ua b c u u v u v v

−
− − − +∫ ∫  du dv

   = 
13 2 2 2 3 41 2 2

0 0
(1 ) 2(1 )

2 2 3 4

u
a b c v v vu u u du

−
 

− − − +  ∫

   = 
3 2 2 4 4 41 2

0

(1 ) 2(1 ) (1 )
2 2 3 4

a b c u u uu du
 − − −

− +  ∫  = 
3 2 2 2 41

0

(1 )
2 12

a b c u u du−
∫

   = 
3 2 2 1 3 1 5 1

0
(1 )

24
a b c u u du− −−∫  = 

3 2 2 3 2 2 3 5(3, 5) .
24 24 8

a b c a b c
β =

   = 
3 2 2 3 2 22!4!. .
24 7! 2520

a b c a b c  =    Ans.

33.12 INTEGRATION BY CHANGE OF CARTESIAN COORDINATES INTO
 SPHERICAL COORDINATES

Sometime it becomes easy to integrate by changing the cartesian coordinates into 
 spherical coordinates.
The relations between the cartesian and spherical polar co-ordinates of a point are given 
by the relations
  x = r sin θ cos φ
  y = r sin θ sin φ
  z = r cos θ
  dx dy dz = |J| dr dθ dφ
	 	 	= r2 sin θ dr dθ dφ

X

Y

Z

Oa

c

b
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Note. 1.  Spherical coordinates are very useful if the expression x2 + y2 + z2 is involved 

in the problem.
 2. In a sphere x2 + y2 + z2 = a2 the limits of r are 0 and a and limits of θ are 0, π 

and that of φ are 0 and 2π.
 Example 38. Evaluate the integral 2 2 2(x y z )+ +∫∫∫  dx dy dz taken over the volume 
enclosed by the sphere x2 + y2 + z2 = 1.
Solution. Let us convert the given integral into spherical polar co-ordinates. By putting
 x = r sin θ cos φ ;   y = r sin θ sin φ ;   z = r cos θ

 2 2 2( )x y z+ +∫∫∫  dx dy dz = 
2 1 2 2
0 0 0

( sin )r r dr d d
π π

θ θ φ∫ ∫ ∫

= 
152 1 24

0 0 0 0 0 0
sin sin

5
rd d r dr d d

π π π π  
φ θ θ = φ θ θ   ∫ ∫ ∫ ∫ ∫  = [ ]2 2

00 0

1 2cos
5 5

d d
π ππφ − θ = φ∫ ∫

= ( )20
2 4
5 5

π π
φ =   Ans.

Example 39. Evaluate 2 2 2(x y z )+ +∫∫∫  dx dy dz over the first octant of the sphere  

x2 + y2 + z2 = a2. (M.U. II Semester 2007)
Solution. Here, we have

  I = 2 2 2( )x y z+ +∫∫∫  dx dy dz ...(1)

Putting x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ and dx dy dz = r2sin θ dr dθ 
dφ in (1), we get

Limits of r are 0, a for θ are 0, 
2
π

 for φ are 0, 
2
π

.

     I = 2 22 2
0 0 0

. sin
a
r r dr d d

π π

θ θ φ∫ ∫ ∫  = 42 2
0 0 0

sin
a

d d r dr
π π

φ θ θ∫ ∫ ∫

  
2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

sin cos sin sin cos

sin cos

x y z r r r

r r r

 + + = θ φ + θ φ + θ
 

= θ + θ = 

   = [ ] [ ]
5

/2 /2
0 0

0
cos

5

a
rπ π  

φ − θ   
 = 

5 5
. (1) . . .

2 5 10
a aπ

= π  Ans.

Example 40. Evaluate 2 2 2
dx dy dz

x y z+ +∫∫∫  throughout the volume of the sphere  
x2 + y2 + z2 = a2.

Solution. Here, we have

  I = 2 2 2
dx dy dz

x y z+ +∫∫∫  ...(1)

Putting x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ and dx dy dz = r2 sin θ dr dθ 
dφ in (1), we get

The limits of r are 0 and a, for θ are 0 and 
2
π

 for φ are 0 and 
2
π

 in first octant.
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I = 
2

2 2
20 0 0

sin8
a r dr d d

r

π π θ θ φ
∫ ∫ ∫  [Sphere x2 + y2 + z2 lies in 8 quadrants]

I = 2 2
0 0 0

8 sin
a

d d dr
π π

φ θ θ∫ ∫ ∫  = [ ] [ ] [ ]/2 /2
0 0 08 cos 8 0 (0 1)( 0)

2
ar aπ π π φ − θ = − + +  

 = 8 .1.
2

aπ
 = 4πa Ans.

EXERCISE 33.9
Evaluate the following:

 1. 
1 2 3

1 2 3
dx dy dz

− − −∫ ∫ ∫  (M.U., II Semester 2002)

 2. 
4

0 0 0

x x y
z dz dy dx

+

∫ ∫ ∫   (R.G.P.V. Bhopal I Sem. 2003)

 3. 
2 1 1

2 2 2

1 0 1
( )x y z

−
+ +∫ ∫ ∫ dx dy dz 

 4. 
1 1 1 2 2 2
0 0 0

( )x y z+ +∫ ∫ ∫ dz dy dx  (AMIETE, June 2006)

 5. 
1

1 0
( )

z x z

x z
x y z

+

− −
− +∫ ∫ ∫ dx dy dz (AMIETE, Summer 2004)

 6. ( )
R

x y z− −∫∫∫  dx dy dz, where R : 1 ≤ x ≤ 2;  2 ≤ y ≤ 3;  1 ≤ z ≤ 3

 7. 
2 3 2

2

0 1 1
xy z∫ ∫ ∫ dx dy dz   (AMIETE, Dec. 2007)

 8. 
1 2 2

2

0 0 1
dx dy x yz dz∫ ∫ ∫   

 9. 2x yz∫∫∫  dx dy dz throughout the volume bounded by x = 0, y = 0, z = 0, x + y + z = 1.

     (M.U. II Semester, 2003) 

 10. 
2 21 1 1

0 0 0

x x y
dz dy dx

− − −

∫ ∫ ∫
 11. 

log

1 1 1
log

xe y e
z dz dx dy∫ ∫ ∫

 12. ,
T

y dx dy dz∫∫∫  where T is the region bounded by the surfaces x = y2, x = y + 2, 4z = x2 + 

y2 and z = y + 3. (AMIETE Dec. 2008)

 13. 
2 2 2

0 0 0

x x y
x y ze dz dy dx

+
+ +∫ ∫ ∫  (M.U. II Sem., 2003)  

 14. ( )x y z+ +∫∫∫  dx dy dz over the tetrahedron bounded by the planes x = 0, y = 0, z = 0 and  

x + y + z = 1.
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 15. 2

0 0 0

a a x a x y
x dx dy dz

− − −

∫ ∫ ∫

 16. 
2 2 2

2 2 2

2 (4 ) /2 8

2 (4 ) /2 3

x x y

x x y
dz dy dx

− − −

− − − +∫ ∫ ∫
 17. 

1

1 0
( )

z x z

x z
x y z dz dx dy

+

− −
+ +∫ ∫ ∫       (M.U. II Semester, 2000, 02)

 18. 
2

0 0
( )

y x y

x y
x y z dx dy dz

+

−
+ +∫ ∫ ∫  (M.U. II Semester 2004)

 19. 
2 2 2

2 2 21 x y z
a b c

− − −∫∫∫  dx dy dz throughout the volume of the ellipsoid 
2 2 2

2 2 2
x y z
a b c

+ +  = 1.

 20. 
2 2 2

2 2 2
x y z
a b c

+ +∫∫∫  dx dy dz over the volume of the ellipsoid 
2 2 2

2 2 2
x y z
a b c

+ +  = 1.

 21. 1 1 1l m nx y z− − −∫∫∫ dx dy dz throughout the volume of the tetrahedron 

        x ≥ 0, y ≥ 0, z ≥ 0, x + y + z ≤ 1.
 22. 

2 2 21

dx dy dz

x y z− − −∫∫∫  taken throughout the volume of the sphere x2 + y2 + z2 = 1, lying in 

the first octant.

 23. 
(1 cos )

0 0 0
2 1

(1 cos )
a h rd r dr dz

a
π + θ  θ − + θ ∫ ∫ ∫

 24. 
2 2/2 sin ( )/

0 0 0

a a r a
r d dr dz

π θ −
θ∫ ∫ ∫

 25. 2z dx dy dz∫∫∫  over the volume common to the sphere x2 + y2 + z2 = a2 and the cylinder  

x2 + y2 + z2 = ax.

 26. 2 2 2 2(1 )
V

dx dy dz
x y z+ + +∫∫∫  where V is the volume in the first octant

 27. 2 2 2 3/2( )
dx dy dz

x y z+ +∫∫∫  over the volume bounded by the spheres x2 + y2 + z2 = 16 and  

x2 + y2 + z2 = 25.   (M.U. II Semester, 2001, 03)π log (5/4)

 28. 2

T
z dx dy dz∫∫∫  over the volume bounded by the cylinder x2 + y2 = a2 and the paraboloid  

x2 + y2 = z and the plane z = 0.

ANSWERS
 1. 48 2. 70 3. 6 4. 1
 5. 0 6. 2 7. 26    8. 1

 9. 
1

2520
 10. 

1
3  11. 21 ( 8 13)

2
e e− +

 13. 
12 6

4 21 1 1 1 [ 1] [ 1]
3 6 3 6 3 2

e e e e
 

− − + − − + − 
  

  14. 
1
8

 

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



36   Mathematical Physics

 15. 
5

60
a

 16. 8 2π  17. 0 18. 16

 19. 
2

4
abcπ

 20. 
4
3

abcπ
 21. 

1 .
( )

l m n
l m n l m n+ + + +

   22. 
2

8
π

 23. 
2

2
a hπ

 24. 
35

64
a

 25. 
52

15
a π

 26. 
2

8
π

 27. 4π log (5/4) 28. 
8

12
aπ

33.13 VOLUME = .dx dy dz∫∫∫
The elementary volume δv is δx . δy . δz and therefore 
the volume of the whole solid is obtained by evaluat-
ing the triple integral. 
 δV = δx δy δz

 .V dx dy dz= ∫∫∫
Note : (i) Mass = volume × density = dx dy dzρ∫∫∫  

if ρ is the density.

(ii) In cylindrical co-ordinates, we have 
V

V r dr d dz= ϕ∫∫∫

(iii) In spherical polar co-ordinates, we have 2 sin
V

V r dr d d= θ θ ϕ∫∫∫
Example 41. Find the volume of the tetrahedron bounded by the planes x = 0, y = 0, 
z = 0 and x + y + z = a. (A.M.I.E.T.E. June 2016, M.U. II Semester 2005)
Solution. Here, we have a solid which is bounded by x = 0, y = 0, z = 0 and x + y + 
z = a planes.
The limits of z are 0 and a – x – y, the limits of y are 0 and a – x, 
the limits of x are 0 and a.

 V = 
0 0 0

a a x a x y

x y z
dx dy dz

− − −

= = =∫ ∫ ∫  

   = [ ]00 0

a a x a x y
x y

z dx dy
− − −

= =∫ ∫

  = 
0 0

( )
a a x

x y
a x y dy dx

−

= =
− −∫ ∫

  = 
2

0 02

a x
a

x

yay xy dx
−

=

 
− −  ∫

  = 
2

0

( )( ) ( )
2

a a xa a x x a x dx
 −

− − − −  ∫

Z

X

Y

O
δx

δy

δz
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  = 
2 2

2 2
0 2 2
a a xa ax ax x ax dx
 

− − + − + −  ∫  

  = 
2 2

0 2 2
a a xax dx
 

− +  ∫  

  = 
2 2 3 3

3

0

1 1 1.
2 2 6 2 2 6 6

a
a ax x ax a
   − + = − + =     

. Ans.

Example 42. Find the volume of the cylindrical column standing on the area common 
to the parabolas y2 = x, x2 = y and cut off by the surface z = 12 + y – x2. 
 (U.P. II Sem. Summer 2001)
Solution. We have,

y2 = x
x2 = y
z = 12 + y – x2

V = 
2

2

1 12

0 0

x y x

x
dx dy dz

+ −

∫ ∫ ∫  

 = 2

1 2
0

(12 )
x

x
dx y x dy+ −∫ ∫

 = 
2

21 2
0

12
2

x

x

ydx y x y
 

+ −  ∫  = 
41 5/2 2 4

0
12 12

2 2
x xx x x x dx

 
+ − − − +  ∫

 = 
12 5 5

3/2 7/2 3

0

2 212 4
3 4 7 10 5

x x xx x x
 

× + − − − + 
 

 = 
1 2 1 1 1 2 1 18 4 4
4 7 10 5 4 7 10 5

+ − − − + = + − − +  = 
560 35 40 14 28 569

140 140
+ − − +

=  Ans.

Example 43. A triangular prism is formed by planes whose equations are ay = bx, y = 0 
and x = a. Find the volume of the prism between the planes z = 0 and surface z = c + xy.
 (M.U. II Semester 2000; U.P., Ist Semester, 2009 (C.O) 2003)

Solution. Required volume = 
0 0 0

bxa c xy
a dz dy dx

+

∫ ∫ ∫  

  = 
0 0

( )
bxa
a c xy dy dx+∫ ∫

  = 
2

0
0

2

bx
aa xycy dx

 
+  ∫

  = 
2

3
20 2

a cbx b x dx
a a

 
+  ∫

Y

Y `

X `
XO

y = x2

x = x2
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  = 
2 2 4

2
0 0

2 42

a a
bc x b x
a a

   
+      

  = 
2 2

(4 )
2 8 8

abc b a ab c ab+ = +  Ans.

33.14 VOLUME OF SOLID BOUNDED BY SPHERE OR BY CYLINDER

We use spherical coordinates (r, θ, φ) and the cylindrical coordinates are (ρ, φ, z) and 
the relations are x = ρ cos φ, y = ρ sin φ.
Example 44. Find the volume of a solid bounded by the spherical surface x2 + y2 + z2 
= 4a2 and the cylinder x2 + y2 – 2 a y = 0.
Solution. x2 + y2 + z2  = 4a2 ...(1)
  x2 + y2 – 2 a y = 0 ...(2) 
Considering the section in the positive quadrant of the 
xy-plane and taking z to be positive (that is volume 
above the xy-plane) and changing to polar co-ordinates, 
(1) becomes
  r2 + z2 = 4a2 		⇒  z2 = 4 a2 – r2

∴  z = 2 24a r−

(2) becomes r2 – 2 a r sin θ = 0 ⇒ r = 2a sin θ

 Volume = dx dy dz∫∫∫

  = 
2 2/2 2 sin 4

0 0 0
4

a a r
d r dr dz

π θ −
θ∫ ∫ ∫    (Cylindrical coordinates)

  = [ ]
2 2/2 2 sin 4

00 0
4

a a rd r dr z
π θ −θ∫ ∫  = 

/2 2 sin 2 2
0 0

4 . 4
a

d r dr a r
π θ

θ −∫ ∫

  = 
2 sin

/2 2 2 3/2
0

0

14 (4 )
3

a

d a r
θ

π  θ − −  ∫  = 
/2 2 2 2 3/2 3

0

4 (4 4 sin ) 8
3

a a a d
π  − − θ + θ ∫

  = 
3/2 /23 3 3 3

0 0

4 8 4( 8 cos 8 ) (1 cos )
3 3

aa a d d
π π×

− θ + θ = − θ θ∫ ∫

  = 
3 /2

0

32 1 31 cos 3 cos
3 4 4
a d

π  − θ − θ θ  ∫

  = 
/23 3

0

32 1 3 32 1 3sin 3 sin
3 12 4 3 2 12 4
a aπ π   θ − θ − θ = + −     

 = 
332 2

3 2 3
a π −  

  Ans.

Example 45. Find the volume enclosed by the solid

 
2/3 2/3 2/3x y z

a b c
     + +            = 1

Y `

X `

Y

XO

(0, )a
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Solution. The equation of the solid is

2/3 2/3 2/3x y z
a b c

     + +            = 1

Putting  
1/3x

a
 
    = u ⇒ x = a u3 ⇒ d x = 3 au2 du

  
1/3y

b
 
    = v ⇒ y = b v3 ⇒ d y = 3 bv2 dv

  
1/3z

c
 
    = w ⇒ z = c w3 ⇒ d z = 3 c w2 dw

The equation of the solid becomes
  u2 + v2 + w2 = 1 ...(1)
       V = dx dy dz∫∫∫  ...(2)
On putting the values of dx, dy and dz in (2), we get
  V = 2 2 227abc u v w du dv dw∫∫∫  ...(3)
(1) represents a sphere.
Let us use spherical coordinates.
  u = r sin θ cos φ, v = r sin θ sin φ,
  w = r cos θ, du dv dw = r2sin θ dr dθ dφ
On substituting spherical coordinates in (3), we have

V = 
1 /2 /2 2 2 2 2 2 2

0 0 0
27 . 8 sin cos . sin sin

r
abc r r

π π

= φ = θ =
θ φ θ φ∫ ∫ ∫ . r2 cos2θ . r2 sin θ dr dθ dφ

  = 
1 /2 /28 2 2 5 2

0 0 0
216 sin cos sin cos

r
abc r dr d d

π π

= φ = θ =
φ φ φ θ θ θ∫ ∫ ∫

  = 
19

0

3 3 3
32 2 2216 .

9 2 3 92
2

rabc

   
    
    
    

 

 = 

33 3 3
1 1 22 224 . . . .
2 23 9

2

abc

  = 

2
1 1 32!2 2 26 . .

2 ! 7 5 3 3
2 2 2 2

abc

  
    

   
      

= 
1 1 46 . .

7 5 34 35
2 2 2

abc abcπ = π
     
          

 Ans.

Example 46. Find the volume bounded above by the sphere x2 + y2 + z2 = a2 
and below by the cone x2 + y2 = z2.
Solution. The equation of the sphere is x2 + y2 + z2 = a2 ...(1)
and that of the cone is       x2 + y2 = z2 ...(2)
In polar coordinates x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ
The equation (1) in polar co-ordinates is
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 (r sin θ cos φ)2 + (r sin θ sin φ)2 + (r cos θ)2 = a2

⇒ r2 sin2 θ cos2 φ + r2 sin2 θ sin2 φ + r2 cos2 θ = a2

⇒ r2 sin2 θ (cos2 φ + sin2 φ) + r2 cos2 θ = a2  
⇒ r2 sin2 θ + r2 cos2 θ = a2

⇒ r2 (sin2 θ + cos2 θ) = a2

⇒ r2 = a2   ⇒   r = a
The equation (2) in polar co-ordinates is
 (r sin θ cos φ)2 + (r sin θ sin φ)2 = (r cos θ)2

⇒  r2 sin2 θ (cos2 φ + sin2 φ) = r2 cos2 θ  ⇒   
r2 sin2 θ = r2 cos2 θ

⇒ tan2 θ = 1   ⇒  tan θ = 1 ⇒  θ = 
4
π

±

Thus equations (1) and (2) in polar coordinates are respectively,

  r = a  and  θ = 
4
π

±

The volume in the first octant is one fourth only.
Limits in the first octant : r varies 0 to a, θ from 0 to 

4
π

 and φ from 0 to 
2
π

.

The required volume lies between x2 + y2 + z2 = a2 and x2 + y2 = z2.

 V = 22 4
0 0 0

4 sin
a

r dr d d
π π

θ θ φ∫ ∫ ∫  = 
3

2 4
0 0 0

4 sin
3

a
rd d

π π  
φ θ θ  

 ∫ ∫

  = [ ] ( )
3 3 3

4 22 4 2
0 00 0 0

4 4 14 sin . cos 1
3 3 3 2
a a ad d d

π ππ π π  
φ θ θ = φ − θ = φ − + 

 
∫ ∫ ∫

  = 32 11
3 2

a  
π −  

 Ans.

33.15 VOLUME OF SOLID BOUNDED BY CYLINDER OR CONE

We use cylindrical coordinates (r, θ, z).
Example 47. Find the volume of the solid bounded by the parabolic y2 + z2 = 4x and 
the plane x = 5.
Solution. y2 + z2 = 4x, x = 5

 V = 
2 2

2

5 2 4 5 2 4

0 2 4 0 0 0
4

x x y x x y

x x y
dx dy dz dx dy dz

− −

− − −
=∫ ∫ ∫ ∫ ∫ ∫

  = [ ]
25 2 5 24 2

00 0 0 0
4 4 4

x xx ydx dy z dx dy x y− = −∫ ∫ ∫ ∫

  = 
2

5 2 1
0

0

44 4 sin
2 2 2

xy x ydx x y
x

− 
− + 

 
∫

  = 
5 5

0 0
4 0 2 4

2
x dx x dx π  + = π    

∫ ∫  = 
52

0
4 50

2
x 

π = π  
 Ans.

Example 48. Calculate the volume of the solid bounded by the following surfaces:
  z = 0, x2 + y2 = 1, x + y + z = 3

x + y = z
22 2

x + y = a
22 2 2

+ z

Z

O

X

Y
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Solution.     x2 + y2 = 1 ...(1)
  x + y + z = 3 ...(2)
  z = 0 ...(3)
Required Volume = dx dy dz∫∫∫  = [ ]30 (3 )x ydx dy z x y dx dy− − = − −∫∫ ∫∫
On putting x = r cos θ, y = r sin θ, dx dy = r dθ dr, we get

   = (3 cos sin )r r r d dr− θ − θ θ∫∫  = 
2 1 2 2
0 0

(3 cos sin )d r r r dr
π

θ − θ − θ∫ ∫

   = 
12 3 32

0
0

3 cos sin
2 3 3
r r rd

π  
θ − θ − θ  ∫  = 

2

0

3 1 1cos sin
2 3 3

d
π  − θ − θ θ  ∫

    = 
2

0

3 1 1sin cos
2 3 3

π
 θ − θ + θ  

 = 
1 1 13 sin 2 cos 2 3
3 3 3

π − π + π − = π  Ans.

Example 49. Find the volume bounded by the cylinder x2 + y2 = 4 and the planes  
y + z = 4 and z = 0. (AMIETE Dec 2015)

Solution. x2 + y2 = 4 ⇒ y = 24 x± −
 y + z =      4 ⇒ z = 4 – y and z = 0
x varies from –2 to + 2.

 V = dx dy dz∫∫∫  = 
2

2

2 4 4

2 4 0

x y

x
dx dy dz

− −

− − −∫ ∫ ∫

  = [ ]
2

2

2 4 4
02 4

x y
x

dx dy z
− −

− − −∫ ∫  

  = 
2

2

2 4

2 4
(4 )

x

x
dx dy y

−

− − −
−∫ ∫

   = 

2

2

422

2
4

4
2

x

x

ydx y
−

−
− −

 
− 

 
∫

  = 
2 2 2 2 2
2

1 14 4 (4 ) 4 4 (4 )
2 2

dx x x x x
−

 − − − + − + −  ∫

  = 
2

2 2 2 1
2

2

48 4 8 4 sin
2 2 2
x xx dx x −

−
−

 − = − +  ∫  = 16π Ans.

Example 50. Find the volume in the first octant bounded 
by the cylinder x2 + y2 = 2 and the planes z = x + y,  
y = x, z = 0 and x = 0. (M.U. II Semester 2005)
Solution. Here, we have the solid bounded by 
  x2 + y2 = 2 (cylinder)
                             (or r2 = 2)
  z = x + y ⇒ z = r (cos θ + sin θ) (plane)
 y = x   ⇒ r sin θ = r cos θ	 (plane)

⇒ tan θ = 1 ⇒ θ = 
4
π

y + z = 4

X

Y

Z

x + y = 4
2 2

O

O Y

X

Z
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x = 0 ⇒ r cos θ = 0 ⇒ cos θ = 0 ⇒ θ = 
2
π

z varies from 0 to r (cos θ + sin θ)
r varies from 0 to 2

θ varies from 
4
π

 to 
2
π

∴  V = 
/2 2 (cos sin )

/4 0 0

r

r z
dz dr d

π θ + θ

θ = π = =
θ∫ ∫ ∫  

   = [ ]/2 2 (cos sin )
0/4 0
r

r
r z dr d

π θ + θ

θ = π =
θ∫ ∫  = 

/2 2 2
/4 0

(cos sin )
r

r dr d
π

θ = π =
θ + θ θ∫ ∫

   = 
23/2

/4 0
(cos sin )

3
r d

π

θ = π

 
θ + θ θ 

 ∫  = 
/2

/4

2 2 (cos sin )
3

d
π

θ = π
θ + θ θ∫

   = [ ] /2
/4

2 2 sin cos
3

π
πθ − θ  = 

2 2 1 1 2 2(1 0)
3 32 2

  
− − − =    

 Ans.

Example 51. Show that the volume of the wedge intercepted between the cylinder  
x2 + y2 = 2ax and planes z = mx, z = nx is π(m – n) a3. 
Solution. The equation of the cylinder is x2 + y2 = 2 a x
we convert the cartesian coordinates into cylindrical coordinates.
  x = r cos θ	
  y = r sin θ
               x2 + y2 = 2ax ⇒ r2 = 2ar cos θ
⇒  r = 2a cos θ
 r varies from 0 to 2a cos θ

	 θ varies from 
2
π

−  to 
2
π

and z varies from z = nx (z = nr cos θ) to z = m x (z = m r cos θ)

 V = 
/2 2 cos cos

0 0 cos
2

a mr

r z nr
dz dr d

π θ θ

θ = = = θ
θ∫ ∫ ∫

  = [ ]/2 2 cos cos
cos0 0

2
a mr

nrr
r z dr d

π θ θ
θθ = =

θ∫ ∫  

  = 
/2 2 cos

0 0
2 .( ) cos

a

r
r m n r dr d

π θ

θ = =
− θ θ∫ ∫

  = 
/2 2 cos 2

0 0
2 ( ) cos

a

r
m n r dr d

π θ

θ = =
− θ θ∫ ∫

  = 
2 cos3/2

0
0

2 ( ) cos
3

a
rm n d

θ
π

θ =

 
− θ θ 

 
∫

  = 
3/2 3

0

82 ( ) cos cos
3
am n d

π

θ =
− θ θ θ∫

  = 
/23 4

0

16( ) cos
3

m n a d
π

θ =

−
θ θ∫  = 3 316( ) 3 1. . . . ( )

3 4 2 2
m n a m n a− π

= − π  Ans.

θ
π

=
/4y 

= xθ π= /2

Y

X

x + y = 222

r = 2

x = 0

O

z = nx

z = mx

r = 2a cos θ

X

Y

O
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Example 52. A cylindrical hole of radius b is bored through a sphere of radius a. Find 
the volume of the remaining solid.
Solution. Let the equation of the sphere be 
    x2 + y2 + z2 = a2

Now, we will solve this problem using cylindrical 
coordinates
  x = r cos θ
  y = r sin θ
  z = z

 Limits of z  are 0 and 2 2 2( )a x y− +  i .e. ,  

2 2a r−

Limits of r are a and b.
and the limits of θ are 0 and 

2
π

V = 
2 2/2

0 0
8

a a r

r b z
r dr d dz

π −

θ = = =
θ∫ ∫ ∫

   = [ ]
2 2/2

00
8

a a r
r b

z r dr d
π −

θ = =
θ∫ ∫  = 

/2 2 2 1/2
0

8 ( ) .
a

r b
a r r dr d

π

θ = =
− θ∫ ∫

   = 
2 2 3/2/2

0

( ) 18 .
3 / 2 2

a

b

a r d
π

θ =

 −  − θ    
∫  = 

3
/2 2 2 2

0

8 ( )
3

a b d
π

− − − θ∫

   = [ ]
3 3

/22 2 2 22 2
0

8 4( ) ( )
3 3

a b a bπ π
− θ = −   Ans.

Example 53. Find the volume cut off from the paraboloid

 
2

2 yx z
4

+ +  = 1 by the plane z = 0. (M.U. II Semester 2005)

Solution. We have

  
2

2

4
yx z+ +  = 1 (Paraboloid) ...(1)

  z = 0 (x-y plane) ...(2)

z varies from 0 to 1 – x2 – 
2

4
y

y varies from 22 1 x− −  to 22 1 x−  
x varies from –1 to 1.

  V = dx dy dz∫∫∫  = 

2
2

2

2

1
1 2 1 4

1 2 1 0

yx
x

x
dx dy dz

 
− − −  

− − −∫ ∫ ∫

   = 
2

2

21 2 1 2
1 2 1

1
4

x

x

yx dx dy
−

− − −

 
− −  ∫ ∫

  = 
2 21 2 1 2

0 0
4 1

4
x yx dx dy

−  
− −  ∫ ∫  

X

Y

Z

O az = 0

z = a – r22

y′

y′ x

y

X

Y

Z

–2

–1

2O

1
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  = 

22 131 2
0

0

4 (1 ) .
12

x
yx y dx

−
 
− − 

 
∫  

  = 
2 2

1

0 2 3/2

8(1 ) . 2 1
124

(1 )

x x
d x

x

 − − − 
 

−  
∫

  = 
1 2 3/2 2 3/2
0

24 2(1 ) (1 )
3

x x d x − − −  ∫
On putting x = sin θ, we get

V = 
1 2 3/2
0

44 (1 )
3

x dx−∫  = 
/2 2 3/2

0

16 (1 sin ) cos
3

d
π

− θ θ θ∫

 = 
/2 4

0

16 cos
3

d
π

θ θ∫  = 
16 3 1. . .
3 4 2 2

π
= π   Ans.

Example 54. Find the volume enclosed between the cylinders x2 + y2 = a x, and z2 = a x.
Solution. Here, we have x2 + y2 = ax ...(1)
 z2 = ax ...(2)

V = dx dy dz∫∫∫  = 
2

20

a ax x ax

ax x ax
dx dy dz

−

− − −∫ ∫ ∫  = 
2

20 0
2

a ax x ax

ax x
dx dy dz

−

− −∫ ∫ ∫

  = ( )
2

2 00
2

a ax x ax
ax x

dx dy z
−

− −∫ ∫  = 
2

20
2

a ax x

ax x
dx dy ax

−

− −∫ ∫  = [ ]
2

20
2

a ax x

ax x
ax dx y −

− −
∫

  = ( )2
0 0

2 2 4
a a

ax dx ax x a x a x dx− = −∫ ∫
Putting x = a sin2θ so that dx = 2a sin θ cos θ dθ, we get

 V = 
/2 2 2

0
4 sin sin . 2 sin cosa a a a a d

π
θ − θ θ θ θ∫

  = 
/23 3 2

0
8 sin cosa d

π
θ θ θ∫

  = 
3

3 3

3 32 162 28 4
157 5 3 32 .

2 2 2 2

aa a= =  Ans.

EXERCISE 33.10

 1. Find the volume bounded by the coordinate planes and the plane. 
x y z
a b c
+ +  = 1

(A.M.I.E.T.E. Dec. 2017)
 2. Find the volume bounded by the cylinders y2 = x and x2 = y between the planes z = 0 and  

 x + y + z = 2.
 3. Find the volume bounded by the co-ordinate planes and the plane.
   l x + m y + n z = 1
 4. Find the volume of the sphere x2 + y2 + z2 = a2 by triple integration.      (AMIETE June 2009) 

X
O

X′

Y′

Y

y = 2 1 – x2

y = –2 1 – x2

x +
y

= 12
2

4

x + y = ax2 2

(a, 0)

z
= a x

2

O

Y

X

Z
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 5. Find the volume of the ellipsoid 
2 2 2

2 2 2
x y z
a b c

+ +  = 1

 6. Find the volume bounded by the cylinder x2 + y2 = a2 and the planes y + z = 2a and z = 0.
 (M.U. II Semester 2000, 02, 06)
 7. Find the volume bounded by the cylinder x2 + y2 = a2 and the planes z = 0 and y + z = b.
 8. Find the volume of the region bounded by z = x2 + y2,  z = 0,  x = – a,  x = a and y = –a, y = a.
 9. Find the volume enclosed by the cylinder x2 + y2 = 9 and the planes x + z = 5 and z = 0.

 10. Compute the volume of the solid bounded by x2 + y2 = z, z = 2x.
 11. Find the volume cut from the paraboloid 4 z = x2 + y2 by plane z = 4.
 (U.P. I Semester Dec. 2005)

 12. By using triple integration find the volume cut off from the sphere x2 + y2 + z2 = 16 by the plane  
z = 0 and the cylinder x2 + y2 = 4 x.

 13. The sphere x2 + y2 + z2 = a2 is pierced by the cylinder x2 + y2 = a2 (x2 – y2).

  Prove that the volume of the sphere that lies inside the cylinder is 38 5 4 2
3 4 3 3

a
 π

+ − 
 

.

 14. Find the volume of the solid bounded by the surfaces z = 0, 3 z = x2 + y2 and x2 + y2 = 9.
     (A.M.I.E.T.E., Summer 2005)

 15. Obtain the volume bounded by the surface z = 1 1x yc
a b

   − −        and a quadrant of the elliptic 

cylinder 
2 2

2 2
x y
a b

+  = 1, z > 0 and where a, b > 0. (A.M.I.E.T.E. Dec. 2005)

 16. Find the volume of the paraboloid x2 + y2 = 4z cut off by the plane z = 4.

 17. Find the volume bounded by the cone z2 = x2 + y2 and the paraboloid z = x2 + y2.

 18. Find the volume enclosed by the cylinders x2 + y2 = 2ax and z2 = 2 a x.
 19. Find the volume of the solid bounded by the plane z = 0, the paraboloid z = x2 + y2 + 2 and 

the cylinder x2 + y2 = 4.

 20. The triple integral dx dy dz∫∫∫  gives

  (a) Volume of region  (b)  Surface area of region T
  (c) Area of region T (d)  Density of region T. (A.M.I.E.T.E. Dec. 2006)

ANSWERS

 1. 6
abc

 2. 
11
30

 3. 
1

6 l m n  4. 34
3

aπ

 5. 
4

3
a b cπ

 6. 2πa3 7. πa2b 8. 48
3

a

 9. 45π – 36 10. 2π 11. 32π 12. 
64 (3 4)
9

π −

 14. 
27

2
π

 15. πabc   16. 32 π 17. 
6
π

 18. 
3128

15
a

 19. 16π 20. (a)
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33.16 SURFACE AREA

Let z = f(x,y) be the surface S. Let its 
 projection on the x-y plane be the region 
A. Consider an element δx. δy in the  region 
A. Erect a cylinder on the element δx. δy 
 having its generator parallel to OZ and meet-
ing the surface S in an element of area δs.
∴ δx δy = δs cos γ,
Where γ is the angle between the xy-plane 
and the tangent plane to S at P, i.e., it 
is the angle between the Z-axis and the 
normal to S at P.
The direction cosines of the normal to the surface F (x, y, z) = 0 are proportional to

  , ,F F F
x y z

∂ ∂ ∂
∂ ∂ ∂

∴  The direction of the normal to S [F = f (x, y) – z] are proportional to , , 1z z
x y
∂ ∂

− −
∂ ∂

 

and those of the Z-axis are 0, 0 , 1.

Direction cosines = 
2 2 22 2 2

1, , ,

1 1 1

zz
yx

z z z z z z
x y x y x y

∂∂ −− ∂∂

     ∂ ∂ ∂ ∂ ∂ ∂     + + + + + +               ∂  ∂  ∂  ∂  ∂  ∂ 

Hence                cos 	γ = 
22

1

1z z
x y

  ∂ ∂  + +    ∂  ∂   

 (cos θ = l1l2 + m1 m2 + n1 n2)

   δS = 
cos
x yδ δ

γ
 = 

22

1z z x y
x y

  ∂ ∂  + + δ δ    ∂  ∂   
;   S = 

22

1
A

z z dx dy
x y

  ∂ ∂  + +    ∂  ∂   
∫∫

Example 55. Find the surface area of the cylinder x2 + z2 = 4 inside the cylinder  
x2 + y2 = 4.
Solution. x2 + y2 = 4
      x2 + z2 = 4

 2 2 0 or , 0z z x zx z
x x z y
∂ ∂ ∂

+ = = − =
∂ ∂ ∂

 
22

1z z
x y

 ∂ ∂  + +    ∂  ∂ 
 = 

2

2 1x
z

+  = 
2 2

2
x z

z
+

 = 2
4

4 x−

Hence, the required surface area = 
2 22

2 4

0 0
8 1

x z z dx dy
x y

−   ∂ ∂  + +    ∂  ∂   
∫ ∫

Z

Y

O X

A
δx

δy

S
Z
P

γ N
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= 
22 4

0 0 2

28
4

x
dx dy

x

−

−
∫ ∫  = 

22 4
00 2

116 [ ]
4

xy dx
x

−

−
∫  = 

2 2
0 2

116 [ 4 ]
4

x dx
x

−
−

∫

= 
2

0
16 dx∫  = 2

016 ( )x  = 32  Ans.

Example 56. Find the surface area of the sphere x2 + y2 + z2 = 9 lying inside the cylinder  
x2 + y2 = 3y.
Solution.  x2 + y2 + z2 = 9

  2 2 zx z
x
∂

+
∂

 = 0,  
z x
x z
∂

= −
∂

  2 2 zy z
y
∂

+
∂

 = 0,  
z y
y z
∂

= −
∂

22

1z z
x y

  ∂ ∂  + +    ∂  ∂   
 = 

2 2

2 2 1x y
z z

+ +  = 
2 2 2

2
x y z

z
+ +

 = 2 2
9

9 x y− −
= 2

9
9 r−

 
cos
sin

x r
y r
= θ 

 = θ 
  x2 + y2 = 3y  or r2 = 3 r sin θ  or   r = 3 sin θ.
Hence, the required surface area

= 
22

1z z dx dy
x y

  ∂ ∂  + +    ∂  ∂   
∫∫  = 

3sin/2

2
0 0

34
9

r d dr
r

θπ

θ
−

∫ ∫  = 
/2 3 sin

0 2
0

12
9

r drd
r

π
θ

θ
−

∫ ∫

= 
/2

3 sin2
0

0

12 [ 9 ]d r
π

θθ − −∫  = 
/2

2

0

12 [ 9 9 sin 3] d
π

− − θ + θ∫

= 
/2

0

36 ( cos 1) d
π

− θ + θ∫  = /2
036 ( sin )π− θ + θ  = 36 1

2
π − +    = 18 (π – 2) Ans.

Example 57. Find the surface area of the section of the cylinder x2 + y2 = a2 made by 
the plane x + y + z = a.
Solution. x2 + y2 = a2 ...(1)
  x + y + z = a ...(2)
The projection of the surface area on xy-plane is a circle
 x2 + y2 = a2

  1 z
x
∂

+
∂

 = 0    or 1z
x
∂

= −
∂

  1 z
y
∂

+
∂

 = 0    or 1z
y
∂

= −
∂

   
22

1z z
x y

 ∂ ∂  + +    ∂  ∂ 
 = 2 2( 1) ( 1) 1− + − +  = 3

Hence the required surface area

 = 
2 2 22

0 0

4 1
a a x z z dx dy

x y

−  ∂ ∂  + +    ∂  ∂ ∫ ∫  = 
2 2

0 0

4 3
a a x

dx dy
−

⋅∫ ∫

 = 
2 2

0
0

4 3 [ ]
a

a xy dx−∫  = 2 2

0

4 3
a

a x dx−∫
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= 
2

2 2 1

0

4 3 sin
2 2

a
x a xa x

a
− 

− + 
 

 = 
2

4 3 0
2 2

a π
+ 

 
= 

2
4 3

4
a π

  
 = 23 aπ  Ans.

Example 58. Find the area of that part of the surface of the paraboloid   
y2 + z2 = 2 ax, which lies between the cylinder, y2 = ax and the plane x = a.
Solution.  y2 + z2 = 2 ax ...(1)
  y2 = ax ...(2)
  x = a ...(3)
Differentiating (1), we get

 2 zz
x
∂
∂

 = 2 , z aa
x z
∂

=
∂

 2 2 zy z
y
∂

+
∂

 = 0, z y
y z
∂

= −
∂

22

1z z
x y

 ∂ ∂  + +    ∂  ∂ 
 = 

2 2

2 2 1a y
z z

+ +  = 
2 2

2 1a y
z
+

+  
2 2

2 2

2

2

y z ax

z ax y

 + =
 

= −  

  = 
2 2

2 1
2
a y
a x y
+

+
−

 = 
2 2 2

2
2

2
a y a x y

a x y
+ + −

−
 = 

2

2
2

2
a a x

a x y
+
−

 S = 
22

0

1
a ax

ax

z z dx dy
x y

−

 ∂ ∂  + +    ∂  ∂ ∫ ∫  = 
22

2
0

2
2

a ax

ax

y axa ax dx dy
ax y y ax−

 =+
 

− = ±  
∫ ∫

  = 2
0

2
2

a ax

ax

a xa dx dy
ax y−

+
−∫ ∫  = 

2
0

12
2

a ax

ax

a a x dx dy
ax y−

+
−

∫ ∫

  = 1

0

2 sin
2

axa

ax

ya a x dx
ax

−

−

 
+  

 
∫  = 1 1

0

1 12 sin sin
2 2

a

a a x dx − −  
+ − −    

∫

    = 
0

2
4 4

a

a a x dx π π  + +     
∫  = 

0

2
2

a

a a x dxπ
+∫  = 3/2

0
2 [( 2 ) ]

2 2 3
aa a xπ

⋅ ⋅ +

  = 3/2 3/2[(3 ) ]
6

a a aπ
−  = 

2
[3 3 1]

6
aπ

−  Ans.

EXERCISE 33.11
 1. Find the surface area of sphere x2 + y2 + z2 = 16.

 2. Find the surface area of the portion of the cylinder x2 + y2 = 4 y lying inside the sphere  
x2 + y2 + z2 = 16.

 3. Show that the area of surfaces cz = xy intercepted by the cylinder x2 + y2 = b2

  is 
2 2 2

A

c x y
dx dy

c
+ +

∫∫ , where A is the area of the circle x2 + y2 = b2, z = 0

 4. Find the area of the portion of the sphere x2 + y2 + z2 = a2 lying inside the cylinder x2 + y2 = ax.

 5. Find the area of the surface of the cone z2 = 3 (x2 + y2) cut out by the paraboloid z = x2 + y2 using 
surface integral.
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ANSWERS

 1. 64 π 2. 64. 3. 
1

2 2 222 ( )
3

c b c
c

 π + −
  

 4. 2 (π – 2) a2 5. 6π

33.17 CALCULATION OF MASS

We have,

 Volume = 
V

dx dy dz∫∫∫                        Density = ρ = f (x, y, z)
 [Density = Mass per unit volume]            Mass = Volume × Density

 Volume = 
V

dx dy dz∫∫∫                        ( , , )
V

Mass f x y z dx dy dz= ∫∫∫
Example 59. Find the mass of a plate which is formed by the co-ordinate planes and the 

plane ,x y z 1
a b c
+ + =  the density is given by ρ = k x y z. (U.P. I Semester Dec. 2003)

Solution. The plate is bounded by the planes x = 0, y = 0, z = 0 and 1.x y z
a b c
+ + =

Mass = dx dy dz ρ∫∫∫  = 
1 1

0 0 0
( )

z y zc b a
c b c dx dy dz k xyz

   − − −      ∫ ∫ ∫

= 
1 1

0 0 0

z y zc b a
c b ck z dz y dy x dx

   − − −      ∫ ∫ ∫  = 
121

0 0
0

2

y zaz b cc b
c xk z dz y dy

 − −    −  
 
  ∫ ∫

= 
221

0 0
1

2

zc b
c a y zk z dz y dy

b c

 −    − −  ∫ ∫  = 
22 1

0 0
1

2

zc b
ck a z yz dz y dy

c b

 −     − −    
∫ ∫

= 
22 3 21

20 0

21 1
2

zc b
ck a z y y zz dz y dy

c b cb

 −  
    − + − −         

∫ ∫

= 
122 2 4 3

20
0

21 1
2 2 34

zb
cck a y z y y zz dz

c b cb

 −      − + − −         
∫

= 
4 4 42 2 4 3

20

21 1 1
2 2 34

ck a b z b z b zz dz
c c b cb

      − + − − ⋅ −             
∫

= 
42 2 2 2

0

2 1
2 2 4 3

ck a b b b zz dz
c

   + − −     
∫  = 

42 2

0
1

2 12
c

z

k a b z dz
c

 −  ∫  [Put z = c sin2 θ]

= 
2 2

2 2 42
0

sin (1 sin ) (2 sin cos )
24

k a b c c d
π

θ − θ θ θ θ∫

= 
2 2 2 2 /2 2 8

0
sin (cos ) sin cos

12
k a b c d

π
θ θ θ θ θ∫  = 

2 2 2 2 /2 3 9
0

sin cos
12

k a b c d
π

θ θ θ∫
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= 
2 2 2 2

3 1 9 1
2 2

12 3 9 22
2

k a b c
+ +

+ +
 = 

2 2 2 2 5
12 2 7

k a b c
⋅  = 

2 2 2 (1) ( 5)
12 2 6 5 5

k a b c
× ×

 = 
2 2 2

720
k a b c

 Ans.

33.18 CENTRE OF GRAVITY

 , ,
x dx dy dz y dx dy dz z dx dy dz

x y z
dx dy dz dx dy dz dx dy dz

ρ ρ ρ
= = =

ρ ρ ρ
∫∫∫ ∫∫∫ ∫∫∫
∫∫∫ ∫∫∫ ∫∫∫

Example 60. Find the co-ordinates of the centre of gravity of the positive octant of the 
sphere x2 + y2 + z2 = a2, density being given = k xyz.

Solution.  x  = V

V

x dx dy dz

dx dy dz

ρ

ρ

∫∫∫
∫∫∫

 = 
z dx dy dz

dx dy dz

ρ

ρ

∫∫∫
∫∫∫

 = 
2

V

V

x yz dx dy dz

xyz dx dy dz
∫∫∫
∫∫∫

Converting into polar co-ordinates, x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ,
       dx dy dz = r2 sin θ dr dθ dφ

 x  =  

/2 /2 2 2
0 0 0

/2 /2 2
0 0 0

( sin cos ) ( sin sin ) ( cos ) ( sin )

( sin cos ) ( sin sin ) ( cos ) ( sin )

a

a

r r r r dr d d

r r r r dr d d

π π

π π

θ φ θ φ θ θ θ φ

θ φ θ φ θ θ θ φ

∫ ∫ ∫
∫ ∫ ∫

  = 

/2 /2 6 4 2
0 0 0

/2 /2 5 3
0 0 0

sin cos sin cos

sin cos sin cos

a

a

r dr d d

r dr d d

π π

π π

θ θ φ φ θ φ

θ θ φ φ θ φ

∫ ∫ ∫
∫ ∫ ∫

  = 

/2 /22 4 6
0 0 0

/2 /2 3 5
0 0 0

sin cos sin cos

sin cos sin cos

a

a

d d r dr

d d r dr

π π

π π

φ φ φ θ θ θ

φ φ φ θ θ θ

∫ ∫ ∫
∫ ∫ ∫

  = 

/2 /23 5 7

0 0 0
/2 /22 4 6

0 0 0

cos sin
3 5 7

cos sin
2 4 6

a

a

r

r

π π

π π

     φ θ
−     
     

     φ θ
−      
     

 = 

7

6

1 1
3 5 7

1 1
2 4 6

a

a

    
          

    
          

 = 
16
35

a

Similarly, y  = z  = 
16
35

a
;       Hence, C.G. is 

16 16 16, ,
35 35 35

a a a 
    Ans.

33.19 MOMENT OF INERTIA OF A SOLID

Let the mass of an element of a solid of volume V be ρ  δx δy δz.

Perpendicular distance of this element from the x-axis = 2 2y z+

 M.I. of this element about the x-axis = 2 2x y z y zρ δ δ δ +

M.I. of the solid about x-axis = 2 2( )
V

y z dx dy dzρ +∫∫∫
M.I. of the solid about y-axis = 2 2( )

V
x z dx dy dzρ +∫∫∫
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M.I. of the solid about z-axis = 2 2( )
V

x y dx dy dzρ +∫∫∫
The Perpendicular Axes Theorem 
If Iox and Ioy be the moments of inertia of a lamina about x-axis and y-axis respectively 
and Ioz be the moment of inertia of the lamina about an axis perpendicular to the lamina 
and passing through the point of intersection of the axes OX and OY.
  IOZ = IOX + IOY

The Parallel Axes Theorem 
M.I. of a lamina about an axis in the plane of the 
lamina equals the sum of the moment of inertia 
about a parallel centroidal axis in the plane of lamina 
together with the product of the mass of the lamin 
a and square of the distance between the two axes.
  IAB = IXX + My2

 Example 61. Find M.I. of a sphere about 
diameter.
Solution. Let a circular disc of δ x thickness be 
perpendicular to the given diameter XX′ at 
a distance x from it.

  The radius of the disc = 2 2a x−

   Mass of the disc = ρ π (a2 – x2)
Moment of inertia of the disc about a diameter perpendicular on it

   = 21
2

MR  = 2 2 2 21 [ ( )] ( )
2

a x a xρ π − −  = 2 2 21 ( )
2

a xρ π −

M.I. of the sphere  = 2 2 21 ( )
2

a

a
a x dx

−
ρ π −∫  = 4 2 2 4

0

12 [ 2 ]
2

a
a a x x dx ρ π − +   ∫

   = 
2 3 5

4

0

2
3 5

a
a x xa x

 
ρ π − + 

 
 = 

5 5
5 2

3 5
a aa

 
ρ π − + 

 

   = 58
15

aπ ρ  = 3 22 4
5 3

a aπ ρ    = 22
5

M a  Ans.

Example 62. The mass of a solid right circular cyl-
inder of radius a and height h is M. Find the moment 
of inertia of the cylinder about (i) its axis (ii) a line 
through its centre of  gravity  perpendicular to its axis 
(iii) any diameter through its base.
Solution. To find M.I. about OX. Consider a disc at 
a distance x from O at the base.

M.I. of the about OX, = 
2 2( )

2
a dx aπ ρ

 = 
4

2
a dxπ ρ

(i)  M.I. of the cylinder about OX

G
X

y

X

A B

O

x

a

X ` X

a – x2 2

O

X

h/2

G

x –
h
2

D

B

x

y
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4

0 2
h a dxπ ρ
∫  = ( )

4

02
ha xπ ρ

 = 
4

2
a hπ ρ

 = 
2

2( )
2

aa hπ ρ ⋅  = 
2

2
M a

(ii)  M.I. of the disc about a line through C.G. and 
 perpendicular to OX.
 IOX + IOY = IOZ
 IOX + IOX = IOZ

 IOX = 
1
2 OZI

M.I. of the disc about a line through

 C.G. = 
21

2 2
M a 

  
 = 

2

4
M a

M.I. of the disc about the diameter = 
2

2

4
a dx a

 π ρ
  

M.I. of the disc about line GD = 
24

2( )
4 2

a dx ha dx xπ ρ  + π ρ −  

Hence, M.I. of cylinder about GD = 
24

2
0 0

( )
4 2

h ha hdx a dx xπ ρ  + π ρ −  ∫ ∫

  = ( )
32 2

0
0

4 4 2

h
ha a hx x

 π ρ π ρ  + −     
 = 

3 34 2 2

4 3 2 3 2
a h a h a h π ρ π ρ π ρ   + +         

  = 
4 2 3

4 12
a h a hπ ρ π ρ

+  = 
2 2

4 12
M a M h

+

(iii)  M.I. of cylinder about line OB (through) base

 IOB = 
2

2GD
hI M  +     = 

2 2 2

4 12 4
M a M h M h

+ +  = 
2 2

4 3
M a M h

+  Ans.

Example 63. Find the moment of inertia and radius of gyration about z-axis of the region 

in the first octant bounded by 1x y z
a b c
+ + = .

Solution. Let r be the density.  M.I. of tetrahedron about z-axis

 = 2 2( ) ( )dx dy dz x yρ +∫∫∫  = 
1 12 2

0 0 0
( )

x x ya b c
a a bdx x y dy dz

   − − −      ρ +∫ ∫ ∫  

 = 
11 2 2

00 0
( ) ( )

x yx ca b a badx x y dy z
   − − −    ρ +∫ ∫  = 

1 2 2
0 0

( ) 1
xa b
a x ydx x y dy c

a b

 −    ρ + − −  ∫ ∫  

 = 
2 31 2 2

0 0
1 1

xa b
a x x y x yc dx x y dy

a b a b

 −  
    ρ − − + − −        

∫ ∫

 = 
12 2 3 4

2
0

0

1 1
2 3 4

xb
aa x x y y x yc dx x y

a b a b

 −      ρ − − + − −        
∫

 = 
22

2 2
0

1 1 1
2

a x x x xc dx x b b
a a b a

      ρ − − − −           
∫
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3 43 4

1 1 1
3 4
b x x b x

a a b a

     + − − − −            
 

= 
2 2 4 42 2 2

2
0

1 1 1 1
2 3 4

a x x x b x b xb c x dx
a a a a

        ρ − − − − − − −                 
∫

 = 
2 42 2

0
1 1

2 12
a x x b xbc dx

a a

    ρ − + −         
∫

 = 
3 4 2 2 3 4

2
2 2 3 40

1 2 4 6 41
2 12

a x x b x x x xbc x dx
a aa a a a

    
ρ − + + − + − +         

∫

 = 
3 4 5 2 2 3 3 5

2 2 3 4
0

1 2 6 4
2 3 2 125 3 4 5

a
x x x b x x x xbc x

a aa a a a

    
ρ − + + − + − +         

 = 
3 3 3 21 2 2

2 3 2 5 12 5
a a a b abc a a a a

    ρ − + + − + − +        
 

 = 
3 2

60 60
a abbc
 

ρ + 
 

 = 2 2( )
60
abc a bρ +

Radius of gyration = 
. .M I

Mass
 = 

2 2( )
60

6

abc a b

abc

ρ
+

ρ  = 2 21 ( )
10

a b+  Ans.

33.20 CENTRE OF PRESSURE

The centre of pressure of a plane area immersed in a fluid is the point at which the 
resultant force acts on the area.
Consider a plane area A immersed vertically in a homogeneous liquid. Let x-axis be 
the line of intersection of the plane with the free surface. Any line in this plane and 
perpendicular to x-axis is the y-axis.
Let P be the pressure at the point (x, y). Then the pressure on elementary area δx δy is 
P δx δy. Let ( , )x y  be the centre of pressure. Taking moment about y-axis.

 
A

x P dx dy⋅ ∫∫  = 
A

Px dx dy∫∫  

  x  = A

A

Px dx dy

P dx dy
∫∫
∫∫

Similarly,  y  = A

A

Py dx dy

P dx dy
∫∫
∫∫

Example 64. A uniform semi-circular lamina is immersed in a fluid with its plane verti-
cal and its bounding diameter on the free surface. If the density at any point of the fluid 
varies as the depth of the point below the free surface, find the position of the centre of 

Z
C

B

Y
O
M P

AX

Y

O X

x

x
C

y

(x, y)
δ δx y
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pressure of the lamina.
Solution. Let the semi-circular lamina be
  x2 + y2 = a2

By symmetry its centre of pressure lies on OY. Let ky be the density of  the fluid.

y  = A

A

Py dx dy

P dx dy
∫∫
∫∫

 = 
( )

( )
A

A

y y dx dy

y dx dy

ρ

ρ

∫∫
∫∫

 ( 	ρ = ky)

 = 
( . )

( . )
A

A

ky y y dx dy

ky y dx dy
∫∫
∫∫

 = 
3

2
A

A

y dx dy

y dx dy
∫∫
∫∫

 = 

2 2

2 2

3
0

2
0

a a x

a

a a x

a

dx y dy

dx y dy

−

−

−

−

∫ ∫

∫ ∫
 = 

2 2

2 2

4

0

3

0

4

3

a x
a

a

a x
a

a

ydx

ydx

−

−

−

−

 
 
 

 
 
 

∫

∫

 

 = 

2 2 2

2 2 3/2

( )3
4 ( )

a

a
a

a

dx a x

dx a x

−

−

−

−

∫

∫
 = 

/2 2 2 2 2
/2

/2 2 2 2 3/2
/2

( cos ) ( sin )3
4 ( cos ) ( sin )

a d a a

a d a a

π

−π
π

− π

θ θ − θ

θ θ − θ

∫

∫
 (Put x = a sin θ)

 = 

/2 5
/2

/2 4
/2

cos3
4 cos

da

d

π

−π
π

− π

θ θ

θ θ

∫

∫
 = 

/2 5
0

/2 4
0

2 cos3
4 2 cos

da

d

π

π

θ θ

θ θ

∫
∫

 = 

4 2
3 5 3

3 14
4 2 2

a
×
×
× π
×

 = 
32
15

a
π

  Ans.

EXERCISE 33.12

 1. Find the mass of the solid bounded by the ellipsoid 
2 2 2

2 2 2 1x y z
a b c

+ + =  and the co-ordinate planes, 
where the density at any point P (x, y, z) is k xyz.

 2. If the density at a point varies as the square of the distance of the point from XOY plane, find 
the mass of the volume common to the sphere x2 + y2 + z2 = a2 and cylinder x2 + y2 = ax.

 3. Find the mass of the plate in the form of one loop of leminscate r2 = a2 sin 2 θ, where ρ = k 
r2.

 4. Find the mass of the plate which is inside the circle r = 2a cos θ and outside the circle r = a, 
if the density varies as the distance from the pole.

 5. Find the mass of a lamina in the form of the cardioid r = a (1 + cos θ) whose density at any 
point varies as the square of its distance from the initial line.

 6. Find the centroid of the region in the first octant bounded by 1x y z
a b c
+ + = .

 7. Find the centroid of the region bounded by z = 4 – x2 – y2 and xy-plane.
 8. Find the position of C.G. of the volume intercepted between the parallelepiped x2+y2 = a(a – z) 

and the plane z = 0.
 9. A solid is cut off the cylinder x2 + y2 = a2 by the plane z = 0 and that part of the olane z = mx 

for which z is positive. The density of the solid cut off at any point varies as the height of the 
point above plane z = 0. Find C.G. of the solid.

 10. If an area is bounded by two concentric semi-circles with their common bounding diameter in 

a free surface, prove that the depth of the centre of pressure is 
2 2

2 2
3 ( ) ( )
16

a b a b
a ab b

π + +

+ +
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 11. An ellipse 
2 2

2 2 1x y
a b

+ =  is immersed vertically in a fluid with its major axis horizontal. If its 

centre be at depth h, find the depth of its centre of pressure.
 12. A horizontal boiler has a flat bottom and its ends are plane and semi-circular. If it is just full of 

water, show that the depth of centre of pressure of either end is 0.7 × total depth approximately.

 13. A quadrant of a circle of radius a is just immersed vertically in a homogeneous liquid with one 
edge in the surface. Determine the co-ordinates of the centre of pressure.

 14. Find the product of inertia of an equilateral triangle about two perpendicular axes in its plane at 
a vertex, one of the axes being along a side.

 15. Find the M.I. of a right circular cylinder of radius a and height h about axis if density varies as 
distance from the axis.

 16. Compute the moment of inertia of a right circular cone whose altitude is h and base radius r, 
about (i) the axis of symmetry (ii) the diameter of the base.

 17. Find the moment of inertia for the area of the cardioid r = a (1 – cos θ) relative to the pole.
 18. Find the M.I. about the line θ =  

2
π

 of the area enclosed by r = a (1 + cos θ).

 19. Find the moment of inertia of the uniform solid in the form of octant of the ellipsoid 

   
2 2 2

2 2 2 1 aboutx y z OX
a b c

+ + =

 20. Prove that the moment of inertia of the area included between the curves y2 = 4 ax and x2 = 4 

ay about the x-axis is 2,144
35

M a , where M is the mass of area included between the curves.

 21. A solid body of density p is the shape of solid formed by revolution of the cardioid r = a  
(1 + cos θ) about the initial line. Show that its moment of inertia about a straight line through 

the pole perpendicular to the initial line is 5352 .
105

l a  π  
 22. Find the product of inertia of a disc in the form of a quadrant of a circle of radius ‘a’ about 

bounding radii.

 23. Show that the principal axes at the origin of the triangle enclosed by x = 0, y = 0, 1x y
a b
+ =  

are inclined at angles α and 
2
π

α +  to the x-axis, where a = 1
2 2

1 tan
2

ab
a b

−  
 

− 
Choose the correct answer:

 24. The triple integral 
T

dx dy dz∫∫∫  gives

  (i) Volume of region T (ii)  Surface area of region T
  (iii) Area of region T (iv) Density of region T. 
 25. The volume of the solid under the surface az = x2 + y2 and whose base R is the circle x2 + y2  

= a2 is given as

  (i) 
2a
π

 (ii) 
3

2
aπ

	

  (iii) 34
3

aπ  (iv) None of the above.   [U.P., I. Sem. Dec. 2008]
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ANSWERS

 1. P 2. 54 8
15 2 15

k a  −  
π

 3. 
4

16
k aπ

 5. 
421

32
k aπ

 6. , ,
4 4 4
a b c 

   . 7. 
40, 0,
3

 
    8. 0, 0,

3
a 

    9. 
64
45

maz =
π

 11. 
2

4
bh

h
+  13. 

3 3,
8 16
a aπ 

    15. 52
5

k a hπ

 16. 
4 2

2 2( ) ( ) (2 3 )
10 60
h r h ri ii h rπ π

+  17. 
435

16
aπ

 19. 2 2( )
5
M b c+

 22. 
4

4
a

ρ  24. (i) 25. (ii)
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34.1 NUMBERS

There are two types of numbers
  (i) Exact (ii) Approximate

For example; Exact numbers are 1, 3, 5, 7, 10, 
5 ,
2

 6.23.

Approximate numbers are 
4
3

 = 1.3333..........

  2  = 1.414213..........
  π = 3.141592..........
The value of the left hand side can not be expressed by a finite number of digits.

  Approximate value of 
4
3

 = 1.3333

  App. value of 2  = 1.4142
  and the app. value of π = 3.1416

34.2 SIGNIFICANT FIGURES

 The digits used to express a number are called significant digits (figures).
 8123, 3.187, 0.8725, contains 4 significant figures. While the numbers 0.0163, 0.00127, 
0.000365 and 0.0000345 contain only three significant figures (digits).
 Since zeroes before decimal and after decimal only helps to fix the position of  
decimal point.
Similarly, the numbers 52000 and 8700.00 have two significant figures only.

34.3 ROUNDING OFF

These are number with larger number of digits.

For example;  
22
7

 = 3.14285143

In practice it is convenient to limit such number as 3.14 or 3.143.
The dropping of the digits is called rounding off.

 Rule: (1)  To round of a number to n significant numbers ignore all the digits to the 
right of nth digit if there is some digit ignore it.

  (2) Less than half a unit leave this unit.
  (3) Greater than half unit is taken as full unit.

1

Theory of ErrorsCHAPTER
3434
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  (4) Exactly half unit is taken as one unit in the case of odd numbers i.e., increased 
the odd number by one. If nth number is even, then nth number should not be 
changed.

5.783 to 5.78 7.767 to 7.77
15.976 to 15.9 95767 to 95800
8.4365 to 8.44 87.656 to 87.6

 Also the numbers 7.284359, 15.864651, 9.464762 rounded off to four places of decimals  
 at 7.2844, 15.8646, 9.4648 respectively.

34.4 TYPES OF ERRORS

 (1) Absolute Errors 
  The error is defined as a quantity which is added to true value in order to obtain 

the measured value.
  True value + Error = Measured value/observed value.
  Correction. The error with sign changed is called correction.
  Measured value + Correction = True value.
  If x is the true value and X′ is approximate value then | X – X′ | is called the absolute 

error.
 (2) Relative Error

   Relative error = 
–X X
X

′

 (3) Percentage Error
  Percentage error = 

100 | – |X X
X

′

 (4) Inherent Error
  Errors which are already in data for calculation of a problem before its solution are 

called inherent error. Such error arrise due to limitation of mathematical tables or 
the digital computer.

 (5) Rounding off the errors
  Such error arrise by the process of rounding off the numbers. Such errors are un 

avoidable most of the calculation.
 (6) Truncation Error
  Truncation error are caused by using approximate result on replacing an infinite 

series.

  For example; if ex = 
2 3 4

1 ....
2! 3! 4!
x x xx X+ + + + + ∞ =  (say)

  is replaced by 
2 3 4

1
2! 3! 4!
x x xx X+ + + + = ′  (say)

  then the truncation error = X – X′
 Notes : (1) If a number is correct to n decimal places then the error is = –1 10 .

2
n
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    For example : If the number is 2  = 1.1414 correct to four decimal 

places, then the error = 41 10
2

−×

   (2) If the first significant figure of a number is λ and the number is correct to n 

significant figures, then the relative error is less than – 1
1 .
10nλ ×

Verification. 974.16 is correct to five significant figure.
Here,  λ = 9, n = 5

 Absolute error = 
0.01 0.005

2
=

 Relative error < 
0.005 5 1

974.16 974160 2 97416
= =

×

  < 4
1 1

2 90000 2 9 10
=

× × ×

  < 4
1

9 10×

  i.e., – 1
1 .
10nλ ×

 Example 1.  Round off the numbers 754126 and 16.73117 to four significant figures. 
Compute absolute error relative error and percentile error.

Solution.  Number rounded off to 4 significant figure equal to 754100
    Absolute error = | X – X′ | = | 754126 – 754100 | = | 26 | = 26

    Relative error = – 5– 26 3.45 10
754126

X X
X

′
= = ×

    Percentile error = 
| – | 100X X

X
′
×

    = 3.45 × 10–5 × 100 = 3.45 × 10–3

  (ii) Number rounded off to four significant figure is 16.73
    Absolute error = | X – X′ | = | 16.73117 – 16.73 | = 0.00117

    Relative error = – 5– 0.00117 6.99 10
16.73117

X X
X

′
= = ×

    Percentile error = – 5 – 3– 100 6.99 10 100 6.99 10X X
X

′
× = × × = ×     Ans.
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EXERCISE 34.1
  Round off the following numbers correct to three significant figures :
 1. 0.0031614 2. 16.132102
 3. 0.30617 4. 2945567
 5. 45.56735 6. 5.26521

 7. Find the relative error if 
1
3

 is approximated to 0.334.

 8. Find the percentage error if 625.483 is approximated to three significant figures.

 9. 29  = 5.385 and π = 3.317 correct to four significant figures. Find the relative errors 
in their sum and difference.

ANSWERS
 1. 0.00316 2. 16.1 3. 0.306
 4. 2940000 5. 45.6 6. 5.26

 7. 0.002  8. 0.077 9. 1.149 × 10– 4, 4.836 × 10– 4

34.5 ERROR DUE TO APPROXIMATION OF THE FUNCTION

Let z = f (x, y) be a function of two variables x and y.
If δx, δy be the errors in x and y, then the error in z is given by z + δz = f (x + δx, y + δy).
Expanding f (x, y) by Taylor’s series, we get

z + δz = ( , ) f ff x y x y
x y

 ∂ ∂
+ δ + δ  ∂ ∂ 

 + terms involving higher powers of δx and δy. ...(1)

 If δx and δy be so small that their squares and higher powers can be neglected, then (1) 
can be written as

  δz = 
z zx y
x y
∂ ∂

δ + δ
∂ ∂

 (app.)

In general, if z = f (x1, x2, ..... xn) and there are errors in x1, x2 ..... xn, then

  δz = 1 2 3
1 2 3

..... .n
n

z z z zdx dx dx dx
x x x x
∂ ∂ ∂ ∂

+ + + +
∂ ∂ ∂ ∂

 Example 1.  If u = 
3 4

5
5x y

z
 and errors in x, y, z be 0.001, and compute the relative 

maximum error when x =1, y = 1, z = 1.

Solution. u = 
3 4

5
5x y

z
 ...(1)

   δx = δy = δz = 0.001
and   x = y = z = 1
Differentiating (1) partially, with respect to ‘x’, we get

  
u
x
δ
δ

 = 
2 4 3 3 3 4

5 5 6
15 20 25, , –x y u x y u x y

y zz z z
δ δ

= =
δ δ
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Now, we know that

  δu = 
u u ux y z
x y z
∂ ∂ ∂

δ + δ + δ
∂ ∂ ∂

  = 
2 4 3 3 3 4

5 5 6
15 20 25–x y x y x yx y z

z z z
δ + δ δ

The error being maximum

  (δu)max = 
2 4 3 3 3 4

5 5 6
15 20 25x y x y x yx y z

z z z
δ + δ + δ

  = 
15(1)(1) 20(1)(1) 25(1)(1)(0.001) (0.001) (0.001)

(1) (1) (1)
+ +

  = 0.015 + 0.020 + 0.025 = 0.06

 Relative error = max( ) 0.06 0.012
5

u
u

δ
= =  Ans.

Example 2.  Find the maximum error in magnitude in the approximation

f (x, y) = x2 – xy + 21 3
2

y +  over the rectangle R : | x – 3 | < 0.01 and | y – 2 | < 0.01.

Solution. Here, we have

    f (x, y) = 2 21– 3
2

x xy y+ +

       
f
x
∂
∂

 = 2x – y, 
f
y
∂
∂

 = – x + y.

We know that

    Maximum δ f = 
f fx y
x y
∂ ∂

δ + δ
∂ ∂

   = | (2x – y)δx | + | (– x + y)δy |
   = | (2 × 3 – 2) (0.01) | + | (– 3 + 2) 0.01 |
   = 4 (0.01) + | – 0.01 | = 0.05 Ans.

34.6 ERROR IN A SERIES APPROXIMATION

By Taylor series of one variable

f (x)  = 
2 – 1

– 1( ) ( – )( – ) ( ) ( – ) ( ) ´́ ( ) ... ( ) ( )
2! ( – 1)!

n
n

n
x a x af a x a f a x a f a f a f a R x

n
−

+ = + ′ + + + +

Here Rn(x) = 
( – ) ( ),

!

n
nx a f

n
θ  a < θ < x

For a convergent series Rn(x) → 0 as n → ∞.
Approximate value of series = First n terms of the series.
We can find the number of terms for a particular desired accuracy.
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Example 1.  Correct to five places of decimal at x = 1 find the number of terms of 
the approximate series of ex.

Solution. We know that

  ex = 
2 3 – 1

1 ... ( )
2! 3! ( – 1)!

n

n
x x xx R x

n
+ + + + + +

Here  Rn(x) = , 0 < <
!

nx e x
n

θ θ

Maximum absolute error at (θ = x) = ( )
! !

n n
n xx xf x e

n n
=

Maximum error at (x = 1) = 
1
!n
  (x = 1) 

Maximum error correct to five decimal places – 51 1< 10
! 2n

. 

 ⇒                            n! > 2 × 105 (8! = 40320)
      8! > 2 × 105  ⇒ n = 8
Hence there are 8 terms in order that the sum is correct to five places of decimal. Ans.

EXERCISE 34.2
 1. Find the number of term of the approximated series of ex correct to six decimal places.
 2. Find the number of terms in the approximated series of log (1 + x) at x = 1, (log 2) to six decimal 

places.
 3. The fractional error in the measurement of x is 0.001. What is the corresponding error in expan-

sion of ex.

 4. If R = 
2

3
4xy

z
 and errors in x, y, z be 0.001, show that the maximum relative error at  

x = y = z = 1 is 0.006.

ANSWERS
 1. n = 10 2. n = 0

34.7 ORDER OF APPROXIMATION

 Function = f (h)
Approximate value of function = φ (x)
 Error = E (hn)
 | f (h) – φ (h) | ≤ E | hn |
 Order of error = O (hn)
  f (h) = φ (h) + O (hn)
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Example 1. Write down with fifth order of approximation of 
1 .

1 – h
Solution. We know that

  
1

1 – h
 = (1 – h)– 1 = 1 + h + h2 + h3 + h4 + h5 + h6 + h7 + .....

  = 1 + h + h2 + h3 + h4 + 0(h5)
Example 2. Write down the seventh order of approximation of sin | h |.
Solution.  We know that

  sin | h | = 
3 5 7 9

– – .....
3! 5! 7! 9!
h h h hh + + +

sin | h | with seventh order of approximation

  sin (h) = 
3 5

7– ( )
3! 5!
h hh O h+ +  Ans.

34.8 MOST PROBABLE VALUE AND RESIDUAL

Let true value of a quantity be X.

Their approximate values are X1, X2, X3,....., Xn.

and the corresponding probable errors are x1, x2, x3, ..... xn.

  x1 = X1 – X, x2 = X2 – X, x3 = X3 – X,....., xn = Xn – X
 In fact we cannot get true value of a quantity due to random errors. For practical  
purposes we take a probable value X  of a quantity in place of true value. The probable 

value X  is the average of X1, X2, X3 ,....., Xn.  1 2 3 ... nX X X X
X

n
+ + + + =  

We define the residual by.

  d1 = 1 2 2 3 3– , , – ..... – .n nX X d X X d X X d X X= − = =  
 d1, d2, d3 ..... dn are the residual error and x1, x2, x3, ..... xn are the probable error.

34.9 GAUSSIAN ERROR

 Errors and residuals are neither systematic nor constants but equally likely to be posi-
tive or negative.
Small errors are more frequent than large ones.
Very large errors don’t occur at all.
 Under these conditions the errors follow the law of probability given by normal distri-
bution.

   y = 

2( – )– 221
2

x

e
µ

σ

σ π

   y = 

2
– 221

2

x

e σ

σ π
 (µ = 0)
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On putting y = N, h2 = 2
1

2σ

  N = 
2 2– h xh e

π
 This given the relative number of measurements of N having error x and h is called 
precision index.
On plotting a graph between N and x, we get the Gaussian error curve.

34.10 THEORETICAL DISTRIBUTIONS

 (1) Binomial Distribution (q + p)n

   P(r) = nCr p
rqn – r

   Mean = np

   S.D. = npq

   Variance = npq
  Mode = Most probable of success = (n + 1)p

  Recurrence relation, P(r + 1) = 
– . ( ).

1
n r p P r
r q

 
 +  

 (2) Poisson’ Distribution

   P(r) = 
!

m re m
r

−

   Mean = m

   S.D. = m
   Variance = m
  Mode = [m] = Integral part of m [m – 1 ≤ r ≤ m]

  Recurrence relation P(r + 1) = ( ).
1

m P r
r +

 (3) Normal distribution

   f (x) = 

2( – )– 221
2

x

e
µ

σ

σ π
   Mean = µ
   Standard deviation = σ
   Medium = 0

   Modal ordinate = 
1 .
2σ π
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EXERCISE 34.3
 1. Explain the meaning of the terms mean and standard deviation of a term.

 2. Calculate the mean deviation and standard deviation of the series

  a, a + d, a + 2d, ..... , a + 2nd

 3. Explain what do you mean by binomial distribution. Find its mean and standard deviation.

 4. Define Poisson’s distribution. Discuss its importance in physics.

 5. Calculate mean and standard deviation of Poisson’s distribution.

 6. Define probability density function for the normal distribution.

 7. Define binomial and normal probability distribution and compare them.

 8. Assuming that N is large, show that the error in writing x n
σ

σ =  is approximately 
50( – 1)n

N
 

percent of the value of .xσ

 9. State and prove the normal law of errors and find an expression of the measure of precision and 
the probable error of the arithmetic mean  (D.U. May 2010).

 10. Derive the normal law of errors and calculate the probable error of an observation.
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35.1 PROBABILITY

 Probability is a concept which numerically measure the degree of uncertainty and 
therefore, of certainity of the occurrence of events to happen or Not to happen.

 If an event A can happen in m ways, and fail in n ways, all these ways being equally 
likely to occur, then the probability of the happening of A is

Number of favourable cases
Total number of mutually exclusive and equally likely cases

= =
+
m

m n

and that of its failing is defined as 
+
m

m n
   

If the probability of the Happening = p 

and the probability of Not happening = q

then  1 1.+
+ = + = = + =

+ + +
m n m np q or p q

m n m n m n

For instance, on tossing a coin, the probability of getting a head 
1 .
2

=

	Some	Definitions
 1. 	Exhaustive	Events	or	Sample	Space	: The set of all possible outcomes of a single perfor-

mance of an experiment is exhaustive events or sample space. Each outcome is called 
a sample point. In case of tossing a coin once, S = (H, T) is the sample space. Two  
outcomes - Head and Tail - constitute an Exhaustive event because No other out-
come is possible.

 2.  	Random	Experiment	:	There are experiments, in which results may be altogether 
different, even though they are performed under identical conditions. They are known 
as random experiments. Tossing a coin or throwing a die are random experiments.

 3.  	Trial	and	Event	:	Performing a random experiment is called a trial and outcome 
is termed as event. Tossing of a coin is a trial and the turning up of head or tail is 
an event.

 4.  	Equally	likely	events	:	Two events are said to be ‘equally likely’, if one of them 
cannot be expected in preference to the other. For instance, if we draw a card from 
well-shuffled pack, we may get any card, then the 52 different cases are equally 
likely.

 5.  	Independent	events	: Two events may be independent, when the actual happening 
of one does not influence in any way the probability of the happening of the other.

Probability and 
DistributionsCHAPTER

3535
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  	Example.	The event of getting head on first coin and the event of getting tail on 
the second coin in a simultaneous throw of two coins are independent.

	6.		 	Mutually	Exclusive	events	: Two events are known as mutually exclusive, when 
the occurrence of one of them excludes the occurrence of the other. For example, 
on tossing of a coin, either we get head or tail, but not both.

	7.		 	Compound	Event	: When two or more events occur in composition with each other, 
the simultaneous occurrence is called a compound event. When a die is thrown, 
getting a 5 or 6 is a compound event.

	8.		 	Favourable	Events	: The events which ensure the required happening, are said to 
be favourable events. For example, in throwing a die, to have the even numbers, 
2, 4 and 6 are favourable cases.

	9.		 	Conditional	Probability	: The probability of happening an event A, such that event 
B has already happened, is j called conditional probability of happening of A on 
the condition that B has already happened. It is usually denoted by P (A/B).

	10.		 Odds	in	favour	of	an	event	and	odds	against	an	event:
  If number of favourable ways = m, number of not favourable events = n

  (i) Odds in favour of the event = 
m
n

, (ii) Odds against the event = 
n
m

.

	11.		 	Classical	Definition	of	Probability: If there are n equally likely, mutually, exclusive and 
exhaustive events of an experiment and m of these are favourable, then the probability of 

the happening of the event is defined as 
m
n

.

	12.		 	Expected	value: if p1, p2, p3 ... pn are the probabilities of events x1, x2, x3 ... xn respectively 
then the expected value

1 1 2 2 3 3
1

( ) ...
=

= + + + + =∑
n

n n r r
r

E X p x p x p x p x p x

	13.		 	Complement	of	an	event. The complement of an event E with respect to the sample space 
S is the set of all elements of S; which are not in E. The complement of E is denoted by E′ 
or E .

E ∩ E   f  or  E ∩ Eʹ = f

    P (E)  = 1 – P(E)

	Probability	of	an	Event
Number of outcomes favourable to AP(A)
Total number of possible outcomes

=

Odds. If an event E occurs in m ways and does not occur in n ways, then

  (i) Odds in favour of the event = 
m
n

 (ii) Odds against the event = 
n
m

  (iii) 
m( )

m n
=

+
P E

	Addition	law	of	probability. If A and B are two events associated with an experiment, then
P(A ∪ B) = P(A) + P(B) – P(A ∩ B) 

2   Mathematical Physics

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



and  P(A ∪ B ∪ C) = P(A) + P(B) + P(C) – P(A ∩ B) – P(A ∩ C) – P(B ∩ C) + P(A ∩B ∩ C).
	Multiplication	law	of	probability. If A and B are two events associated with a random 
experiment, then

P(A ∩ B) = P(A) × P(B) 

Combination. Number of combinations of n things taken r at a time is denoted by nCr.

( )rC
–
!

=
! !

n n
r n r

 and nCr = nCn–r

35.2 ODDS OF AN EVENT

Odds are closely related to probability.
	For	 example. One card is drawn from a well shuffled deck of 52 cards, find out the 
probability of an ace, and also find the probability of not ace.
Here, there are 4 aces in a deck of 52 cards. Therefore

 
4 1(ace)

52 13
= =P

  
52 – 4 48 12Also P (not ace)

52 52 13
= = =

 Since, the probability of drawing non-ace is 12 times the probability of drawing an ace, 
we say the odds in favour of an ace are 1 to 12, or alternatively the odds against an ace 
are 12 to 1.
Therefore, If an event E occurs in m ways and not occur in n ways, then we say that

(i)  Odds in favour of the event = 
m
n

 (ii) Odds against the event = 
n
m

(iii)  P (E) = 
+
m

m n

 Odds in favour of an event = prob. (Success): prob. (Failure) 
        Odds against an event = prob. (Failure): prob. (Success).
In general

 Odds in favour of an event 
( )

1– ( ) 1–
= =

P E pE
P E p

            Odds against event 
1– ( ) 1–

( )
= =

P E pE
P E p

	Example. A card is drawn from a well shuffled deck of 52 cards. What are the odds in 
favour of getting a face card? What are the odds against getting a face card? 
	Solution. There are 12 face cards (kings, queens, and jacks) in a pack of 52 cards. So, 
the cards other than face cards are (52 – 12) = 40

 \ There are 12 outcomes favourable to the event “a face card” the 40 outcomes are 
unfavourable.

Probability and Distributions  3
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⇒ Odds in favour of getting “a face card”

12 3 or 3 to 10
40 10

= = =
Number of favourable outcomes

Number of unfavourable outcomes

\ Odds against getting “a face card”

40 10 or 10 to 3
12 3

= = =
Number of favourable outcomes

Number of unfavourable outcomes

35.3 CONDITIONAL PROBABILITY

 Let A and B be two events of a sample space S and let P(B) ≠ 0. Then conditional 
probability of the event A given B, denoted by P(A/B), is defined by

 
( )( / )

( )
∩

=
P A BP A B

P B
 …(1)

	Theorem. If the events A and B defined on a sample space S of a random experiment 
are independent then
 P (A/B) = P (A) and P (B / A) = P (B) 
Proof. A and B are given to be independent events, 
 P (A and B) = P (A) . P (B)

⇒  ( ) ( ) ( ). ( ) ( )
( ) ( )

P A B P A P BP A B P A
P B P B
∩

= = =

⇒  ( ) ( ) ( ). ( ) ( )
( ) ( )

P B A P B P AP B A P B
P A P A
∩

= = =  Proved

35.4 BAYES’  THEOREM

 If B1, B2, B3, …, Bn are mutually exclusive events with P(Bi) ≠ 0, (i =1, 2, ... n) of a 
random experiment then for any arbitrary event A of the sample space of the above 
experiment with P(A) > 0, we have

 ( ) ( )

( )
1

( )

( )

i i
i n

i i
i

P B P A B
P B A

P B P A B
=

=

∑
 (for n = 3)

 ( ) ( )
( ) ( ) ( )

2 2
2

1 1 2 2 3 3

( )
( ) ( ) ( )

P B P A B
P B A

P B P A B P B P A B P B P A B
=

+ +

Proof. Let S be the sample space of the random experiment. 
The events B1, B2, ..., Bn being exhaustive
 S = B1 ∪ B2 ∪….∪ Bn  [ A ⊂ S]
 A = A ∩ S = A ∩ (B1 ∪ B2 ∪….∪ Bn)
\       = (A ∩ B1) ∪ (A ∩ B2) ∪….∪ (A ∩ Bn) [Distributive Law]
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⇒   P(A) = P(A ∩ B1) + P(A ∩ B2) + …. + P(A ∩ Bn)
      = P(B1)P(A / B1) + P(B2)P(A | B2) + …. + P(Bn)P(A | Bn)

      =
1

( ) ( / )
n

i i
i

P B P A B
=
∑  …(1)

Now  P(A ∩ Bi) = P(A )P(Bi | A)

⇒   

1

( ) ( ) ( / )
( / )

( )
( ) ( / )

i i i
i n

i i
i

P A B P B P A B
P B A

P A
P B P A B

=

∩
= =

∑
 [using (1)]

	Note. P (B) is the probability of 
occurrence of B. If we are told 
that the event A has already 
 occurred. On knowing about the 
event A, P(B) is changed to  
P(B | A). With the help of 
Bayes’ theorem we can calculate 
P(B | A). 
 Example	 1. In a certain state,  
25 percent  of  al l  cars  emit  
excessive amounts of pollutants. 
If the probaility is 0.99 that a car 
emitting excessive amounts will fail 
the states vehicular emission test, 
and the probability is 0.17 that a 
car not emitting excessive amounts 
of pollutants will  nevertheless fail 
the test. Whatsis the probability that a car that fails the test actually emits excessive 
amounts of pollutants?
	Solution. In the diagram we find that the probabilities  associated with the two branches 
of the diagram are (0. 25) (0.99) = 0.2475 and (1 – 0.25) (0.17) = 0.1275. Thus, the 
probability that a car that fails the test actually emits excessive amounts of pollutants is

0.2475 0.66
0.2475 0.1275

=
+

 This result could also have been obtained without the diagram by substituting directly 
into the formula of Bayes’ theorem.
Solution	by	the	formula	of	Bayes’	theorem
 Let A is the event that the car will fail the emission test and B1 is the event that the 
car emit excessive amount of pollutants and B2 is the event hat the cars do not emit 
excessive pollutants.
We have        P (B1) = 0.25   \   P(B2) = 0.75
               P (A | B1) = 0.99     , P (A | B2) = 0.17 
By Bayes’ theorem

B1

B2

Bi

P(B
)i

P (A | B )i

P (A | B )2

P (A | B )1 A

A

A

etc

P (B ) • P (A | B )1 1

P (B ) • P (A | B )2 2

P (B ) • P (A | B )i i

P(B
)
1

P(B )
2

etc

B1

B2 0.17

0.99

0.2
5

0.75

A

A

(0.25) (0.99) = 0.2475

(0.75) (0.17) = 0.1275

Probability and Distributions  5
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1 1

1 1 2 2

P (B ).P(A/ B ) (0.25) (0.99)P (B/ A)
P (B ).P(A/ B ) P (B ).P(A/ B ) (0.25) (0.99) (0.75) (0.17)

= =
+ +

      =
0.2475 0.66

0.2475 0.1275
=

+

	Example	 2. The members of a consulting firm rent cars from three rental agencies: 
60  percent from agency I, 30 percent from agency 2, and 10 percent from agency 3. 
If  9 percent of the cars from agency 1 need a tune-up, 20 percent of the cars from agency 
2 need a tune-up, and 6 percent of the cars from agency 3 need a tune-up, what is the 
probability that a rental car delivered to the firm will need a tune-up?
 If a rental car delivered to the consulting firm needs a tune-up, what is the probability 
that it came from rental agency 2?
	Solution. If A is the event that the car needs a tune-up, and B1, B2 and B3 are the events 
that the car comes from rental agencies 1, 2, or 3, we have P (B1) = 0.60, P (B2) = 0.30, 
P (B3) = 0.10, P (A | B1) = 0.09, P (A | B2) = 0.20, and P (A | B3) = 0.06. Substituting 
these values into the formula.

  
1

P (A) ( ). ( / )
k

i i
i

P B P A B
=

=∑
⇒    P(A) = (0.60) (0.09) + (0.30) (0.20) + (0.10) (0.06)
   = 0.12
Thus, 12% of all the rental cars dilvered to this firm will need a tune - up.
By Bayes' theorem

  ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2 2
2

1 1 2 2 3 3

P B P A B
P B A

P B P A B P B P A B P B P A B
⋅

=
⋅ + ⋅ + ⋅

  
( )( )

( )( ) ( )( ) ( )( )
0.30 0.20

0.60 0.09 0.30 0.20 0.10 0.06
=

+ +

  = 0.5 Ans.
	Example	 3. Three urns contains 6 red, 4 black; 4 red, 6 black; 5 red, 5 black balls 
respectively. One of the urns is selected at random and a ball is drawn from it. If the 
ball drawn is red find the probability that it is drawn from the first urn.
 [D.U. Dec, 2017]
Solution. Let U1: the ball is drawn from urn I.
  U2: the ball is drawn from urn II.
  U3: the ball is drawn from urn III.
  R: the ball is red. 
We have to find P (U1/R). 
By Baye’s Theorem,

1 1
1

1 1 2 2 3 3

( ) ( / )( / )
( ) ( / ) ( ) ( / ) ( ) ( / )

=
+ +

P U P R UP U R
P U P R U P U P R U P U P R U

  …(1)

Since the three urns are equally likely to be selected P(U1) = P (U2) = P (U3) 
1
3

=  
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Also P (R/U1) = P (a red ball is drawn from urn I) 
6

10
=

P (R/U2) = P (a red ball is drawn from urn II) 
4

10
=

P (R/U3) = P (a red ball is drawn from urn III) 
5

10
=

\ From (1), we have = 1

1 6
23 10( / )

1 6 1 4 1 5 5
3 10 3 10 3 10

×
= =

× + × + ×
P U R  Ans.

	Example	4. In a bolt factory, machines A, B and C manufacture respectively 25%, 35% 
and 40% of the total. If their output 5, 4 and 2 per cent are defective bolts. A bolt is 
drawn at random from the product and is found to be defective. What is the probability 
that it was manufactured by machine B? [D.U. Dec, 2017]
Solution.  A: bolt is manufactured by machine A.
  B: bolt is manufactured by machine B. 
  C: bolt is manufactured by machine C 
  P (A) = 0.25, P (B) = 0.35, P (C) = 0.40
The probability of drawing a defective bolt manufactured by machin e A is P (D/A) = 0.05
Similarly, P (D/B) = 0.04 and P (D/C) = 0.02 
By Baye’s theorem

( ) ( / )( / )
( ) ( / ) ( ) ( / ) ( ) ( / )

=
+ +

P B P D BP B D
P A P D A P B P D B P C P D C

       
0.35 0.04 0.41

0.25 0.05 0.35 0.04 0.40 0.02
×

= =
× + × + ×

EXERCISE 35.1
 1. If 20% of the bolts produced by a machine are defective, determine the probability that out of 

4 bolts chosen at random
  (a)  1 (b)  0 (c)  At most 2 bolts will be defective.
 2. Six dice are thrown 729 times. How many times do you expect at least three dice to show a 

five or a six?
 3. If the chance that any one of the 10 telephone lines is busy at any instant is 0.2, what is the 

chance that 5 of the lines are busy ? What is the probability that all the lines are busy?
 4. An insurance salesman sells policies to 5 men, alt of identical age in good health. According to 

the actuarial tables the probability that a man of this particular age will be alive 30 years hence 

is 2
3

. Find the probability that in 30 years.

  (a) All 5 men (b) At least 3 men (c) Only 2 men (d)  At least 1 man will be alive.
 5. Assuming a Binomial distribution, find the probability of obtaining at least two “six” in rolling 

a fair die 4 times.

Probability and Distributions  7
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 6. If successive trials are independent and the probability of success on any trial is pt show that 
the probability that the first success occurs on the nth trial is

        p(1– p)n–1, n =1, 2, 3...
 7. Consider an urn in which 4 balls have been placed by the following scheme : A fair coin is 

tossed; if the coin falls head, a white ball is placed in the urn, and if the coin falls tail, a red 
ball is placed in urn. (i) What is the probability that the urn will contain exactly 3 white balls ? 
(ii) What is the probability that the urn will contain exactly 3 red balls, given that the first ball 
placed was red?

 8. A box contains 10 screws. 3 of which are defective. Two screws are drawn at random without 
replacement. Find the probability that none of the two screws is defective.

 9. Out of 800 families with four children each, how many families would be expected to have :
  (i) 2 boys and 2 girls; (ii) at least one boy; (iii) no girl; (iv) at most two girls?
  Assume equal probabilities for boys and girls.
 10. A fair dice is rolled. Consider the events A = {1, 3, 5}, B = {2, 3} And C = {2, 3, 4, 5}. Find
  (i) P (A / B) and P (B / A) (ii) P (A / B) and P (C / A).
  (iii) P (A ∪ B / C) and P (A ∩ B / C) [D.U. Nov, 2015]
 11. If A and B are independent events associated with a random experiment, then prove that
  (i)  Ā and B

ˍ
 are independent events   (ii)  A and B

ˍ
 are independent events

  (iii) Ā and B
ˍ
 are also independent events. [D.U. Nov, 2015]

ANSWERS
 1. (a) 0.4096 (b) 0.4096 (c) 0.9728. 2. 233

 3. 10C5 (0.2)5 (0.8)5, (0.2)10 4. (a) 32
243

 (b) 192
243

 (c) 40
243

 (d) 242
243

 5. 171
1296

 7. (i) 1
8

 (ii) 3
8

 8. 7
15

 9. (i) 300 (ii) 750 (iii) 50 (iv) 550.

35.5 RANDOM VARIABLES

 A random variable is a variable whose possible values are numerical outcomes of a 
random phenomenon.
 Therefore a Random Variable can be defined as a real number ‘X’ which is associated 
with the outcomes of a random experiment. Let us consider the case of single throw of 
a die, if X denotes the number obtained, then X is a random variable which can take any 
value 1, 2, 3, 4, 5 or 6 with equal probability 1/6.
 Further, if we consider the three tosses of a coin then the total number of cases will be 
23 = 8. And the sample space is given below:

S = {HHH, HHT, HTH, THH. THT, HTT, TTH, TTT}
 Let us consider the case of number of Tails, Then X is a random variable which may 
take any value from 0, 1, 2, and 3.

Outcome HHH HHT HTH THH THT HTT TTH TTT
Values of X 3 2 2 2 1 1 1 0
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35.6 DISCRETE AND CONTINUOUS RANDOM VARIABLES

	(a)	Discrete	Random	Variable simply defines a set consisting of finite or countable 
set of values. Discrete Random Variable may take only a countable number of distinct 
values such as 0,1,2,3,4….. Discrete random variables are usually (but not necessarily) 
counts. If a random variable can take only a finite number of distinct values, then it 
must be discrete. Examples of discrete random variables include the number of children 
playing in park, the number of voters of a particular city, the number of students in a 
school etc. are all discrete random variables.
	(b)	Continuous	Random	Variable	 : Defines a set which consists of infinite and un-
countable f set of values. For example, the age, height or weight of students in a class 
are all continuous I random variables. Generally, we can say that random variables 
represent counted data while continuous random variables represent measured data. For 
example, Random Variables like Length, Thickness, Weights and Temperature are called 
Continuous Variables.

35.7 PROBABILITY DISTRIBUTION FUNCTION

Definition. Let X be a random variable. The function F defined for all real x by
 F (x) = P (X ≤ x) = P{ w : X (w) ≤ x}, – ∞ < x < ∞, ...(1)
is called the distribution function (d.f.) of the r.v. (X).

	Remark. A distribution function is also called the cumulative distribution function. 
Sometimes, the notation FX (x) is used to emphasise the fact that the distribution function 
is associated with the particular random variable X. Clearly, the domain of the distribution 
function is (– ∞, ∞) and its range is [0, 1].

35.8 PROPERTIES OF DISTRIBUTION FUNCTION 

We now proceed to derive a number of properties common to all distribution functions.
1. If F is the d.f. of the random variable X and if a < b, then P (a < X ≤ b) = F (b) – F (a).
	Proof. The events ‘a < X ≤ b′ and ‘X ≤ a′ are disjoint and their union is the event  
‘X ≤ b′., Hence by addition theorem of probability :
P (a < X ≤ b) + P (X ≤ a) = P (X ≤ b)
⇒    P (a < X ≤ b) = P (X ≤ b) – P (X ≤ a) = F(b) – F (a) ...(2)
Cor.	l.    P (a ≤ X ≤ b) = P {(X = a) ∪ (a < X ≤ b)} = P (X = a) + P (a < X ≤ b)}
       = P (X = a) + [F (b) – F (a)] ... (3)
Similarly, we get
 P (a < X < b) = P (a < X ≤ b) – P (X = b) = F (b) – F (a) – P (X = b) ...(4)
 P (a ≤ X < b) = P (a < X < b) + P (X = a)
    = F (b) – F (a) – P (X = b) + P (X = a) ... (5)
	Remark. When P (X = a) = 0 and P (X = b) = 0, all four events a ≤ X ≤ b, a < X < b, 
a ≤ X < b and a < X ≤ b have the same probability F (b) – F (a).
2.  If F is d.f. of one-dimensional random variable X, then (i) 0 ≤ F(x) ≤ 1,
   (ii) F(x) ≤ F(y) if x ≤ y.
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 In other words, all distribution functions are monotonically non-decreasing and lie 
between 0 and 1.
3. If F is d.f. of one-dimensional r.v. X, then

–
(– ) ( ) 0 and ( ) ( ) 1

∞ ∞
∞ = = ∞ = =

→ →x x
F F x F F xlim lim

	Proof. Let us express the whole sample space S as a countable union of disjoint events 
as follows:

      
1 0

(– – 1) ( 1)
∞ ∞

= =

      = < ≤ + ∪ < ≤ +   
      
∪ ∪
n n

S n X n n X n

⇒ 
1 0

( ) (– – 1) ( 1)
∞ ∞

= =

= < ≤ + + < ≤ +∑ ∑
n n

P S P n X n P n X n

⇒       { } { }
1 0

1 (– 1)– (– ) ( 1)– ( )
∞ ∞

= =

= + +
→ →

+∑ ∑
a b

a b
n n

F n F n F n F nlim lim

         
{ } { }

{ } { }

(0) – (– ) ( 1) – (0)

(0) – (– ) ( ) – (0)
∞ ∞

= +
→ →

= ∞ + ∞

+
a b

F F a F b F

F F F F

lim lim

\       1 = F (∞) – F (– ∞) …(A)
Since – ∞ < ∞, F (– ∞) ≤ F (∞). Also F (– ∞) ≥ 0 and F (∞) ≤ 1
\   0 ≤ F (– ∞) ≤ F (∞) ≤ 1 …(B)
From (A) and (B), we get F (– ∞) = 0 and F (∞) = 1.
Remarks	1. Discontinuities of F (x) are at most countable.
2.  ( ) – ( – 0) ( – ), 0

0
= ≤ ≤ <

→h
F a F a P a h X a hlim

and  ( 0) – ( ) ( ) 0, 0
0

+ = ≤ ≤ + = >
→h

F a F a P a X a h hlim

35.9 DISCRETE RANDOM VARIABLE

 Simply defines a set consisting of finite or countable set of values. Discrete Random 
Variable may take only a countable number of distinct values such as 0, 1, 2, 3, 4….. 
Discrete random variables are usually (but not necessarily) counts. If a random variable 
can take only a finite number of distinct values then it must be discrete. Example of

35.10 PROBABILITY MASS FUNCTION (p.m.f)

 Let us consider a random variable X which assumes the values x1, x2, ... xn. With each 
value of the variable X, we associate a number

Pi = P(X = Xi); i = 1, 2, …n.
which is known as the probability of x-. and satisfies the following conditions

  (i) Pi = P(X = Xi) ≥ 0 (i = 1, 2, …n) (ii) S Pi = P1 + P2 + …. Pn = 1

 The set of all the possible ordered pairs {x, p(x)}, is called probability distribution of 
the random variable X.

10   Mathematical Physics

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



 The probability distribution of a discrete random variable is a list of probabilities 
 associated with each of its possible values. It is also sometimes called the “Probability 
Function or Probability Mass Function (p.m.f)”. pmf is usually to define a Discrete 
Probability Distribution for either Scalar or Multivariate Random Variables whose 
 domain is discrete.

35.11 DISCRETE PROBABILITY DISTRIBUTION

 A Discrete Probability Distribution describes the Probability of occurrence of each value 
of a discrete random variable. Therefore discrete random variable is a random variable 
that has countable values, i.e. a list of non-negative integers. When a random variable is 
a discrete variable, its probability distribution is called a discrete probability distribution.

 With a Discrete Probability Distribution, each possible value of the discrete random 
variable can be associated with a non-zero probability. Hence a discrete probability 
distribution is usually presented in tabular form.

 Suppose a discrete variate X is the outcome of some random experiment. The probability 
that X takes the values xi is pi then

P(X = xi) = pi or p(xi) for i = 1, 2, …,

where (i) p(xi) > 0 for all values of i,  (ii) Sp(xi) = 1.

 The set of values xi with their probabilities pi constitute discrete probability distribution 
of the discrete variate X.

Example. A random variable X has the following probability function:

x : 0 1 2 3 4 5 6 7
p(x): 0 k 2k 2k 3k k2 2k2 7k2 + k

(i) Find the value of the k  (ii) Evaluate P (X < 6), P (X ≥ 6)  (iii) P (0 < X < 5)

Solution: (i) If X is a random variable,

then 
7

2 2 2

0

( ) 1, . . 0 2 2 3 2 7 1i
i

p x i e k k k k k k k k
=

= + + + + + + + + =∑

i.e.       9k + 10k2 = 1, k = 
1

10
(ii) P(X < 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)

     = 0 + k + 2k + 2k + 3k + k2 = 8k + k2 = 
8 1 81

10 100 100
+ =

     P(X ≥ 6) = P(X = 6) + P(X = 7) = 2k2 + 7k2 + k =
9 1 19

100 10 100
+ =

(iii) P(0 < X < 5) = P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) = k + 2k + 2k + 3k  

            = 8k = 
8 4

10 5
=  Ans.
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EXERCISE 35.2
 1. If X be a random variable giving the number of aces in a random draw of 4 cards from an 

ordinary deck of 52 cards. Plote a table of the probability distribution of X.

 2. On the day of rains, a raincoat seller can earn 500 per day. With no rains, he can lose 100 per 
day. What is his Expectation if the probability of rains is 0.4?

 3. A die is throws at random. Calculate the expectation of the number on it
 4. A and B throw one dice for a price of ` 11 which is to be won by the player who first throws 

6. If A has the first throw, what are their respective expectations?
 5. A coin is tossed three times; If X is a random variable giving the number of tails that appear, 

make a table showing the probability distribution of X.

 6. A random variable X has the following probability distributions:

X: 0 1 2 3 4 5 6 7
P(X): 0 k 2k 2k 3k k2 2k2 7k2 + k

  Find each of the following:
  (i) k (ii) P(X < 6) (iii) P(X ≥ 6) (iv) P(0 < × < 5)
 7. The probability that there is at least one error in an accounts statement prepared by A is 0.2 and 

for B and C they are 0.25 and 0.4, respectively. A, B and C prepared 10, 16 and 20 statements, 
respectively. Find the expected number of correct statements in all.

 8. A box has 5 Blue and 3 Red balls. If 2 balls are to be drawn at random without replacement 
and X denotes the number of Blue balls, find the probability distribution for X.

 9. The probability of a man hitting target is 1/2. How many times must he fire so that the proba-
bility of hitting the target at least once is more than 90%.

 10. Suppose X has a binomial distribution with parameters n and P. For what P is VAR maximized 
if n is fixed. Also find the maximum value of variance.

ANSWERS TO SELECTED QUESTIONS
 1. x 0 1 2 3 4

f (x) 194580
270725

69184
270725

6768
270725

192
270725

1
270725

 2. `140 3. 7
2

 4. `6, ` 5

 5. x 0 1 2 3

f (x) 1
8

3
8

3
8

1
8

 6. (i) 1
10

k =   (ii) 81
100

  (iii) 
19
100

  (iv) 4
5

 7. 32

 8. x 0 1 2

f (x)
3
28

15
28

5
28
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35.12 BINOMIAL DISTRIBUTION P (r) = ncr p r .qn–r

 To find the probability of the happening of an event once, twice, thrice, ….. r times 
exactly in n trials
 Let the probability of the happening of an event A in one trial be p and its probability of 
not happening be 1– p = q. We assume that there are n trials and the happening of the 
event A is r times and its not happening is n – r times. This may be shown as follows

AA.....A      AA ……. A
     r times       n – r times ...(1)

A indicates its happening, A  its failure and P(A) = p and P ( A ) = q 
We see that (1) has the probability
   pp......p      q.q …… q = pr . qn–r …(2)
   r times            n – r times 
Clearly (1) is merely one order of arranging r A′s:

 The probability of (1) = prqn–r × Number of different arrangements of r A’s and (n – r) A ′s. 

The number of different arrangements of r A′s and (n – r) A ’s = nCr. 

\ Probability of the happening of an event r times = nCr p
r qn–r. 

           = (r  + l)th term of (q  + p)n  
 (r = 0, 1, 2, ….. , n).

If r = 0, probability of happening of an event 0 times = nCo q
n p0 = qn 

If r = 1, probability of happening of an event 1 time = nC1q
n–1 p 

If r = 2, probability of happening of an event 2 times = nC2 q
n–2 p2 

If r = 3, probability of happening of an event 3 times = nC3 q
n–3 p3 and so on. 

These terms are clearly the successive terms in the expansion of (q + p)n. 
Hence, it is called Binomial Distribution.
Example	1. Find the probability of getting 4 heads in 6 tosses of a fair coin.

Solution. P = 
1
2

, q = 
1
2

, n = 6, r = 4.

We know that P (r) = nCrq
n–r pr ⇒ P (4) = 6C4q

6–4p4 

        = 
2 4 66 5 1 1 1 1515

1 2 2 2 2 64
×      = × =     ×      

 Ans.

Mean	of	Binomial	Distribution

Mean = 
∑
∑

fr
f

 = np 

Variance	and	Standard	Deviation	of	Binomial	Distribution 

Variance = s2 = n p q      
S.D. = s = n p q

Hence for the binomial distribution, Mean = np, and m2 = s2 = n p q

Probability and Distributions  13

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



	Example	2. An urn contains nine balls, two of which are red three blue and four black. 
Three balls are drawn from the urn at random. What is the probability that 
(i) the three balls are of different colours? (ii) the three balls are of the same colour?
Solution.
Urn contains 2 Red balls, 3 Blue balls and 4 Black balls.
 (i) Three balls will be of different colours if one ball is red, one blue and one black ball 
are drawn.

 Required probability = 
2 3 4

1 1 1
9

3

2 3 4 2
84 7

× × × ×
= =

C C C
C

 Ans.

(ii) Three balls will be of the same colour if either 3 blue balls or 3 black balls are drawn. 
P (3 Blue balls or 3 Black balls) = P (3 Blue balls) + P (3 Black balls)

  = 
3 4

3 3
9 9

3 3

1 4 5
84 84
+

+ = =
C C
C C

 Ans.

	Example	3. An urn A contains 2 white and 4 black balls. Another urn B contains 5 white 
and 7 black balls. A ball is transferred from the urn A to the urn B, then a ball is drawn 
from urn B. Find the probability that it is white:
Solution. Urn A contains 2 white and 4 black balls.    
Urn B contains 5 white and 7 black balls. 
Now there are two cases of transferring a ball from A to B. 
Case	I. When a white ball is transferred from A to B

P (Transfer of a white ball) = 
2 1

2 4 3
=

+

After transfer of a white ball, urn B contains 6 white balls and 7 black balls. 
P (Drawing a white ball from urn B after transfer)
  = P (Transfer of a white ball) × P (Drawing of a white ball)

  = 
1 6 1 6 2
3 6 7 3 13 13

  = = × =  +  

Case	II. When a black ball is transferred from A to B.

P (Transfer of a black ball) = 
4 2

2 4 3
=

+

After transfer of a black ball, urn B contains 5 white and 8 black balls.
P (Drawing a white ball from urn B after transfer)
  = P (Transfer of a black ball) × P (Drawing of a white ball) 

Required probability = 
2 10 16

13 39 39
+ =  Ans.
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	Example	 4. A can hit a target 3 times in 5 shots, B 2 times in 5 shots and C three 
times in 4 shots. All of them fire one shot each simultaneously at the target. What is the 
probability that
(i) 2 shots hit (ii) At least two shots hit? (D.U. Dec 2017)

Solution.  Probability of A hitting the target = 
3
5

 Probability of B hitting the target = 
2
5

 Probability of C hitting the target = 
3
4

Probability that 2 shots hit the target
 = P (A) P (B) q (C) + P (A) P (C) q (B) + P (B) P (C) q (A)

 =
3 2 3 3 3 2 2 3 31– 1– 1–
5 5 4 5 4 5 5 4 5

     × × + × × + × ×     
     

 = 
6 1 9 3 6 2 6 27 12 45 9
25 4 20 5 20 5 100 100 20

+ +
× + × + × = = =  Ans.

(ii) Probability of at least two shots hitting the target
 = Probability of 2 shots + probability of 3 shots hitting the target

 = 
9 9 3 2 3 63( ) ( ) ( )
20 20 5 5 4 100

+ = + × × =P A P B P C  Ans.

	Example	5. A and B throw alternatively a pair of dice. A wins if he throws 6 before B 
throws 7 and B wins if he throws 7 before A throws 6. Find their respective chances of 
winning, if A begins.
Solution.  Number of ways of throwing 6
i.e. (1 + 5), (2 + 4), (3 + 3), (4 + 2), (5 + l) = 5.

Probability of throwing 6 = 
5

36
= p1 ,   q1 = 

31
36

Number of ways of throwing 7
i.e.  (1 + 6), (2 + 5), (3 + 4), (4 + 3), (5 + 2), (6 + l) = 6

Probability of throwing 2 2
6 1 56 ,

36 6 6
= = = =P q

  
2 2

1 1 2 1 1 2 1
2 3 2

1 2 1 2 2 1 2 2

( ) .....

( ) ....

= + + +

= + + +

P A p q q p q q p

P B q p q q p q q p

Probability of A’s winning = 2 2
1 1 2 1 1 2 1 .....+ + +p q q p q q p

       = 1

1 2

5
5 36 6 3036

31 51– 6 61 611–
36 6

×
= = × =

×

p
q q
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Probability of B’s winning = 2 3 2
1 2 1 2 2 1 2 2 .....+ + +q p q q p q q p

 = 1 2

1 2

31 1
31 36 6 3136 6

31 51– 36 6 61 611–
36 6

× ×
= = × =

×  
  
  

q p
q q

 Ans.

EXERCISE 35.3
 1. If 20% of the bolts produced by a machine are defective, determine the probability that out of 

4 bolts chosen at random bolts will be defective.
  (a) 1 (b) 0 (c) At most 2
 2. Six dice are thrown 729 times. How many times do you expect at least three dice to show a 

five or a six ?
 3. If the chance that any one of the 10 telephone lines is busy at any instant is 0.2, what is the 

chance that 5 of the lines are busy ? What is the probability that all the lines are busy?
 4. An insurance salesman sells policies to 5 men, all of identical age in good health. According to 

the actuarial tables the probability that a man of this particular age will be alive 30 years hence 

is 
2
3

. Find the probability that in 30 years.

  (a) All 5 men       (b) At least 3 men       (c) Only 2 men    (d) At least 1 man will be alive.
 5. Assuming a Binomial distribution, find the probability of obtaining at least two “six” in rolling 

a fair die 4 times. 
 6. If successive trials are independent and the probability of success on any trial is p, show that 

the probability that the first success occurs on the nth trial is
   p(1 – p)n–1,  n = 1, 2, 3 ...
 7. Consider an urn in which 4 balls have been placed by the following scheme : A fair coin is 

tossed; if the coin falls head, a white ball is placed in the urn, and if the coin falls tail, a red 
ball is placed in urn. (i) What is the probability that the urn will contain exactly 3 white balls ? 
(ii) What is the probability that the urn will contain exactly 3 red balls, given that the first ball 
placed was red?

 8. A box contains 10 screws, 3 of which are defective. Two screws are drawn at random without 
replacement. Find the probability that none of the two screws is defective.

 9. Out of 800 families with four children each, how many families would be expected to have :
  (i) 2 boys and 2 girls; (ii) at least one boy;     (iii) no girl;    (iv) at most two girls?
      Assume equal probabilities for boys and girls.
 10.  In a hurdle race, a player has to cross 10 hurdles. The probability that he will clear each hurdle 

is 5/6. What is the probability that he will knock down less than 2 hurdles ?
 11.  An electronic component consists of three parts. Each part has probability 0.99 of performing 

satisfactorily. The component fails if 2 or more parts do not perform satisfactorily. Assuming 
that the parts perform independently, determine the probability that the component does not 
perform satisfactorily. 

 12.  Find the binomial distribution whose mean is 5 and variance is 10/3. 
 13.  The probability that, on joining Engineering College, a student will successfully complete the 

course of studies is 
3
5

. Determine the probability that out of 5 students joining the  college (i) 

none and (ii) at least two will successfully complete the course.
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 14.  A carton contains 20 fuses, 5 of which are defective. Three fuses are chosen at random and 
inspected. What is the probability that at most one defective fuse is found?

 15.  A bag contains three coins, one of which is coined with two heads, while the other two coins 
are normal and not biased. A coin is thrown at random from the bag and tossed three times in 
succession. If heads turn up each time, what is the probability that this is the two-headed coin?

 16.  In sampling a large number of parts manufactured by a machine, the mean number of defectives 
in a sample of 20 is 2. Out of 1,000 such samples, how many would be expected to contain at 
least 3 defective parts? 

 17.  The incidence of occupational disease in an industry is such that the workers have 20% chance 
of suffering from it. What is the probability that out of 6 workers 4 or more will catch the 
disease?

 18.  If the probability of hitting a target is 10% and 10 shots are fired independently, what is the 
probability that the target will be hit at least once ? 

 19.  Among 10,000 random digits, find the probability p that the digit 3 appears at most 950 times.

 20.  A fair coin is tossed 400 times. Using normal approximation to the binomial, find the 
probability that a head will occur (a) more than 180 times and (b) less than 195 times.

 21.  Four coins were tossed 200 times. The number of tosses showing 0, 1, 2, 3 and 4 heads were 
found to be as under. Fit a binomial distribution to these observed results. Find the expected 
frequencies.

No. of heads: 0 1 2 3 4
No. of tosses: 15 35 90 40 20

 22.  A firm plans to bid ` 300 per tonne for a contract to supply 1000 tonnes of a metal. It has two 
competitors A and B and it assumes that the probability that A will bid less than 300/- per 
tonne is 0.3 and that B will bid less than ` 300 per tonne is 0.7. If the lowest bidder gets all 
the business and the firms bid independently, what is the expected value of business in rupees 
to the firm. (A.M.I.E.T.E. Dec. 2006)

 23. Fill in the blanks :
  (a)  A coin is biased so that a head is twice as likely to occur as a tail. If the coin is tossed 

3 times, the prob. of getting exactly 2 tails, is…….. 
  (b)  The probability of getting number 5 exactly two times in five throws of an unbiased die 

is……..
  (c) A die is thrown 6 times. The probability to get greater than 4 appears at least once is ……..
  (d) For what, one should be?
   (i) Obtaining 6 at least once in 4 throws of a die.
   or (ii) obtaining a double-six at least once in 24 throws with two dice.
  (e)  The probability of producing a defective bolt is 0.1. The probability that out of 5 bolts one 

will be defective is……..
  (f)  If the probability of hitting a target is 5% and 5 shots are fired independently, the probability 

that the target will be hit at least once is……..
  (g) If n and p are the parameters of a binomial distribution the standard deviation is ……..
  (h) The mean, standard deviation and skewness of Binomial distribution are ..... and .....
  (i)  If three persons selected at random are stopped on a street, then the probability that all of 

them were born on Sunday is ……..
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ANSWERS
 1. (a) 0.4096, (b) 0.4096, (c) 0.9728. 2. 233

 3. 10C5 (0.2)5 (0.8)5, (0.2)10 4. (a) 
32 192 40 242( ) ( ) ( )
243 243 243 243

b c d

 5. 
171

1296
 7. (i) 

1
8  (ii) 

3
8

 8. 
7

15
 9. (i) 300, (ii) 750, (iii) 50, (iv) 550.

 10. 
98 5

3 6
 
    11. 0.000298

 12. 
15

15 1 2
3 3

r r

rC
−

   
        13. (i) 32 2853( )

3125 3125
ii

 14. 
27
32

 15. 
4
5

 16. 324 17. 
53

3125
 

 18. 1 – (0.9)10 = 0.65 nearly 19. 
10,000

10,000 1 9
10 10

r r

rC
−

   
      

 20. (a) 
221 1951 11 ( ) 1

2 2
b   − −      

 23. 
24 43

5
5

2 5 665 671 35 1 9( ) , ( ) 10. , ( ) , ( ) ( ) , ( )1– , ( ) , ( ) 1– (0.95) ,
9 729 1296 36 2 106

– 1( ) ( ) , , ( )
343

   
   
   

a b c d i ii e f

q pg npq h np npq i
npq

35.13 POISSON DISTRIBUTION

 Poisson distribution is a particular limiting form of the Binomial distribution when p  
(or q) is very small, n is indefinitely large and np = m (say) is finite.
Probability function of X is given by

–
( )= =

!

r mm eP X r
r

where m is the mean of the distribution. 

Mean	of	Poisson	Distribution

 
– .( ) =

!

m re mP r
r
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Successes r Frequency f f.r

0
– 0

0!

me m 0

1
– 1

1!

me m e –m. m

2
– 2

2!

me m e –m. m2

3
– 3

3!

me m – 3.
2!

me m

… … …

r
–

!

m re m
r

– .
( –1) !

m re m
r

… … …

3 2 –1
– – – – –0 . . ... ... . 1 ... ... . .[ ]

2 ( –1) 1 2 ( –1)
 

∑ = + + + + + = + + + + + = = 
! ! ! ! ! 

r r
m m m m m mm m m m mf r e m e e e m m e e m

r r

         
3 2 –1

– – – – –0 . . ... ... . 1 ... ... . .[ ]
2 ( –1) 1 2 ( –1)

 
∑ = + + + + + = + + + + + = = 

! ! ! ! ! 

r r
m m m m m mm m m m mf r e m e e e m m e e m

r r

Mean =
m
1

∑
=

∑
fr
f

, Mean = m. Ans.

Standard	Deviation	of	Poisson	Distribution S.D.= m

\ Mean	and	variance	of	a	Poisson	distribution	are	each	equal	to	m.

 m3 = m, m4 = 3m2 + m
Hence the coefficients of skewness and Kurtosis are

1 2

1 2

1 1, 3

1 1,

β = β = +

γ = γ =

m m

mm

	Example	1. In a certain factory producing cycle tyres, there is a small chance of 1 in 
500 tyres to be defective. The tyres are supplied in lots of 10. Using Poisson distribution, 
calculate the approximate number of lots containing no defective, one defective and two 
defective tyres, respectively, in a consignment of 10,000 lots.

Solution.   
1 , 10

500
= =P n

   
–1 1 .10. 0.02, ( )

500 50
= = = = =

!

m re mm np P r
r
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S.No. Probability of defective Number of lots containing defective

1
–0.02 0

–0.02(0.02)P (0) 0.9802
0

= = =
!

e e 10,000 × 0.9802 = 9802 lots

2
–0.02 1(0.02)P (1)

1
0.9802 0.02 0.019604

=
!

= × =

e
10,000 × 0.019604 = 196 lots

3
–0.02 2(0.02)P (2)

2
0.9802 0.0002 0.00019604

=
!

= × =

e
10,000 × 0.000196 = 2 lots

	 Ans.
	Example	2. A car hire firm has two cars which it hires out day by day. The number of 
demands for a car on each day is distributed as a Poisson distribution with mean 1.5. 
Calculate the number of days in a year on which
(i) neither car is on demand (ii) a car demand is refused. (e–1.5 = 0.2231)
 (MDU Dec. 2010)
Solution.   m = 1.5
(i) If the car is not used, then demand (r) = 0

– –1.5 0
–1.5. (1.5)( ) , (0) 0.2231

0
= = = =

! !

m re m eP r P e
r

 Number of days in a year when the demand is zero = 365 × 0.2231 » 81 Ans. 
(ii) Some demand is refused if the number of demands is more than two i.e. r > 2.

P (r > 2) = P (3) + P (4) + ... = 1 – [P (0) + P (1) + P (2)]    

 
–1.5 0 –1.5 1 –1.5 2(1.5) (1.5) (1.5)1–

0 1 2
 

= + + 
! ! ! 

e e e
 

 = l – [e–1.5 + e–1.5 × 1.5 + e–1.5 × 1.125]
 = 1 – e–1.5 [1 + 1.5 + 1.125] = 1 – e–1.5 × 3.625
 = 1 – 0.2231 × 3.625 = 1 – 0.8087375
 = 0.1912625
Number of days in a year when some demand of car is refused 
 = 365 × 0.1912625 = 69.81 » 70 days Ans.
	Example	3. If the probability that an individual suffers a bad reaction from a certain 
injection is 0.001, determine the probability that out of2000 individuals
 (a) exactly 3 (b) more than 2 individuals (c) None (d) More than one individual will 
suffer a bad reaction.
Solution.     p = 0.001,      n = 2000

       m = np = 2000 × 0.001 = 2
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  \  
–

–2
2

. 2 1 2( ) = = = ×
! ! !

m r r re mP r e
r r re

(a) 
3

2 2
1 2 1 8 4(Exactly 3) (3) . (0.135) 0.18

3 6 3(2.718)
= = = × = × =

!
P P

e

(b) P (more than 2) = P (3) + P (4) + P (5) + ... + P (2000) 
           = l – [P (0) + P (1) + P (2)]

           
–2 0 –2 1 –2 2(2) (2) (2)1–

0 1 2
 

= + + 
! ! ! 

e e e

          [ ]–2
2

51– 1 2 2 1–= + + =e
e

          = 1 – 5 × 0.135 = 1 – 0.675 = 0.325     Ans. 

(c) 
–2 0(2)(none) (0) 0.135

0!
= = =

eP P

(d) P (more than 1) = P (2) + P (3) + P (4) + ... + P (2000) = 1 – [P (0) + P (1)]
–2 0 –2 1

–2(2) (2)1– 1– 3 1– 3 0.135 1– 0.405 0.595
0! 1!

 
= + = = × = = 

 

e e e 	 Ans.

	Example	4. A manufacturer knows that the razor blades he makes contain on an average 
0.5% of defectives. He packs them in packets of 5. What is the probability that a packet 
picked at random will contain 3 or more faulty blades ?
Solution.  p = 0.5% = 0.005, n = 5
  m = np = 5 × 0.005 = 0.025

             
– –0.025. (0.025)( ) = =

! !

m r re m ep r
r r

–0.025 3 –0.025 –0.025 5

–0.025 3
2

(0.025) (0.025)4 (0.025)(3 or more) (3) (4) (5)
3 4 5
(0.025) [20 5 (0.025) (0.025) ]
3

0.975 0.000015625 20.125625
120

= + + = + +
! ! !

= + +
!

× ×
=

e e eP P P P

e

            = 0.000002555. Ans.
	Example	5. An insurance company found that only 0.01% of the population is involved 
in a certain type of accident each year. If its 1000 policy holders were randomly selected 
from the population, what is the probability that not more than two of its clients are 
involved in such an accident next year? (given that e–0.1 = 0.9048)
 (D.U. Dec 2017)

Solution.          
1 1 10.01% , 1000

100 100 1000
p n= = × = =
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                   –

1 1(1000) 0.1
1000 10

( )

= = × = =

=
!

m r

m np

e mp r
r

 

P (not more than 2) = P (0, 1 and 2) = P (0) + P (1) + P (2)

                          

–0.1 0 –0.1 1 –0.1 2

–0.1

(0.1) (0.1) (0.1)
0 1 2

0.011 0.1 0.9048 1.105 0.9998
2

= + +
! ! !
 = + + = × = 
 

e e e

e
 Ans.

EXERCISE 35.4
 1. Find the probability that at most 5 defective fuses will be found in a box of 200 fuses if expe-

rience shows that 2 per cent of such fuses are defective.
 2. The number of accidents during a year in a factory has the Poisson distribution with mean 1.5. 

The accidents during different years are assumed independent. Find the probability that only 2 
accidents take place during 2 years time.

 3. A manufacturer of cotter pins knows that 5% of his product is defective. If he sells cotter pins 
in boxes of 100 and guarantee that not more than 10 pins will be defective, what is the approx-
imate probability that a box will fail to meet the guaranteed quality. [e –5 = 0.006738]

 4. Suppose the number of telephone calls on an operator received form 9.00 to 9.05 follow a 
poisson distribution with mean 3. Find the probability that

  (i) the operator will receive no calls in that time interval tomorrow,
  (ii) in the next three days the operator will receive a total of 1 call in that time interval.

   [e –3 = 0.04978]
 5. On the basis of past record it has been found that there is a 70% chance of power-cut in a city 

on any particular day. What is the probability that from the first to the 10th day of the month, 
there are 5 or more days without power cut.  

 6. The distribution of typing mistakes committed by a typist is given below. Assuming a Poisson 
model, find out the expected frequencies:

Mistakes per pages 0 1 2 3 4 5
No. of pages 142 156 69 27 5 1

 7. Let x be the number of cars per minute passing a certain crossing of roads between 5.00 P.M. and 
7.00 P.M. on a holiday. Assume x has a Poisson distribution with mean 4. Find the probability of 
observing atmost 3 cars during any given minute between 5.00 P.M. and 7 P.M. (given e–4 = 0.0183)

 8. Let x be the number of cars, passing a certain point, per minute at a particular time. Assuming 
that x has a poisson distribution with mean 0.5, find the probability of observing 3 or fewer 
cars during any given minute.

 9. Number of customers arriving at a service counter during a day has a Poisson distribution with 
mean 100. Find the probability that at least one customer will arrive on each day during a period 
of five days. Also find the probability that exactly 3 customers will arrive during two days.

 10. The random variable X has a Poisson distribution. If
      P (X = 1) = 0.01487, P (X = 2) = 0.04461. Then find P (X = 3).
 11. A source of water is known to contain bacteria with mean number of bacteria per cc equal to 

2. Five 1 cc test tubes were filled with water. Assuming that Poisson distribution is applicable, 
calculate the probability that exactly 2 test tubes contain at least 1 bacterium each.
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 12. In a normal summer, a truck driver gets on an average one puncture in 1000 km. Applying 
Poisson distribution, find the probability that he will have

  (i) no puncture  (ii) two punctures in a journey of 3000 kms.
 13. Wireless sets are manufactured with 25 soldered joints each. On the average, 1 joint in 500 is 

defective. How many sets can be expected to be free from defective joints in a consignment of 
10000 sets ?

 14. In a certain factory turning out razor blades, there is small chance 1
500

 for any blade to be 

 defective. The blades are supplied in packets of 10. Using Poisson’s distribution, calculate the 
approximate number of packets containing (i) no defective (ii) one defective and (iii) two 
 defective blades respectively in a consignment of 10,000 packets. (e –0.02 = 0.9802).

 15. If m and µr denote by the mean and central rth moment of a Poisson distribution, then prove 
that

 ( )
–

1 –1
0

. Hint . – , find
!

∞

+
=

 µ µ
µ = µ + µ = 

  
∑

m x
rr r

r r r
n

d de mrm m x m
dm x dm

ANSWERS
 1. 0.785 2. 0.224 3. 0.0136875

 4. (i) e–3 (ii) 3 × (e–3)2(e–3. 3) 5. 
5 6 7 8 9 10

–33 3 3 3 3 3
5! 6! 7! 8! 9! 10!

 
+ + + + +  

 
e

 6. 147, 147, 74, 25, 6, 1 pages. 7. 0.4331 8. 0.998

 9. (1 – e–100)5, 
3

–200 4(100)
3

×e  10. 0.08922

 11. –22 (1– ) 0.3459
5

=e    12. (i) e–3 (ii) 4.5 e–3

 13. 9512   14. (i) 9802 (ii) 196 (iii) 2

35.14 CONTINUOUS DISTRIBUTION

 So far we have dealt with discrete distributions where the variate takes only the integral 
values. But the variates like temperature, heights and weights can take all values in a 
given interval. Such variables are called continuous variables. 

Distribution	function

If 
–

( ) ( ) ( )
∞

= ≤ = ∫
x

F x P X x f x dx , then f (x) is defined as the Distribution Function.

Let  f (x) be a continuous function, then Mean 
–

( )
+∞

∞
= ∫ xf x dx

Variance 2

–
( – ) . ( ) .

+∞

∞
= ∫ x x f x dx  ( x  = mean)

Notes. f (x) is called probability density function if 

(1) f (x) ≥ G for every value of x. (2) 
–

( ) 1
∞

∞
=∫ f x dx . (3) ( ) , ( )= < <∫

b

a
f x dx P a x b .
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Example	1. A function f (x) is defined as follows
0, 2
1( ) (2 3), 2 4

18
0, 4

<
= + ≤ ≤


>

x

f x x x

x

Show that it is a probability density function.

Solution. 

0, 2
1( ) (2 3), 2 4

18
0, 4

<
= + ≤ ≤


>

x

f x x x

x

If f (x) is a probability density function, then

(i) 
–

( ) 1
∞

∞
=∫ f x dx

Here ( )
4 42

22

1 1 12 3 3 (16 12 – 4 – 6) 1
18 18 18

 + = + = + = ∫ x dx x x

(ii) f (x) > 0 for 2 ≤ x ≤ 4
Hence, the given function is a probability density function.
 Example	2. The probability density function f (x) of a continuous random variable x is 
defined by (Calcutta 2018, 2013)

 3 , 5 10
( )

0,

 ≤ ≤= 


A x
f x x

otherwise

 Find the value of A.

Solution.  Here, 3( ) , 5 10= ≤ ≤
Af x x
x

Since f (x) is probability density function, so

 
10

35
1=∫

A dx
x

⇒ 
10

2
5

– 1
2

  =  

A
x

⇒ 
A 1 1– 1
2 100 25

3 2001
2 100 3

 + =  
  = ⇒ = 
 

A A⇒ 

A 1 1– 1
2 100 25

3 2001
2 100 3

 + =  
  = ⇒ = 
 

A A  Ans.

	Example	 3. The diameter of an electric cable is assumed to be continuous random 
variate with probability density function:
 f (x) = 6 x (l – x), 0 ≤ x ≤ 1 
(i) verify that above is a p.d.f  (ii) find the mean and variance.
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Solution. (i) 
1 1 2

– 0 0
( ) 6 (1– ) (6 – 6 )

∞

∞
= =∫ ∫ ∫f x dx x x dx x x dx

       = ( )12 3
0

3 – 2 3 – 2 1= =x x

Secondly f (x) > 0 for 0 ≤ x ≤ 1.
Hence the given function is a probability density function.

(ii) Mean = 
1

– 0
. ( ) .6 (1– )

∞

∞
=∫ ∫x f x dx x x x dx  

         
11 2 3 3 4

0 0

3 3 1(6 – 6 ) 2 – 2 –
2 2 2

 = = = = 
 ∫ x x dx x x  Ans.

              Variance 
212

– 0

1( – ) . ( ) – .6 (1– )
2

∞

∞

 = =  
 ∫ ∫x x f x dx x x x dx

                      
1 12 2 3 4 2

0 0

1 15 3– (6 – 6 ) 12 – 6 –
4 2 2

   = + = +   
   ∫ ∫x x x x dx x x x x dx

                      
12

4 5 3

0

6 5 3 6 5 3 13 – – 3 – –
5 2 4 5 2 4 20

   = + = + =       

xx x x 		 Ans.

EXERCISE 35.5
 1. The distribution function of a random variable X is given by

          

3, 0 3
( ) 1, 3

0, 0

 ≤ <


= ≥
 <

cx x
F x x

x

  If P(X = 3) = 0, Find (a) the constant c, (b) the density function, (c) P(X > 1), (d) P(l < X < 2).
 2. If a random variable X has density function

 
–3 , 0( )

0, 0
 >= 

≤

xce xf x
x

  Than calculate (a) the constant c, (b) P (1 < X < 2), (c) P(X ≥ 3), (d) P(X < 1)
 3. If a random variable X has density function

2 , 1 2
( ) , 2 3

0, otherwise

 ≤ ≤


= < <



cx x
f x cx x

  Than calculate (a) the constant c, (b) P (X > 2), (c) P (1/2 < X < 3/2).

ANSWERS

 1. (a) 1
27

,  (b) 
2 / 9, 0 3( )

0, otherwise
 ≤ <= 


x xf x , (c) 26
27

, (d) 7
27

 2. (a) 3 (b) e–3 – e–6 (c) e –9 (d ) 1 – e–3 3. (a) 6
29

, (b) 15
29

, (c) 19
116
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35.15 NORMAL DISTRIBUTION

 Normal distribution is a continuous distribution. It is derived as the limiting form of the 
Binomial distribution for large values of n where neither p nor q is very small. 
The normal distribution is given by the equation

  
( )2

2
–

21( )
2

x

f x e
µ

−
σ=

σ π
 ...(1)

where m = mean, s = standard deviation, p = 3.14159..., [e = 2.71828...]

  
( )22

2

1

–
2

1 2
1( )
2

x x

x

P x x x e dx
µ

−
σ< < =

σ π∫

On substitution                   
21 z

2– 1in (1), we get ( )
2

xz f z e
−µ

= =
σ π

 ...(2)

Here mean = 0, standard deviation = 1.
(2) is known as standard form of Normal Distribution.
	Theorem. To derive Normal Distribution as a limiting case of Binomial distribution 
where p ≠ q but p ≈ q. (U.P. III Semester Dec. 2006)
	Statement. The limiting case of Binomial Distribution (p + q)n, as n → ∞ and neither 
p nor. q are very small, generates the Normal Distribution.
Proof. The frequencies for r and (r + 1) successes in binomial distribution are
f (r) = N. nCr p

r qn – r    and    f (r + 1) = N. nCr + 1 p 
r + 1 qn – (r + 1)  

The frequency of r successes > frequency of (r + 1) successes if
( )( ) ( 1) 1

( 1)
> + ⇒ >

+
f rf r f r

f r

⇒       
( )

( ) ( )

–
–

1 – –1 1 – –11

! . .
! – r !. 1 1

!.
1 ! – r–1 !

+ ++

> ⇒ >

+

r n r
n r n r

r
n r n r r n rr

n P q
r nN C P q

nN C P q P q
r n

⇒        
( ) ( )

( )

–

1 – –1

! . 1 ! – r–1 !
1

! – r !. ! .+

+
>

r n r

r n r

n P q r n
r n n P q

⇒                         
.( 1) 1 –

( – )
+

> ⇒ + >
q r qr q np pr
n r P

⇒     q > np – r (p + q)
⇒     r > np – q  ...(1)
Again, similarly the frequency of r successes > the frequency of (r – 1) successes if

( )( ) ( –1) 1
( –1)

> ⇒ >
f rf r f r

f r
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⇒       
( )

( ) ( )

–
–

–1 –( –1) –1 – 1–1

! . .
! – r !. 1 1

!.
–1 ! – 1 !

+
> ⇒ >

+

r n r
n r n r

r
n r n r r n rr

n P q
r nN C P q

nN C P q P q
r n r

⇒     
( ) ( )

( )

–

–1 – 1

! . –1 ! – 1 ! ( – 1)1 1
! – r !. ! . +

+ +
> ⇒ >

r n r

r n r

n P q r n r P n r
r qr n n P q

⇒   Pn – pr + p > rq  ⇒ pn + p > pr + qr

⇒   pn + p > r (p + q)  ⇒ pn + p > r   …(2)

 [  p + q = 1]

from (1) and (2), we have

  pn + p > r > np – q 

  pn + p + q > r > np 

  np + 1 > r > np

 Since a possible value of r is np, therefore, without loss of generality we can assume that 
np is an integer as n → ∞. Hence the frequency of np successes can be assumed to be 
maximum frequency. Let y0 be the frequency of np successes and yx be the frequency 
of (np + x) successes.

Then

 y0 = f (n p) = N . nCn p p
 n p q n – n p  [from (1), for r = n p]

   –!
( )! ( )!

= np n npnN p q
n p n q

   
!

( )! ( )!
= np nqnN p q

n p n q
 …(3)    [  q = 1 – p]

and            –!.
( )! ( – )!

+=
+

n p x nq x
x

ny N p q
n p x n q x

 ... (4)

Dividing (4) by (3), we get

        –

0

( )! ( )!.
( )! ( – )!

=
+

x xxy n p n qN p q
y n p x n q x

     ... (5)

 For n being large, then according to James Stirling’s approximation formula for facto-
rials, we have

               
1– 2! (2 ),+

= π
nnn e h

From (5)  
1 1– – –2 2

1 1––( ) – ( – )2 20

( ) 2 ( ) 2

( ) 2 ( – ) 2

+ +

+ + ++

π π
=

+ π π

n p nqnp nq x x
x

n p x n q xn p x nq x

y e n p e nq p q
y e n p x e n q x
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1/2 1/2

1/2 – 1/2
1/2 – 1/2

1/2 – 1/2

( ) ( ) ( / )

( ) 1 ( ) 1–

1

1 1–

+ +

+ + +
+ + +

+ + +

=
   
+   

   

=
   
+   

   

n p nq x

n p x nq x
n p x nq x

n p x nq x

np nq nq nq

x xnp np
n p n q

x x
n p n q

0

2 3

2 2 3 3

2 3

2 2 3 3

2 1log – log 1 – – log 1–
2 2

1– – – ....
2 2 3

1– – ....
2 2 3

        ∴ = + + + +        
       

  = + + +     
  + + + +     

xy x xnp x nq x
y np nq

x x xnp x
nq n p n q

x x xnq x
nq n q n q

                  

2
2 2 2 2

3
2 2 3 3 2 2 2 2 2 2 3 3

2 2 2
2

2 2 2

1 1 1 1 1 1 1 11– 1 – –
2 2 2 24 4

1 1 1 1 1 1– – – – ....
3 6 2 2 3 6

– .... terms of higher orders.
2 24

x x
np np np np nq nqn p n q

x
n q n q n q n p n q n p

p q p q xx x
npq npqn p q

  
= + + + + + +       

 
+ + +  

 

− +
= + + +

Neglecting terms containing 1/n2, we have
2

0

–log – –
2 2

 
∴ = 

 
xy q p xx

y npq npq

 Since p < 1, q < 1 and so q – p is very small as compared with n. Therefore Ist term 
may be neglected, (q – p = 0).

 
2 2

2
0

log – –
2 2

 
∴ = = 

σ 
xy x x

y npq
 [  s2 = npq, the variance of Binomial distribution]

2 2– /2
0

σ⇒ = x
xy y e   Proved.

	Example	1. In a normal distribution, 31% of the items are under 45 and 8% are over 
64. Find the mean and standard deviation of the distribution. (D.U. 2016)
Solution. Let x  be the mean and s the S.D. 

45 –If 45,

64 –If 64,

45 –Area between 0 and 0.50 – 0.31 0.19

= =
σ

= =
σ

= = =
σ

xx z

xx z

xz

19%
42%

–0.496 O +1

8%31%
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[From the table, for the area 0.19, z = 0.496]

  
45 – – 0.496=
σ

x
 ...(1)

Area between z = 0 and 
64 –

=
σ

xz = 0.5 – 0.08 = 0.42.

(From the table, for area 0.42,   z = l .405) 

  
64 – 1.405µ

=
σ

 ...(2)

Solving (1) and (2) we get m = 50, s = 10. Ans.
	Example	2. The income of a group of 10,000 persons was found to be normally distributed 
with mean . 750 p.m. and standard deviation of . 50. Show that, of this group, about 
95% had income exceeding . 668 and only 5% had income exceeding . 832. Also find 
the lowest income among the richest 100.
Solution.	  Mean = m = 750
 Standard deviation = s = 50

and        
– µ

=
σ

xz

(i) If x1 = 668, then      1
668 – –1.64750

= =
50

z

 P (x1 > 668) = P (z 1 < – 1.64)
 = 0.5 + P (– 1.64 ≤ z ≤ 0)
 = 0.5 + P(0 ≤ z ≤ 1.64)
 = 0.5 + 0.4495 
 = 0.9495
\ Percentage of persons having income exceeding . 668 = 94.95% ≈ 95% (approx.)

(ii) 832 – 750If 832, then 1.64= = =
50

x z

                            P (x2 > 832) = P(z2 > 1.64) 
 = 0.5 – 0.4495
 = 0.0505

\ Percentage of persons having income exceeding . 832 = 5.05% = 5% (approx.)
(iii) Let x be the lowest income among the richest 100 persons.
100 persons =1% of 10,000
 100 persons represents 1% area under the curve 
on the right hand side. 
Thus the area between 0 and z
    = 0.5 – 0.01 = 0.49 
From the table z for area 0.49 is 2.33

 
– µ

=
σ

xz

f (z)

95%

0z = –1.641

5%

z = –1.641
0

f (z)

x = 866.5

0.01

0
Z

f (z)
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⇒       
–2.33 – 750 50 2.33750

= ⇒ = ×
50

x x

⇒       x – 750 = 116.5  ⇒   x = 866.5
Hence, the minimum income among the 100 richest persons is equal to . 866.5. Ans.

35.16 NORMAL CURVE

 A Normal Curve shows binomial distribution graphically of a continuous Random 
 Variable. The probabilities of heads in 10 tosses are ,10C0 q

10 p0, 10C1 q
9 p1, 10C2 q

8 p2, 
10C3 q

7 p3, 10C4 q
6 p4, 10C5 q

5 p5, 10C6 q
4 p6, 10C7 q

3 p7, 10C8 q
2 p8, 10C9 q

1 p9, 10C10 q
0 p10. 

1 1,
2 2

= =p q . It is shown in the figure given below.

0 1 2 3 4 5 6 7 8 9 10

Number of heads

x

y

0.26

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

O

P
ro

b
a

b
ili

ti
e

s

 If the variates (heads here) are treated as if they were continuous, the required probability 
curve will be a normal curve as shown in the above figure by dotted line.

Properties	of	the	normal	curve, 
( )2

2
–

21
2

x

y e
µ

−
σ=

σ π

 (1) The curve is symmetrical about the line. x = m.
 (2) The mean, median and mode coincide.
 (3) y decreases rapidly as x increases numerically. The curve extends to infinity on either 

side of the origin.

 (4) (a) P (m – s < x < m + s) = 0.6826 

  (b) P (m – 2 s < x < m + 2 s) = 0.9544 

  (c) P (m – 3 s < x < m + 3 s) = 0.9973

Hence (a) About 68% of the values lie between (m – s) and m + s
   (b) About 95% of the values lie between (m – 2s) and (m + 2s). 

  (c)  About 99.7 % of the values will be between (m – 3 s) and (m + 3s).
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 (5) b1 = 0 and b2 = 3.
 (6) x-axis is an asymptote to the curve. No portion of the curve lies below the x-axis.
 (7) The points of inflexion are x = m ± s.

 (8) Mean deviation about mean 
4
5
σ  and quartile deviation 

2
3
σ .

35.17 MEDIAN OF THE NORMAL DISTRIBUTION

If a is the median, then it divides the total area into two equal halves so that
 (Vidyasagar University 2018)

                 
–

1( ) ( )
2

∞

∞

= =∫ ∫
a

a

f x dx f x dx

where        
( )2

2
–

–
21( )

2

µ

σ=
σ π

x

f x e

Suppose Median a > mean m     then 

 
–

1( ) ( )
2

µ

∞ µ

+ =∫ ∫
a

f x dx f x dx   
–

1but ( )
2

µ

∞

 
 =
  

∫ f x dx

                          
1 1( )
2 2

µ

+ =∫
a

f x dx  (m = mean)

                                ( ) 0
µ

=∫
a

f x dx

Thus                             a = m

Similarly, when a < mean, we have a = m. 

Thus, median = mean = m.
Mode	of	the	normal	distribution

 We know that mode is the value of the variate x for which f (x) is maximum. Thus, by 
differential 1 calculus  f (x) is maximum if f (x) = 0 and  f ¢ (x) < 0

where  
( )2

2
–

–
21( )

2

µ

σ=
σ π

x

f x e

Clearly f (x) will be maximum when the exponent will be maximum which will be the case

                             2( – 0 ( – 0 –
2
µ)

= ⇒ µ) = ⇒ µ
2σ
x x x

Thus mode is m, and modal ordinate 
1
2

=
σ π
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35.18 AREA UNDER THE NORMAL CURVE

By taking 
–

=
σ

x xz , the standard normal curve is formed.

 The total area under this curve is 1. The area under the curve is divided into two equal 
parts by z = 0. Left hand side area and right hand side area to z = 0 is 0.5. The area 
between the ordinate z = 0 and any other ordinate can be noted from the table:- 1 on 
last page 34 of the chapter.
	Example	 1. In mathematics final examination, if the mean was 72, and the standard 
deviation was 15. Determine the standard scores of students receiving grades:
(a) 60  (b) 93  (c) 72

Solution. Here, x  = 72, s = 15 

(a) 
– 60 – 72 –0.8

15
= = =

σ
x xz   (b) 

93 – 72 1.4
15

= =z   (c) 
72 – 72 0

15
= =z  Ans.

Example	2. Find the area under the normal curve in each of the cases
(a) z = 0 and z = 1.2;    (b) z = – 0.68 and z = 0;
(c) z = – 0.46 and z = 2.21;   (c) z = 0.81 and z = 1.94;
(e) To the left of z = 0.6;   ( f ) Right of z = – 1.28.
Solution.	
See table –1, last page of the chapter. 
(a) Area between z = 0 and z = 1.2 (b) Area between z = 0 and z = – 0.68 
                = .3849     Ans.                            = 0.2518        Ans.

(c) Required area =  (Area between z = 0 and z = 2.21) 
+ (Area between z = 0 and z = – 0.46) 

 =  (Area between z = 0 and z = 2.21) 
+ (Area between z = 0 and z = 0.46) 

 = 0.4865 + 0.1772 = 0.6637.   Ans.

(d) Required area =  (Area between z = 0 and z = 1.94) 
– (Area between z – 0 and z = 0.81) 

 = 0.4738 – 0.2910 = 0.1828   Ans.

0 1.2 –0.68 0

–0.46 0 2.21

0 0.81 1.94
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(e) Required area =  0.5 – (Area between z = 0 and z = – 0.6) 
= 0.5 – 0.2257 = 0.2743.   Ans. 

(f) Required area =  (Area between z = 0 and z = –1.28) + 0.5 
= 0.3997 + 0.5

 = 0.8997. Ans.
Example	3. Find the value of z in each of the cases 
(a) Area between 0 and z is 03770 
(b) Area to the left of z is 0.8621 
Solution.
(a) z = ± 1.16
(b) Since the area is greater than 0.5. 
     Area between 0 and z.
 = 0.8621 – 0.5 = 0.3621 
from the table –1         z = 1 + 0.09 = 1.09 Ans.

	Example	4. Students of a class were given an aptitude test Their marks were found to 
be normally distributed with mean 60 and standard deviation 5. What percentage of 
students scored more than 60 marks ?

Solution.	 	 x = 60, x  = 60, s = 5 

                              
– 60 – 60 0

5
= = =

σ
x xz

if x > 60 then z > 0
Area lying to the right of z = 0 is 0.5.
The percentage of students getting more than 60 marks = 50 %
 Example	5. Assume mean height of soldiers to be 68.22 inches with a variance of 1.0.8 
inches square. How many soldiers in a regiment of 1,000 would you expect to be over 6 
feet tall, given that the area under the standard normal curve between x = 0 and x = 0.35 
is 0.1368 and between x = 0 and x = 1.15 is 0.3746.
Solution.	 	 		Mean = x  = 68.22 inch

                             variance = s2 = 10.8 inches squares

–0.6 0

–1.28 0

0 Z

0
.3

7
7
0

0.3621

0
.8

6
2

1

0 Z

0
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– 72 – 68.22If 72 inches then 1.15
10.8

= = = =
σ

x xx z

 P(x > 72) = P (z > 1.15)
               = 0.5 – P (0 ≤ z ≤1.15) 
               = 0.5 – 0.3746 = 0.1254 
Number of soldiers = 1000 × 0.1254 = 125.4 = 125 (app.)	 Ans.
Area right to z = 2 is 0.5 – 0.4772 = 0.0228 
Number of workers getting  more than 160 = 0.0228 × 1000 = 22.8 ≈ 23 Ans.

EXERCISE 35.6
 1. In a regiment of 1000, the mean height of the soldiers is 68.12 units and the standard deviation 

is 3.374 units. Assuming a normal distribution, how many soldiers could be expected to be more 
than 72 units? It is given that

   P (z = 1.00) = 0.3413, P (z = 1.15) = 0.3749 and
  P (z = 1.25) = 0.3944, where z is the standard normal variable.
 2. The lifetime of radio rubes manufactured in a factory is known to have an average value of 10 

years. Find the probability that the lifetime of a tube taken randomly (i) exceeds 15 years, (ii) 
is less than 5 years, assuming that the exponential probability law is followed.

 3. Analysis of past data shows that hub thickness of a particular type of gear is normally distributed 
about a main thickness of 2.00 cm with a standard deviation of 0.04 cm.

  (i)  What is the probability that a gear chosen at random will have a thickness greater than 
2.06 cm?

  (ii)  How many gears in a production run of 600 such gears will have a thickness between 1.89 
and 1.95 cm? Given f (1.5) = 0.4332, f (2.75) = 0.4970, f (1.25) = 0.3944

 4. The breaking strength X of a cotton fabric is normally distributed with E (x) = 16 and s (x) = 1. 
The fabric is said to be good if X ≥ 14. What is the probability that a fabric chosen at random 
is good. Given that f (2) = 0.9772

 5. A manufacturer knows from experience that resistance of resistors he produces is normal with 
mean m =140 W and standard deviation s = 5W. Find the percentage of resistors that will have 
resistance between 138 W and 142 W. (given f (0.4) = 0.6554, where z is standard normal variate).

 6. A manufacturing company packs pencils in fancy plastic boxes. The length of the pencils is 
normally distributed with m = 6” and s = 0.2” The internal length of the boxes is 6.4”. What 
is the probability that the box would be too small for the pencils? (Given that a value of the 
standardized normal distribution function is f (2) = 0.9772).

 7. A manufacturer produces airmail envelopes, whose weight is normal with mean m – 1.95 gm 
and standard deviation s = 0.05 gm. The envelopes are sold in lots of 1000. How many enve-

lopes in a lot will be heavier than 2 gm? Use the fact that 
21

2

1 –exp 0.3413
22

 
=  π  

∫
x dx

 8. The mean height of 500 students is 151 cm and the standard deviation is 15 cm. Assuming that 
the heights are normally distributed, find how many students, height lie between 120 and 155 cm.

 9. A large number of measurements is normally distributed with a mean of 65.5″ and S.D. of 6.2″. 
Find the percentage of measurements that fall between 54.8″ and 68.8″.

 10. Find the mean and variance of the density function f (x) = le -lx

0 z = 1.15

125
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 11. If x is normally distributed with mean 1 and variance 4,

  (i)  Find Pr (– 3 ≤ x ≤ 3); (ii) Obtain k if Pr (x ≤ k) = 0.90

 12. A normal variable x has mean 1 and variance 4. Find the probability that x ≥ 3. (Given: z is the 
standard normal variable and f (0) = 0.5, f (0.5) = 0.6915, f (1) = 0.8413, f (1.5) = 0.9332)   

 13. (a) If x is normally distributed with mean 4 and variance 9; find 

  (i) Pr (2.55 ≤ x ≤ 5.5). (ii) Obtain k if Pr (x ≤ k) = 0.9.

      Use Pr (z ≤ .5) = 0.691 and Pr (z ≤ 1.3) = 0.90.

  (b)  If logex is normally distributed with mean 1 and variance 4, find 1 2
2

 < < 
 

x  given that 

loge(2) = 0.693.

  (c) For a standard normal variate z P (– 0.72 ≤ z ≤ 0) =……. 

 14. The random variable x is normally distributed with E (x) = 2 and variance V (x) = 4. Find a 
number p (approximately), such that P (x > p) = 2P (x ≤ p). [The values of the standard normal 
distribution are f (–0.43) = 0.3336, and f (– 0.44) = 0.3300].

  If X ~ N (10, 4) find Pr [|X| ≥ 5].

 15. The continuous random variable x is normally distributed with E (x) = m and V (x) = m2. If 
Y = cx + d, then find V (Y). 

 16. The pdf of X is given by f (X) = le-lx x ≥ 0, l 0. Calculate Pr [X > E (X)].    

  If X ~ N (75, 25), find Pr [X > 80/X > 77]

  If X ~ N (10, 4) find Pr [|X| ≥ 5}

 17. A random variable x has a standard normal distribution f. Prove : Pr (1|X | > k) = 2[1 – f (k)]

 18. The random variable x has the probability density function f (X) = kx if 0 ≤ x ≤ 2 

  Find k. Find x such that (i) Pr (X ≤ x) = 0.1 (ii) Pr (X ≤ x) = 0.95

 19. For a normal curve, show that m2n+1 = 0 and  m2n = (2n – 1) s2 m2n–2.

 20. The length of an item manufactured on an automatic machine tool is a normally distributed 

random variable with parameters M [ x ] =10 and m2 = 1
200

. Find the probability of defective 

production if the balance is 10 + 0.05.

 21. In a mathematics examination, the average grade was 82 and the standard deviation was 5. All 
the students with grades from 88 to 94 received a grade B. If the grades are normally distributed 
and 8 students received a B grade, find how many students took the examination. Given

σ
x

1.20 2.00 2.40 2.45

A 0.3849 0.4772 0.4918 0.4929

 22. Explain the characteristics and importance of a normal distribution.

 23. The life time of a certain component has a mean life of 400 hours and standard deviation 
of 50 hours. Assuming normal distribution for the life time of 1000 components, determine 
 approximately the number of components whose life time lies between 340 to 465 hours. You 
may use the. Following data Where symbols have their usual meanings.

 24. For standard normal variate mean m is

  (a) 1 (b) 0 (c) 6 (d) none of the above
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	 25.	 Fill	in	the	blanks:
  (a)  The mean of the marks obtained by the students is 50 and the variance is 25. If a student 

gets 60 marks, his standard score is ……………

  (b) If (x) = 
2–

21
2

 
 

π 

x

e , then its mean is …………… and standard deviation is ……………

  (c)  In the standard normal curve the area between z = –1 and z = 1 is nearly ……………
  (d) If s = 2, x = 5, the equation of normal distribution is …………… 
  (e)  The marks obtained were found normally distributed with mean 75 and variance 100. The 

percentage of students who scored more than 75 marks is ……………
  (f) The mean, median and mode of a normal distribution are ……………
  (g) Exponential distribution f (x) is defined by f (x) = ae–2x, 0 < x < ∞, then a = ……………
  (h) The probability density function of Beta distribution with a = 1, b = 4 is f (x) = ………
  (i) For a standard normal variate z P (– 0.72 ≤ z ≤ 0) = ……… 

ANSWERS
 1. 125 2. (i) 0.2231, (ii) 0.3935.
 3. (i) 0.0668, (ii) 62 (61.56) app. 4. 0.9772
 5. 31.08% 6. 0 0228.
 7. 159 8. 294

 9. 66.01% 10. 1 1,
2λ λ

 11. (i) 0.8185, (ii) 3.56 12. 0.1587

 13. (a) (i) 0.382, (ii) 7.9. (b) 0.24. (c) 0.2642 14. 1.13834, 
( )2–

–
2(0.5)1 1, ,0.062

5 2

75

π

x

e
e

 15. c2 m2 16. 
( )2–

–
2(0.5)1 1, ,0.062

5 2

75

π

x

e
e

 18. k = 1
2

, (i) x = 0.632, (ii) x = 1.949 20. 0.4798

 21. 75 students 23. 788
 24. (b)

 25. (a) 2, (b) 0,1, (c) 68%, (d)
2( –5)–

81( )
2

=
π

x

f x e , (e) 50%, (f) zero, (g) 2, (h) 4(l – x)3, (i) 0.2642

TABLE – 1

AREA UNDER STANDARD NORMAL CURVE FROM Z = 0 TO 
–x xZ =
σ

	An	 entry	 in	 the	 table	 is	 the	 propor-
tion	 under	 the	 entire	 curve	 which	 is	
between	Z	=	0	and	a	positive	value	of	
Z.	Area	 for	 negative	 values	 of	 Z	 are	
obtained	by	symmetry.
	For	 different	 values	 of	 Z,	 table	 gives	  
area	 (shown	 shaded	 in	 the	 figure)	
	under		normal	curve. 0 Z
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↓ Z→ .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359
0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753
0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517
0.4 .1554 1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879
0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2517 .2549
0.7 .2580 .2611 .2642 .2673 .2703 .2734 .2764 .2794 .2823 .2852
0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133
0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389
1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621
1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830
1.2 .3849 .3869 .3888 .3907 .3925 .3944 .3962 .3980 .3997 .4015
1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131. .4147 .4162 .4177
1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319
1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441
1.6 .4452 .4463 .4474 .4484 .4495 .4505 : .4515 .4525 .4535 .4545
1.7 .4452 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633
1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706
1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767
2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817
2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857
2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890
2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916
2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931’ .4932 .4934 .4936
2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952
2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964
2.7 .4965 .4966 .4967 .4968 .4969 .4970 4971 .4972 .4973 .4974
2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981
2.9 .4987 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986
3.0 .4940 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

35.19 HYPOTHESIS TESTING

 On the basis of sample information, we make certain decisions about the population. In 
taking such decisions we make certain assumptions. These assumptions are known as 
statistical hypothesis. These hypothesis are tested. Assuming the hypothesis is correct 
we calculate the probability of getting the observed sample. If this probability is less 
than a certain assigned value, the hypothesis is to be rejected.
Null	Hypothesis	(H0)
 Null hypothesis is based for analysing the problem. Null hypothesis is the hypothesis 
of no difference. Thus, we shall presume that there is no significant difference between 
the observed value and expected value. Then, we shall test whether this hypothesis is 
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satisfied by the data or not. If the hypothesis is not approved the difference is considered 
to be significant. If hypothesis is approved then the difference would be described as 
due to sampling fluctuation. Null hypothesis is denoted by H0.
Errors
 In sampling theory to draw valid inferences about the population parameter on the basis 
of the sample results. 
 We decide to accept or to reject the lot after examining a sample from it. As such, we 
are liable to commit the following two types of errors.
Type	1	Error. If H0 is rejected while it should have been accepted. 
Type	II	Error. If H0 is accepted while it should have been rejected.

Level	of	Significance
 There are two critical regions which cover 5% and 1% areas of the normal curve. The 
shaded portions are the critical regions.

Area of
acceptance

0.5%0.5%

Z = 1.966 Z = 1.966O    

Area of
acceptance

2.5% 2.5%

Z = 0.674Z = –0.674

 Thus, the probability of the value of the variate falling in the critical region is the level 
of significance. If the variate falls in the critical area, the hypothesis is to be rejected.
Test	of	Significance
 The tests which enables us to decide whether to accept or to reject the null hypothesis 
is called the tests of significance. If the difference between the sample values and the 
population values are so large (lies in critical area), it is to be rejected.
Confidence	Limits
 m – 1.96s, m + 1.96s are 95% confidence limits as the area between m –1.96s and m + 
1.96s is 95%. If a sample statistics lies in the interval m – 1.96s. m + 1.96s, we call 
95% confidence interval.
 Similarly, m – 2.58s, m + 2.58s is 99% confidence 
limits as the area between m – 2.58s and m + 2.58s 
is 99%. The numbers 1.96, 2.58 are called confi-
dence coefficients.

Test	of	Significance	of	Large	Samples	(n > 30)
 Normal distribution is the limiting case of Binomial 
distribution when n is large enough. For normal 
distribution 5% of the items lie outside m ± 1.96 s 
while only 1% of the items outside m ± 2.586 s. 

– µ
=

σ
xz

where z is the standard normal variate and x is the observed number of successes. 
First we find the value of z. Test of significance depends upon the value of z.

� – 1.96� � + 1.96��

� �– 2.58 � �+ 2.58�
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(i) (a)  If | z | < 1.96, difference between the observed and expected number of successes 
is not significant at the 5% level of significance.

    (b)  If | z | > 1.96, difference is significant at 5% level of significance.
(ii) (a)  If | z | < 2.58, difference between the observed and expected number of successes 

is not significant at 1% level of significance.
    (b) If | z | > 2.58, difference is significant at 1% level of significance.
	Example	1. A cubical die was thrown 9,000 times and 1 or 6 was obtained 3120 times. 
Can the deviation from expected value lie due to fluctuations of sampling?
Solution. Let us consider the hypothesis that the die is an unbiased one and hence 

the probability of obtaining 1 or 6 = 
2 1 1 2. ., ,
6 3 3 3
= = =i e p q

The expected value of the number of successes = np = 9000 × 
1
3

 = 3000

Also   
1 2S.D. 9000 2000 44.72
3 3

σ = = = × × = =npq

 3s = 3 × 44.72 = 134.16
Actual number of successes = 3120
 Difference between the actual number of successes and expected number of successes 
= 3120 – 3000 = 120 which is < 3s

 Hence, the hypothesis is correct and the deviation is due to fluctuations of sampling due 
randon causes. Ans.

Sampling	Distribution	of	the	Proportion
 A simple sample of n items is drawn from the population. It is same as a series of n 
independent trials with the probability P of success. The probabilities of 0, 1, 2, …., n 
success are the terms in the binomial expansion of (q + p)n.

Here mean = np and standard deviation = .npq

Let us consider the proportion of successes, then

(a) Mean proportion of successes = =
np p
n

(b) Standard deviation (standard error) of proportion of successes = =
npq pq
n n

(c) Precision of the proportion of success = 
1

S.D.
n
pq

= .

	Example	 2. A group of scientist reported 1705 sons and 1527 daughters. Do these 

figures conform to the hypothesis that the sex ratio is 
1
2

.

Solution. The total number of observations = 1705 + 1527 = 3232 
The number of sons = 1705

Therefore, the observed male ratio = 
1705
3232

= 0.5175

On the given hypothesis the male ratio = 0.5000
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 Thus, the difference between the observed ratio and theoretical ratio = 0.5275 – 0.5000 
= 0.0275

The standard deviation of the proportion = 

1 1
2 2 0.0088
3232

×
= =

pq
n

The difference is more than 3 times of standard deviation.
 Hence, it can be definitely said that the figures given do not conform to the given hy-
pothesis. 

Estimation	of	the	Parameters	of	the	Population	
 The mean, standard deviation etc. of the population are known as parameters. They are 
denoted by m and s. Their estimates are based on the sample values. The mean and 
standard deviation of a sample are denoted by x  and s respectively. Thus, a statistic is 
an estimate of the parameter. There are two types of estimates.
(a)  Point estimation: An estimate of a population parameter given by a single number 

is called a point estimation of the parameter. For example,
2

2 ( – )(S.D.)
–1

∑
=

x x
n

(b)  Interval estimation: An interval in which population parameter may be expected to 
lie with a given degree of confidence. The intervals are

(i)   x  – ss to x  + ss (68.27% confidence level) 
(ii) x  – 2 ss to x  + ss (95.45% confidence level) 
(iii) x  – 3 ss to x  + 3 ss (99.13% confidence level)
     x  and ss are the mean and S.D. of the sample.
Similarly, x  ± l.96 ss, x  ± 2.58 ss are 95% and 99% confidence of limits for m.

 x  ± 1.96 
σ
n

 and x  ± 2.58 
σ
n

 are also the intervals as ss = 
σ
n

.

Comparison	of	Large	Samples
 Let two large samples of size n1, n2 be drawn from two populations of proportions of 
attributes A’s as p1, p2 respectively.
(i)  Hypothesis: As regards the attribute A, the two populations are similar. On combining 

the two samples

1 1 2 2

1 2

+
=

+
n p n pp

n n

where p is the common proportion of attributes. 
Let e1, e2 be the standard errors in the two samples, then

2 2
1 2

1 2
= =

pq pqe and e
n n

If e be the standard error of the combined samples, then

2 2 2
1 2

1 2 1 2

1 2

1 1

–

 
= + = + = + 

 

=

pq pqe e e pq
n n n n

p pZ
e
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 1. If Z > 3, the difference between p1 and p2 is significant.
 2. If Z < 2, the difference may be due to fluctuations of sampling.
 3. If 2 < Z < 3, the difference is significant at 5% level of significance.
(ii)  Hypothesis. In the two populations, the proportions of attribute A are not the same, 

then standard error e of the difference p1 – p2 is

    2 2 2 1 1 2 2 1 2
1 2

1 2

–, 3,= + = + = <
p q p q p pe e e Z
n n e

Difference is due to fluctuations of samples.
	Example	 3. In a sample of 600 men from a certain city, 450 are found smokers. In 
another sample of 900 men from another city, 450 are smokers. Do the data indicate 
that the cities are significantly different with respect to the habit of smoking among men.

Solution.   n1 = 600 men, Number of smokers = 450, p1 = 
450
900

 = 0.75

   n2 = 900 men, Number of smokers = 450, p2 = 
450
900

 = 0.5

  1 1 2 2

1 2

600 0.75 900 0.5 900 0.60
600 900 1500

+ × + ×
= = = =

+ +
n p n pp

n n

    q = 1 – p = 1 – 0.6 = 0.4

 2 2 2
1 2

1 2

1 1 
= + = + 

 
e e e pq

n n

 2 1 10.6 0.4 0.000667
600 900

 = × + = 
 

e

  e = 0.02582

 1 2– 0.75 – 0.50 9.682
0.02582

= = =
p pZ

e

Z > 3 so that the difference is significant. Ans.
	Example	4. One type of aircraft is found to develop engine trouble in 5 flights out of a 
total of 100 and another type in 7 flights out of a total of 200 flights. Is there a  significant 
difference in the two types of aircrafts so far as engine defects are concerned.

Solution. n1 = 100 flights, Number of troubled flights = 5, 1
5 1

100 20
= =p

 n2 = 200 flights/Number of troubled flights = 7, 2
7

200
=p

              2 1 1 2 2

1 2

0.05 0.95 0.035 0.965
100 200
× ×

= + = +
p q p qe
n n

                  = 0.000475 + 0.0001689 = 0.0006439 
               e = 0.0254

               
0.05 – 0.035 0.59

0.0254
= =Z

Z < 1, Difference is not significant. Ans.
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EXERCISE 35.7
 1. A random sample of six steel beams has mean compressive strength of 58.392 psi (pounds per 

square inch) with a standard deviation of s = 648 psi. Test the null hypothesis H0 = m = 58,000 
psi against the alternative hypothesis H1 : m > 58,000 psi at 5% level of significance (value for 
t at 5 degree of freedom and 5% significance level is 2.0157). Here m denotes the population 
mean.

 2. A certain cubical die was thrown 96 times and shows 2 upwards 184 times. Is the die biased?
 3. In a sample of 100 residents of a colony 60 are found to be wheat eaters and 40 rice eaters. 

Can we assume that both food articles are equally popular?
 4. Out of 400 children, 150 are found to be under weight. Assuming the conditions of simple 

sampling, estimate the percentage of children who are underweight in, and assign limits within 
which the percentage probably lies.

 5. 500 eggs are taken at random from a large consignment, and 50 are found to be bad. Estimate 
the percentage of bad eggs in the consignment and assign limits within which the percentage 
probably lies.

 6. A machine puts out 16 imprefect articles in a sample of 500. After the machine is repaired, puts 
out 3 imprefect articles in a batch of 100. Has the machine been improved?

 7. In a city A, 20% of a random sample of 900 school boys had a certain slight physical defect. 
In another city B > 18.5% of a random sample of 1600 school boys had the same defect. Is the 
difference between the proportions significant?

 8. In two large populations there are 30% and 25% respectively of fair haired people. Is this 
 difference likely to be hidden in samples of 1200 and 900 respectively from the two populations? 
not hidden at 5% level of significance.

 9. One thousand articles from a factory are examined and found to be three percent defective. 
Fifteen hundred similar articles from a second factory are found to be only 2 percent defective. 
Can it reasonably be concluded that the product of the first factory is inferior to the second?

 10. A manufacturing company claims 90% assurance that the capacitors manufactured by them will 
show a tolerance of better than 5%. The capacitors are packaged and sold in lots of 10. Show 
that about 26% of his customers ought to complain that capacitors do not reach the specified 
standard. 

 11. An experiment was conducted on nine individuals. The experiment showed that due to smoking, 
the pulse rate increased in the following order:

  5, 3, 4, –1, 2, –3, 4, 3, 1. 
  Can you maintain that smoking leads to an increase in the pulse rate?
  (t for 8 d.f. at 5% level of significance = 2.31). 
 12. Nine patients to whom a certain drink was administered registered the following in blood pressure: 

7, 3, –1, 4, –3, 5, 6, –4, 1. Show that the data do not indicate that the drink was responsible for 
these increments.

ANSWERS
 2. die is biased. 4. 37.5% approx. Limits = 37.5 ± 3 (2.4)
 5. 10%, 10 ± 3.9 6. The machine has not been improved. 
 7. z = 0.37, Difference between proportions is significant. 8. z = 2.5
 9.  It cannot be reasonable concluded that the product of the first factory is inferior to that of 

the second.   11. Yes
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36.1 INTRODUCTION

 Tensors are logical generalization of vectors. The use of vectors is essential in the  
mathematical study of a number of physical phenomena. In a similar manner, tensor 
analysis become popular when Einstein (1879 –1955) used it as a tool for the presentation 
of his general theory of relativity. It has now become an important mathematical tool 
in many branches of theoretical physics such as Mechanics, Fluid Mechanics, elasticity, 
Plasticity, Theory of relativity, electromagnetic theory etc.

 The basic principle of tensor calculus is that we should not tie ourselves down to any 
one system of coordinates. The transformation laws for the components of an entity 
from one coordinate system to another are the basic criteria to determine the tensor 
character of that entity.

36.2 SPACE OF N-DIMENSIONS

 In a three dimensional rectangular space the coordinates of point are usually denoted by 
(x, y, z). But this representation of coordinates is not suitable, if we want to generalize 
the concept of space from rectangular to curvilinear coordinates or from three dimen-
sions to N-dimensions. That is why it is advisable to use a triplet (x1, x2, x3) in place of 
(x, y, z) where 1, 2, 3 are the super-scripts and do not posses any significance as power 
indices. In general, the coordinates of a point in N-dimensional space, which may or may 
not be rectangular, are denoted by N-tuples of the form (x1, x2,.., xN) where 1, 2,..., N 
are the superscripts for N-variables and not the powers of x. The N-dimensional space 
is generally denoted by VN.
Remarks:
(i)  A Curve in the space VN is defined as the aggregate of points, which satisfy the N-

parametric equations.
xi = xi (t), (i = 1, 2, …, N) ...(1)

 where t is a parameter and xi (t) are N-functions of t, which satisfy certain continuity 
conditions.
(ii)  A subspace VM of VN is defined for M < N as the aggregate of points which satisfy 

the N-equations 
xi = xi (t1, t2, ...tM), (i = l, 2, ...N). ...(2)

 where t1, t2, ...tM are M parameters. The xi (t1, t2, ...tM) are N-functions of t1, t2, ...tM 
which satisfy certain continuity conditions. When M = N – 1, the subspace is called 
hypersurface.

Tensors Algebra  
and ApplicationsCHAPTER
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36.3 COORDINATES TRANSFORMATION

 Let. (x1, x2,.., xN) and ( x 1, x 2,.., x N) be coordinates of a point in two different frames 
of reference in a VN. Suppose there exist N-independent relations between the coordinates 
of the two systems having the form

jx  = jx (x1, x2,.., xN), (j = 1, 2, …., N)  ...(3)
 where it is assumed that the functions involved are single valued continuous and have 
continuous derivatives. Then the above set of N-equations may be solved and to each 
set of coordinates ( x 1, x 2,.., x N) there will correspond a unique set (x1, x2,.., xN) 
given by

xi = xi ( x 1, x 2,.., x N), i = 1, 2, …., N.  ...(4)
 The relations (3) and (4) define a transformation of coordinates from one frame of refer-
ence to another. Differentiating (3) wet get

1 2
1 2 ....
j j j

j N
N

x x xdx dx dx dx
x x x

∂ ∂ ∂
= + + +
∂ ∂ ∂

  
1

N j
i

i
i

x dx
x=

∂
=

∂∑  ...(5)

 This is the coordinate differential transformation rule, i.e., the change in the direction 
of coordinates.
 Note : Throughout the text, to denote the coordinates of a paint only a superscript 
will be used.
 To write the results in compact form, which is the prime aim of tensor analysis, we 
introduce the following two conventions :
(i) Indicial convention :
 In a N-dimensional space, indices used either as subscripts or superscripts will take all 
values from 1 to N-unless otherwise stated.
Hence, the equations (3) and (4) may be written as

jx = jx (xi),      xi = xi ( jx ), respectively. ...(6)
(ii) Einstein’s summation convention :
 In a N-dimensional space, if an index is repeated in a term then it implies summation 
with respect to that index over the range 1, 2, …., N unless the contrary is specified.
 Hence, using summation convention, the relation (5) for the coordinate differential 
transformation may be written as

j
j i

i
xdx dx
x

∂
=
∂

 ...(7)

Similarly, by differentiating (4), wet get
i

i j
j

xdx dx
x
∂

=
∂

 ...(8)
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Remarks: 
(1)  The repeated index is called a dummy index, as it can be replaced by any other index 

not used in that term. As for example, equation (7) may equally well be written as
j

j k
k

xdx dx
x
∂

=
∂

or    
j

j l
l

xdx dx
x

∂
=
∂

Similarly, we may write equation (8) as
i

i m
m

xdx dx
x
∂

=
∂

 Or any other superscript in place of m. This device of changing in dummies is often 
employed as a useful manipulative trick for simplifying expressions. But the index j in 
equation (7) and index i in equation (8) are not repeated and are called free indices.
(2)  It may be noted (rather remembered) that the free indices on the two sides of an 

equation must be the same.
(3)  We shall use brackets, usually, to indicate powers. Thus the square of xN will be 

written as (xN)2.
(4)  To avoid confusion the same index must not be used more than twice in any single 

term. For example 
2

1

N
i

i
i

A x
=

 
  
 
∑ will not be written as Ai x

iAixi but rather AiAjx
ixj. The 

difference in the use of superscripts and subscripts will be explained in due course.

36.4 KRONECKER DELTA

The Kronecker delta is written as i
jδ and is defined by

 
1 ,
0 ,

i
j

if i j
if i j

=
δ =  ≠

 ...(9)

Thus,   1 2
1 2 .... 1N

Nδ = δ = = δ =  (no summation over N)

   1 2
2 3 .... 0δ = δ = = ,

and,   1 2
1 2 ....i N

i Nδ = δ + δ + + δ

      = l + l + ... + l = N ...(10)
An important property of Kronecker delta is that

  i j i
j A Aδ = , ...(11)

 since in the left-hand side of this equation when summation is carried out over; the only 
surviving term will be one for which j = i. This shows that the role of i

jδ  when it is 

multiplied with an entity, is to replace the index j in the entity by i or vice versa and 
then itself falls out.
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It may be noted that
i

i
jj

x
x
∂

= δ
∂

 ...(12)

because the coordinates xi are independent. Similarly, 
i

i
jj

x
x
∂

= δ
∂

 ...(13)

Example 1. Write each of the following, using Einstein’s summation convention

(i) 1 2
1 2 ....k k k N

NA B A B A B+ + +  

(ii) ds2 = g11(dx1)2 + g22(dx2)2 + ...+ gNN(dxN)2 + g12dx1dx2

            + g21dx2dx1 + .... + g1N dx1dxN + gN1 dx Ndx1

Solution:

(i) 1 2
1 2 ....k k k N k i

N iA B A B A B A B+ + + =  (ii) ds2 = gjjdxidxj Ans.

Example 2. Show that

(i)  ji i
j kkδ δ = δ  (ii) 

k i
k
ji j

x x
x x
∂ ∂

= δ
∂ ∂

Solution:

(i)  1 2
1 2 ..... ......ji i i i k i N

j k k k k N kkδ δ = δ δ + δ δ + + δ δ + + δ δ  

                = 0 + 0 + ... + i
kδ (1) + ... + 0 (no summation over k)

                = i
kδ .

(ii) 
1 2

1 2 .....
k i k k k N

i j j j N j
x x x x x x x x
x x x x x x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

                 = 
k

j
x
x
∂
∂

 (by chain rule of partial differentiation)

                 = k
jδ . [using (12)] ...(14)

Example 3. If aabxaxb ≡ 0 for all values of the variables x1, x2,.., xN; show that aij + aji = 0.

Solution: Let        S = aabxaxb ≡ 0

then              0i ii
S a x a x
x

α β α β
αβ αβ

∂
= δ + δ =

∂

  = aai x
a + aib x

b = 0

Now, differentiation with respect to xj gives

           
2

0i i i jj i
S a a

x x
α β

α β
∂

= δ + δ =
∂ ∂

             = aij + aji = 0.
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36.5 SUMMATION OF CO-ORDINATES

 The equations of co-ordinates can be written in very compact form in terms of summation 
convention. We write (x1, x2, x3) and ( x 1, x 2, x 3) instead of (x, y, z) and  
(xʹ, yʹ, zʹ) and denote the co-ordinate axes as OX1, OX2, OX3 and 1 2 3, ,OX OX OX . Also 
we denote xi, x j as the co-ordinates of a point P relative to the two systems of axes; where 
i = 1, 2, 3, j = 1, 2, 3. Let lij denote the cosines of the angles between OXi, jOX . In  
general lij ≠ lji 

The equation of co-ordinate transformation can be written as 

1 11 1 21 2 31 3

2 12 1 22 2 32 3

3 13 1 23 2 33 3

x l x l x l x
x l x l x l x
x l x l x l x

= + + 
= + + 
= + + 

 ...(1a)

1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

x l x l x l x
x l x l x l x
x l x l x l x

= + + 
= + + 
= + + 

 ...(1b)

 These equations of co-ordinate transformation can be represented by means of a table 
form such that

x1 x2 x3

1x l11 l21 l31

2x l12 l22 l32

3x l13 l23 l33

Adopting summation on convention i.e,
  a11 + a22 + a33 = aij 
  aip biq = a1p b1q + a2p b2q + a3p b3q we re-write above equations as
  1x  = li1 xi   x1 = l1j x j

 2x  = li2 xi   x2 = l2j x j

 3x  = li3 xi   x3 = l3j x j

We can re-write these equations in single equation in the form.
   x j = lij xi, xi = lij x j 
 which are complete equivalents of the equations of co-ordinate transformation from 
either system to another.

36.6 RELATION BETWEEN THE DIRECTION COSINES

 The direction cosines of any three mutually perpendicular straight lines 1 2 3, ,OX OX OX  
relative to the system OX1, OX2, OX3 are l11, l21, l31, l12, l22, l32, l23, l33. 

(l , l   , l   )11 12 13

(l , l   , l   )11 21 31

(l , l   , l   )21 22 23

(l , l   , l   )31 32 33

(l , l   ,
 l   )

12
22

32(l , l   , l   )13 23 33

X1 X1
—

X2

X3
—

O

X3

X2
—
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The relation between these direction cosines are
l11 l11 + l21 l21 + l31 l31 = lj1 lj1 = lj l12 l12 + l22 l22 + l32 l32 = lj2 lj2 = 1
l13 l13 + l23 l23 + l33 l33 = lj3 lj3 =  
Similarly,
l11 l12 + l21 l22 + l31 l32 = lj1 lj2 = 0, l12 l13 + l22 l23 + l32 l33 = lj2 lj3 = 0
l13 l11 + l23 l21 + l33 l31 = lj3 lj1 = 0
Finally, we can write these equations by means of a single equation as

 
1 , when 1 , when

or
0 , when 0 , whenij kj ik

i k i k
l l

i k i k
= = 

= δ = ≠ ≠ 
 

where dik is the kronecker delta.
or   dik = lij lkj
Now, we know that x j = lij xi
Multiplying both sides by ljk then
or   ljk x j = lij lkj xx ⇒ ljk x j = dik xi

putting i = k i.e., dik = 1 when i = k
dkk xk = ljk x j  ⇒  xk = ljk x j

DEFINITION AND TYPES OF TENSORS

36.7   CONTRAVARIANT VECTORS (CONTRAVARIANT TENSORS OF  
FIRST  ORDER)

Motivated by the relation (7), we give the following definition of contravariant vectors :
�Definition�: If a set of N quantities Ai in a coordinate system xi are related to another 
N quantities jA in a coordinate system jx  by the trans formation equations

  
p

p q
q

xA A
x

∂
=
∂

, (Contravariant Law)  ...(15)

 then Ai (read as A superscript i) are said to be the components of a contravariant vector 
or contravariant tensor of the first order (or first rank).
 Notes : (i) The components of contravariant tensors are denoted by superscripts as a 
convention, with the exception of the coordinates xi, which may behave as a contravariant 
vector in special conditions.
(ii)  The tensor entity itself may be denoted by a bold faced letter A, but it is advisable 

to use its components such as Ai rather than A which, as we shall see later, will help 
us in knowing its order by the superscripts or subscripts.

Multiplying equation (15) by 
r

p
x
x
∂
∂

 and summing over the index p from 1 to N, we find

r r p
p q

p p q

r
q r q r

qp

x x xA A
x x x

x A A A
x

∂ ∂ ∂
=

∂ ∂ ∂
∂

= = δ =
∂
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or     
r

r p
p

xA A
x
∂

=
∂

  (Contravariant Law)  ...(16)

 Thus equation (16) may equally well be taken as the transformation law for contravari-
ant vectors.
 From equation (7), in view of transformation law, we conclude that the coordinate  
differential dxi form the components a contravariant vector. It follows immediately that 

id x
d t

 is also a contravariant vector, called the tangent vector to the curve xi = xi(t).

 In general an entity whose components transform as the coordinate differential trans-
formation rule (unlike i.e., in contrast to the partial differentiation transformation rule 
of a scalar function) is called an entity having contravariant components or in short 
contravariant entity.
Theorem  The law of transformation for a contravariant vector is transitive.
 Proof: Let the components of a contravariant vector relative to the coordinate system xi 
be Ai and relative to the coordinate system jx be jA . Then by contravariant law of 
transformation

j
j i

i
xA A
x

∂
=
∂

 ...(17)

 Now, a further change of coordinates from jx to kx′ , the. new components A′k by con-
travariant law must be given by

k
k j

j
xA A
x
′∂′ =

∂
 ...(18)

Combining (17) and (18), we get
k j

k i
j i

x xA A
x x
′∂ ∂′ =

∂ ∂

     
k

i
i

x A
x
′∂

=
∂

 ...(19)

This shows that the transformation law of contravariant vector is transitive.
 Theorem 2. The coordinates xi behave like the components of a contravariant vector 
with respect to linear transformation of the type jx = j

ia xi, where j
ia  are a set of N2 

constants.

Proof : Since,    x j = j
ia xi,  ...(20)

On differentiation, we get
j

i
x
x

∂
∂

= j
ia  ...(21)

j
ia  being constants.

Combining (20) and (21) we find

x j =
j

i
x
x

∂
∂

xi  ...(22)
Hence the proposition,
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 Example 4. (i) If a vector has components x , y ,dx dyx y
dt dt

 = = 
 
  in rectangular carte-

sian coordinates then ,r θ are its components in polar coordinates.
 (ii) A vector has components x , y in rectangular cartesian coordinates then its respective 
components in polar coordinates are

.. .2 2,r r r
r

.
− θ θ+ θ .

Solution: Here, the space is two-dimensional,
   x1 = x,   x2 = y

x 1 = r,   x 2 = q ...(23)

r2 = x2 + y2 and q = tan–1 
y
x

 
 
 

.

 (i) Since,  
1dx dxx

dt dt
= =

and   
2dy dxy

dt dt
= = are contravariant vectors,  

we take  A1 = x ,   A2 = y  ...(24)
and use Contravariant law, viz., 

 1 2
1 2

i i i
i j

j
x x xA A A A
x x x
∂ ∂ ∂

= = +
∂ ∂ ∂

to get,   
1 1

1 1 2
1 2

x xA A A
x x
∂ ∂

= +
∂ ∂

                

r rx y
x y

x rx y
r y

∂ ∂
= +
∂ ∂

∂
= +

∂

 

 

             
xx yy rr r

r r
+

= = =
  

  ...(25)

and,    
2 2

1 1 2
1 2

x xA A A
x x

∂ ∂
= +
∂ ∂

                

2 2–

r rx y
x y
y xx y

r r

∂ ∂
= +
∂ ∂

= +

 

 

                2
xy yx

r
+

= = θ
 

  ...(26)

(ii) Similarly taking,
 A1 = x ,   A2 = y  ...(27)

we find, 1 r rA x y
x y
∂ ∂

= +
∂ ∂
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2 2x x y y r r r

r r
+ − θ

= =


  

     2*r r= − θ  ...(28)

and  2A x y
x y
∂θ ∂θ

= +
∂ ∂
 

         2
–x y y x
r

=
 

      
2

2
2r rr

r
θ+ θ

=
 



 (Differentiating III)*

      
2 r
r

= θ+ θ 

   ...(29)

It may he noted that the velocity and acceleration components are Contravariant Vectors.

*   since              x2 + y2 = r2,   we have xx yy rr+ =    ...(I)

 2 2 2xx yy x y rr r+ + + = +       ...(II)

    Also         q = tan–1 
y
x

, therefore 2 –r xy yxθ =    ...(III)

   from (I) and (III)             2 2 4 2 2 2 2 2( ) ( )r r r x y x y+ θ = + +

  

   or                   2 2 2 2 2r r x y+ θ = +

    ...(IV)
   final result follows from (II) and (IV)

 Further, the difference between resolved parts and components may also be observed 
because ,r θ are components of the velocity vector but its resolved, parts are r  and rθ ,  
as they have the same dimensions. In cartesian system, the resolved parts and com-ponents 
are indistinguishable while in oblique system they may differ.

36.8 INVARIANT

 A function I of the N coordinates xi [I = I (xi)] is called an invariant or a scalar function 
or tensor of order zero with respect to coordinate transformations if

I = I  ...(30)
where I  [ I  = I  ( x j)] is the value of I in the new coordinate system x j.

 Note : If f is an invariant function of the coordinate xi i.e., f = f (xi), then on transfor-
mation of coordinates to jx , we have

    
i

j i j
x

x x x
∂φ ∂φ ∂

=
∂ ∂ ∂

or  
i

j j i
x

x x x
∂φ ∂ ∂φ   =   ∂ ∂ ∂   

 ...(31)

 This law of transformation is rather like (15), but the partial derivative involving the 
two sets of coordinates is the other way up. This shows that we may have another type 
of quantities which transform in the manner of (31).
 This is the transformation rule of the partial derivative of an invariant which is a function 
of the-coordinate xi (change in the direction orthogonal to constant coordinate surfaces).
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36.9 COVARIANT VECTORS (COVARIANT TENSORS OF FIRST ORDER)

Motivated by the relation (31), we give the following definition of Covariant Vectors :
�Definition�: If a set of N quantities Ai in a coordinate system xi are related to another 
N quantities jA  in a coordinate system jx the transformation equations

q

p qp
xA A
x
∂

=
∂

, (Covariant law)  ...(32)

 then Ai (read as A subscript i) are said to be the components of a Covariant Vector or 
covariant tensor of the first order or first rank.

Multiplying equation (32) by 
p

r
x
x

∂
∂

 and summing over the index p from 1 to N, we find

p p q

p qr r p

q
q

q r q rr

x x xA A
x x x

x A A A
x

∂ ∂ ∂
=

∂ ∂ ∂
∂

= = δ =
∂

or          
p

r pr
xA A
x

∂
=
∂

 (Covariant law)    ...(33)

 Thus relation (33) may equally well be taken as the transformation law of Covariant 
Vectors.
Notes :
(i) The components of covariant tensors are denoted by subscripts as a convention.

 (ii) It follows immediately that the quantities ix
∂ φ
∂

 in equation (31) are the components 

of a Covariant Vector, where in conformity with the convention the index i in ix
∂ φ
∂

 is 

regarded as a subscript. Such a Covariant Vector is called the gradient of f.
 (iii) In general, an entity whose components transform like i.e., in conformity to the 
transformation rule of the partial derivative of an invariant of coordinate function, is 
called an entity having covariant components or in short covariant entity.
 (iv) The contravariance and covariance of an entity is not the intrinsic (inherent) prop-
erty of the entity but this distinction is due to the way in which the components of the 
entity are related to the coordinate system to which it is referred. For example, when 
the components of a velocity vector are taken along the coordinate axes (Example 4) 
they are contravariant components and if it is represented as the gradient of a potential 
function (scalar function), which are perpendicular to the coordinate axes, then these 
components are covariant.
 In fact we can transform from one set of components of a given vector to another by 
means of the metric tensor,
 Theorem 3. There exists no distinction between Contravariant and Covariant Vectors 
when we restrict ourselves to coordinate transformations of the type

i i m i
mx a x b= + ,
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 where bi are N constants which do not necessarily form the components of a Contra-
variant Vector and i

ma  are N2 constants which do not necessarily form the components 

of a tensor such that
i i r
r m ma a = δ .

We have
i i m i

mx a x b= +  ...(34)

Multiplying by i
ra , and summing over the index i we get

i i i i m i i
r r m ra x a a x a b= +

and using the given relation, viz.
i i r
r m ma a = δ  ...(35)

we find   i i r m i i
r m ra x x a b= δ +

        r i i
rx a b= + .

Finally, replacing the free index r by m on both sides, we obtain
m i i i i

m mx a x – a b= . ...(36)

From (34) and (36) it follows that
i m

i
mm i

x xa =
x x
∂ ∂

= ⋅
∂ ∂

 ...(37)

 This shows that (15) and (32), transformation laws for Contravariant and  Covariant Vec-
tors respectively, define the same type of entity in the present case. This is in fact the 
rectangular cartesian transformation of coordinates (orthogonal Euclidean space).
Theorem 4. The law of transformation for a Covariant Vector is transitive.
 Proof : Let the components of a Covariant Vector relative to the coordinate system xi 
be Ai and relative to the coordinate system jx be jA . Then by covariant law of trans-
formation.

i

j ij
xA A
x
∂

=
∂

.  ...(38)

 Now for a further change of coordinates from jx to kx′ , the new components kA′ by 
covariant law must be given by

    
j

j
k

k

xA A
x
∂′ =
′∂

 ...(39)

Combining (38) and (39) we get
j i i

k i ij
k k

x x xA A A
x xx
∂ ∂ ∂′ = =
′ ′∂ ∂∂

 ...(40)

Hence the proposition.
 Example 5. A Covariant tensor of first order has components xy, 2y – z2, xz in  rectangular 
coordinates. Determine its Covariant components in spherical polar coordinates.
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Solution: Here the space is three dimensional, 

xl = x, x2 = y, x3 = z,  1 2 3, ,x r x x= = θ = φ .
Further,

x = r sin q cos f, y = r sin q sin f, z = r cos q ...(41)
Taking, for the given covariant vector Ai, 

A1 = xy, A2 = 2y – z2, A3 = xz  ...(42)
and using Covariant law, viz.

j

i ji
xA A
x
∂

=
∂

    
1 2 3

1 2 3i i i
x x xA A A
x x x
∂ ∂ ∂

= + +
∂ ∂ ∂

 ...(43)

We find      
1 2 3

1 1 2 3i i i
x x xA A A A
x x x
∂ ∂ ∂

= + +
∂ ∂ ∂

    ( )2( ) 2 – ( )x y zxy y z xz
r r r
∂ ∂ ∂

= + +
∂ ∂ ∂

 ...(44)

using (41), we finally obtain

( ) 2 2
1 sin cos sin sin cosA r= θ φ θ φ φ

+ (sin q sin f) (2r sin q sin f – r2 cos2 q)

           + (cos q) r2 sin q cos q cos f ...(45)
Similarly, from (43)

( )

1 2 3

2 1 2 32 2 3

2( ) 2 – ( )

x x xA A A A
x x x
x y zxy y z xz

∂ ∂ ∂
= + +
∂ ∂ ∂
∂ ∂ ∂

= + +
∂θ ∂θ ∂θ
    = (r cos q cos f) r2 sin2 q sin f cos f

+ (r cos q sin f) (2r sin q sin f – r2 cos2 q)
– (r sin q) (r2 sin q cos q cos f)  ...(46)

and, ( ) 2 2
3 – sin sin sin sin cosA r r= θ φ φ φ

+ (r sin q cos f) (2r sin q sin f – r2 cos2 q) ...(47)

Product of Vectors

Product of two Vectors*
(a) Product of two contravariant Vectors :
 Let the components of two Contravariant vectors relative to the coordinate system xi be 
Ai and Bj and relative to the coordinate system mx  the components andp qA B . Then 
by contravariant law
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p
p i

i
xA A
x

∂
=
∂

 ...(48)

and   
q

q j
j

xB B
x
∂

=
∂

 ...(49)

Multiplying (48) and (49), known as outer product, we get
p q

p q i j
i j

x xA B A B
x x

∂ ∂
=
∂ ∂

 ...(50) 

If we denote the N2 quantities Ai Bj by Cij and byp q pqA B C  then 
p q

pq ij
i j

x xC C
x x

∂ ∂
=
∂ ∂

 ...(51)

(b) Product of two Covariant Vectors :
 Let the components of two Covariant vectors relative to the coordinate system xi be Ai 
and Bj and relative to mx  be andp qA B .

Then by Covariant law
i

p ip
xA A
x
∂

=
∂

 ...(52)

and   
j

p jq
xB B
x
∂

=
∂

 ...(53)

Hence      
i j

p q i jp q
x xA B A B
x x
∂ ∂

=
∂ ∂

or        
i j

pq ijp q
x xC C
x x
∂ ∂

=
∂ ∂

 ...(54)

(c) Product of a Contravariant Vector and a Covariant Vector:

 Let the components of Contravariant vector and a Covariant vector relative to the coor-
dinate system xi be Ai and Bj respectively and relative to mx  be andp

qA B   respectively. 
Then

p
p i

i
xA A
x

∂
=
∂

 ...(55)

and   
j

p jq
xB B
x
∂

=
∂

 ...(56)

Hence        
p j

p i
q ji q

x xA B A B
x x

∂ ∂
=
∂ ∂

 ...(57)

Denoting Ai Bj by i
jC and byp p

q qA B C , we find

           
p j

p i
q ji q

x xC C
x x

∂ ∂
=
∂ ∂

 ...(58)
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 Note : Relations (51), (54) and (58) show that the N2 components of each Cij, Cij and 
i
jC  satisfy different types of transformation laws when transformed from one coordinate 

system to another and encourage us to define new tensor entities.

36.10 SECOND ORDER TENSORS

(a) Contravariant tensor of the second order :
 Motivated by the relation (51) we give the following definition of second order contra-
variant tensor.
�Definition�: If a set of N2 quantities Aij in a coordinate system xi are related to another 
N2 quantities klA  relative to the coordinate system jx by the transformation equations

   
k l

kl ij
i j

x xA A
x x

∂ ∂
=
∂ ∂

, (Contravariant law)  ...(59)

 then Aij are said tQ be the components of a contravariant tensor of the second order 
(or second rank).

(b) Covariant tensor of the Second order :
 Motivated by the relation (54), we give the following definition of second order covari-
ant tensor : 
�Definition�: If a set of N2 quantities Aij in a coordinate system xi are related to another 
N2 quantities klA relative to the coordinate system jx by the transformation equations

    
i j

kl ijk l
x xA A
x x
∂ ∂

=
∂ ∂

 (Covariant law) ...(60)

 then Aij are said to be the components of a Covariant tensor of the second order (or 
second rank). ,

(c) Mixed tensor of the second order :
 Motivated by the relation (58), we give the following definition of a second order mixed 
tensor :

�Definition�: If a set of N2 quantities i
jA in a coordinate system xi are related to another 

N2 quantities i
jA relative to the coordinate system jx by the transformation equations

k j
k i
l ji l

x xA A
x x

∂ ∂
=
∂ ∂

 (mixed tensor law) ...(61)

 then i
jA are said to be the components of a mixed tensor of the second order  

(or second rank).
Remarks:
(i)  It may be noted that the indices are placed on the tensors as superscripts to denote 

contravariance and as subscripts to denote covariance. Thus a mixed tensor i
jA  is 

contravariant in i and covariant in j and transform accordingly.
(ii)  It is now obvious that Ai and Bj are the components of two contravariant tensors of 

first order and Ai and Bj are the components of two covariant tensors of first order then
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(a) AiBj is a Contravariant tensor of the second order  

(b) AiBj is a Covariant tensor of the second order

(g) AiBj and AiB
j are Mixed tenors of the second order

 Theorem 5. The kronecker delta is a mixed tensor of the second order whose compo-
nents in any other coordinate’ system again constitute the kronecker delta.
Poof : The kronecker delta is

1 ,
0 ,

i
j

if i j
if i j

=
δ =  ≠

 ...(62)

 Let i
jδ be the components in the coordinate system xi and the corresponding components 

in ix be i
jδ . If we can prove that these components obey the transformation law (61) of 

mixed tensors, then it will be a mixed tensor.

Now,    
k j k j k

i k
j li l i l l

x x x x x
x x x x x

∂ ∂ ∂ ∂ ∂
δ = = = δ

∂ ∂ ∂ ∂ ∂
 ...(63)

Hence the proposition. 
Notes :

(i) If kronecker delta is defined as, 
1 ,
0 ,ij

if i j
if i j

=
δ =  ≠

 then it is not a covariant tensor, since the transformed components 
i j j j

ijk l k l
x x x x
x x x x
∂ ∂ ∂ ∂

δ =
∂ ∂ ∂ ∂does not yield kronecker delta.

 (ii) A tensor which has the same set of components relatively to every system of coordinate 
axes is called an isotropic tensor.
Clearly kronecker tensor is an isotropic tensor.

i q i q i
i p i
j q jp j q j j

x x x x x
x x x x x

 ∂ ∂ ∂ ∂ ∂
δ = δ = = = δ  ∂ ∂ ∂ ∂ ∂ 

Hence, i i
j jδ = δ , i.e., it has constant components independent of coordinate axes.

 Example 6. If Aij is a covariant tensor of the second order and Bi, Cj are contravariant 
vectors; prove that AijB

iCj is, an invariant. 
Solution: We have

i j

kl ijk l
x xA A
x x
∂ ∂

=
∂ ∂

 ...(64)

k
k p

p
xB B
x
∂

=
∂

 ...(65)

l
l q

q
xC C
x
∂

=
∂

 ...(66)
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then                    
i k j l

k l p q
kl ijk p l q

x x x xA B C A B C
x x x x
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

    

i j
p q

ijp q

i j p q
p q ij

x x A B C
x x

A B C

∂ ∂
=
∂ ∂

= δ δ

    = AijB
iCj ...(67)

This proves the invariant character of AijB
iCj. Proved.

36.11 HIGHER ORDER TENSORS

 We will now generalize the definitions given for second order tensors in §9 for tensor 
entities of higher order.

 A set of Nn quantities 1 2 .... ni i iA  in a coordinate system xi represents the components of a 
Contravariant tensor of the order n if the corresponding set of Nn quantities 1 2 ...... np p pA
in the coordinate system ix  are given by the transformation law

1 2
1 2 1 2

1 2

...... .......
n

n n

n

pp p
p p p i i i

i i i
x x xA A
x x x

∂ ∂ ∂
=
∂ ∂ ∂

 (contravariant law) ...(68)

Similarly, if we have Nn quantities 
1 2 ...... ni i iA  whose transformation law is

1 2

1 2 1 21 2
...... .........

n

n nn

ii i

q q q i i iq q q
x x xA A
x x x
∂ ∂ ∂

=
∂ ∂ ∂

 (covariant law)  ...(69)

we call 
1 2 ...... ni i iA the components of a Covariant tensor of the order n.

Further, if we have N m+n quantities

    1 2

1 2

...
...

m

n

i i i
j j jA

whose transformation law is
1 2 1 2

1 2 1 2

1 2 1 21 2 1 2

... ...
... ...... ...

m n
m m

n nm n

p jp p j j
p p p i i i

q q q j j ji i i q q q
x x x x x xA A
x x x xx x

∂ ∂ ∂ ∂ ∂ ∂
= ⋅
∂ ∂ ∂ ∂∂ ∂

 

 (mixed tensor law)  ...(70)

 then we call 1 2

1 2

...
...

m

n

i i i
j j jA  the components of a mixed tensor of the (m + n)th order, 

contravariant of mth order and Covariant of nth order, which is generally written as of 
the type (m, n). 

Remarks:
(i)  The convenient way to remember the results (68), (69) and (70) is that in the right 

hand side expression as if 9the unbarred indices, assuming superscripts as numerator 
and subscripts as denominator and regarding the index i in ( /p ix x∂ ∂ ) as a subscript, 
cancel out and leaving the barred indices required in the left hand side.

(ii)  A contravariant tensor of second order may be called a tensor of type (2, 0) and a 
covariant tensor of second order is called a tensor of type (0, 2) and a mixed tensor 
of second order is of the type (1, 1). 
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 Theorem 6. The transformation of the tensors form a group (i.e., the law of transfor-
mation of tensors possesses transitive property).

 Proof : Without loss of generality, we consider a mixed tensor i
jA  in a coordinate system 

xi, and consider the transformation of coordinates from xi to jx and then x′l. Let the cor-
responding 1 components of the tensor be k

lA  and p
qA′ , then

 
k j

k i
l ji l

x xA A
x x

∂ ∂
=
∂ ∂

 ...(71)

and   
p l

p k
q lk q

x xA A
x x
′∂ ∂′ =

′∂ ∂
 ...(72)

Combining (71) and (72), we get 
p k l j

p i
q jk i q l

x x x xA A
x x x x
′∂ ∂ ∂ ∂′ =

′∂ ∂ ∂ ∂

     
p j

i
ji q

x x A
x x
′∂ ∂

=
′∂ ∂

 ...(73)

 Equation (73) is of the same form as we get when we make direct transformation from 
xi to x′l. Hence the proposition.
 Theorem 7. If all the components of a tensor in one coordinate system are zero at a 
point then they are zero at this point in every coordinate system.
Proof : Let the components of a tensor in the coordinate system xi be

1 2

1 2

...
...

m

n

i i i
j j jA   ...(74)

and the corresponding components in ix be
1 2

1 2

...
...

m

n

p p p
q q qA

 Then by the transformation law of tensors (70), it clearly follows that if the components 
defined in (74) in xi are all zero then the corresponding components defined in (75) in 

ix will also be zero. Hence the proposition.
Remarks:
(i)  This theorem is very important in the formulation of physical laws. It immediately 

follows that if a tensor equation holds in one coordinate system it holds in every 
coordinate system.

(ii)  Two tensors are said to be equal, if they are of the same rank and type and compo-
nentwise equal.

36.12 ZERO TENSOR

�Definition� :�A�tensor�whose�components�relatively� to�every�coordinate�system�are�
all zero is known as zero tensor.

Notes :
(i) The tensor of order zero (scalar or invariant) and zero tensor are two different concepts.
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(ii)  If a tensor is zero in one coordinate system it will remain zero in all other coordinate 
systems.

 The order of indices in a tensor is important therefore we shall study its symmetric and 
Anti-symmetric (skew-symmetric) properties.

Symmetric and Anti-symmetric
(skew-symmetric) Tensors

36.13 SYMMETRIC TENSORS

�Definition�:�A�tensor�is�called�symmetric�with�respect�to�two�contravariant�or�two�
covariant indices if its components remain unaltered upon interchange of the indices.

e.g.     pqr qpr
st stA A=

is symmetric in p and q and if
pqr qpr
st stA A=  

then it is said to be symmetric in s and t.
 If a tensor is symmetric with respect to any two contravariant indices and also any two 
covariant indices then it is called symmetric tensor.
 It may be noted that the symmetry property is defined only when the indices are of the 
same type.
 Theorem 8. If a tensor is symmetric with respect to two indices (contravariant or  
covariant) in any coordinate system it remains symmetric with respect to these two indices 
in any other coordinate system.
 Proof : Since only two indices are involved, there is no loss of generality if we prove 
the proposition for the contravariant tensor, viz., Aij = Aji.

We have  
k l

kl ij
i j

x xA A
x x

∂ ∂
=
∂ ∂

 (due to symmetry)

  

l k
ij

j i

lk

x x A
x x

A

∂ ∂
=
∂ ∂

=
Hence the proposition.
 Remark : We do not define symmetry with respect to two indices of which one denotes 
contravariance and other covariance, because this type of symmetry is, usually, not 
preserved after a coordinate transformation. The kronecker delta is an exception, which 
is a mixed tensor, and possesses symmetry with respect to its two indices ( )i j

j iδ = δ .

 Theorem 9. A symmetric tensor of the second order has at most 
( 1)

2
N N +

  different 
components in a VN.
 Proof : Let Aij be a symmetric tensor of the order two. The total number of its compo-
nents in the array, in a VN.

A11 A12...A1N
A21 A22...A2N

   …. …. …. ….
AN1 AN2...ANN
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 are N2 out of which all the N. diagonal terms will be different and the rest (N2 – N) will 
be equal in pairs due to symmetric property.

 The number of such parts will be
2( 1)

2
N N + . Hence the total number of independent 

components
2( – ) 1 ( 1)
2 2

N NN N N= + = +  

 Corollary. The number of independent components in Aijk which is symmetric in i and 
j is clearly

21 ( 1)( 1) .
2 2

N NN N N +
+ =

36.14 SKEW-SYMMETRIC TENSORS

�Definition� :�A� tensor� is�called�skew-symmetric� (or�antisymmetric)�with�respect� to�
two contravariant or two covariant in dices if its components change sign upon 
interchange of the indices.

e.g.     –ijh jih
lni lmA A=

is Skew-symmetric in i and j and if

–ijk ijk
lni mlA A=

it is said to be skew-symmetric in l and m.

 If a tensor is skew-symmetric with respect to any two contravariant indices and also any 
two covariant indices, then it is called skew-symmetric tensor.

Notes :

(i)  The property of skew-symmetry (like that of symmetry) is also independent of the 
choice of the coordinate system.

(ii)  Skew-symmetry, like symmetry, cannot be defined with respect to the indices of which 
one denotes contravariance and the other covariance.

(iii)  A skew-symmetric tensor Aij of the second order has at most 
( –1)

2
N N

 different arith-

metical components, as all the N diagonal terms Aii (no summation) are zero in this case.

(iv)  In general a skew-symmetric (anti-symmetric) tensor of rank r (< N) in VN will have 

at most 
!

!( – )!
N

r
NC

r N r
=  independent components. 

 If r = N (rank is the same as the range of indices) then number of independent compo-
nents will be one only. The non-vanishing component of an anti-symmetric tensor of the 
type (0, N) is ± A123...N, according as N is odd or even.

(v)  Skew-symmetric tensors of rank higher than the number of dimensions of the space 
are identically zero.
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Addition, Subtraction and Multiplication of Tensors

36.15 FUNDAMENTAL ALGEBRAIC OPERATIONS WITH TENSORS

(a)  Addition : The sum of two or more tensors of the same rank and type (i.e. same 
number of contravariant indices and same number of covariant indices) is also a 
tensor of the same rank and type.

 
i j n

ij lm
nk l m k

x x xA A
x x x
∂ ∂ ∂

=
∂ ∂ ∂

 ...(76)

i j n
ij lm

nk l m k
x x xB B
x x x
∂ ∂ ∂

=
∂ ∂ ∂

 ...(77)

Adding,

( ) ( )
i j n

ij ij lm lm
n nk k l m k

x x xA B A B
x x x
∂ ∂ ∂

+ = +
∂ ∂ ∂

 ...(78)

This shows that lm lm lm
n n nA B C+ =  (say) is a tensor of the same rank.

 Remark : It can easily be verified that the addition of tensors is commutative and as-
sociative. 
(b)  Subtraction: The difference of two tensors of the same rank and type is also a tensor 

of the same rank and type.
It follows immediately from (76) and (77) that

–lm lm lm
n n nD A B=

is also a tensor of the same rank.
 Further, it can be easily deduced from. (a) and (b) that any linear combination of tensors 
of the same rank and type is again a tensor of the same rank and type.  

 As for example, lm lm
n nA Bλ +µ , where l and m are invariants (scalars), is a tensor of the 

same rank and type. 
(c)  Outer multiplication : The product of two tensors, of any rank, is a tensor whose 

rank is the sum of the ranks of the given tensors.
 This process which involves ordinary multiplication of the components of the tensor is 
called the outer product. As for example, ij l

mkA B  is the outer product of andij l
mkA B  and 

may be denoted by ijl
kmC which is a tensor of 5th order contravariance of order 3 and 

covariance of order 2.
 Note : The converse of (c) is not always true, i.e. Not every tensor can be written as a 
product of two tensors of lower rank (e.g. i

jδ ). For this reason division of tensors is not 
always possible. 
The�division,�in�the�usual�sense,�of�one�tensor�by�another�is�not�defined.
(d)  Contraction : If one contravariant and one covariant index of a tensor (mixed tensor) 

are set equal, the result indicates that a summation over the equal indices (dummy 
indices) is to be taken according to the summation convention. This resulting sum is a 
tensor of rank two less than that of the original tensor. The process is called contraction.
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 We shall now prove that a contracted tensor of the type (r, s) is of the type  
(r – l, s – l).

 Let the components of a tensor of the type (r, s) in the coordinate system xi be 1 2

1 2

...
...

r

s

i i i
j j jA

and in the coordinate system ix  be
1 2

1 2

...
...

r

s

p p p
q q qA  then,

1 2 1 2
1 2 1 2

1 2 1 21 2 1 2

... ...
... ...... ...

sr
r r

s sr s

jp p p j j
p p p i i i

q q q j j ji i i q q q
x x x x x xA A
x x x x x x

∂ ∂ ∂ ∂ ∂ ∂
= ⋅
∂ ∂ ∂ ∂ ∂ ∂

 ...(79)

Setting p1 = q2 (say), we get
32 1

2 2 2 1 2

1 2 1 1 22 1 3

... ...
... ...... ...

sr
r r

s sr s

j jp p j
q p p j i i i
q q q i j j ji i q q q

x x x x xA A
x x x x x

∂ ∂ ∂ ∂ ∂
= δ

∂ ∂ ∂ ∂ ∂

32 1
1 2

1 22 1 3

...
...... ...

sr
r

sr s

j jp p j
i i i
j j ji i q q q

x x x x x A
x x x x x

∂ ∂ ∂ ∂ ∂
=
∂ ∂ ∂ ∂ ∂

 ...(80)

Since the free indices are (r – l) in contra variance and (s – l) in covariance, denoting,
2 2 1 1 –1 2 2 1 2 –1

1 2 1 2 –1 1 2 1 2 –1

... ... ... ...
... ... ... ...

r r r r

s s s s

q p p j i i l l l
q q q j j j m m mA C and A Cα α α

β β β= =

the relation (80) may be written as
–11 –1 1 2

1 2 –1 1 2 –1

1 2 –1 1 2 –11 –1 1 2 –1

... ...
... ...... ...

sr
r r

s sr s

mm m
l l l
m m ml l

x x x x xC C
x x x x x

α α
α α α
β β β β β β

∂ ∂ ∂ ∂ ∂
= ⋅
∂ ∂ ∂ ∂ ∂

 ...(81)

This shows that the new tensor obtained on contraction is of the type (r – l, s – l).
Notes:
(i)  We never contract indices of the same type as the resulting sum is not  necessarily a 

tensor.
(ii)  The process of contraction reduces the order by two and may be repeatedly used, if 

so desired, to construct new tensors, whose order will always be non-negative. 

(iii)  The invariant i
jA  is formed by contraction from the mixed tensor i

jA of order two. 
This justifies us in calling an invariant as a tensor of order zero.

(e)  Inner multiplication: By the process of outer multiplication of two tensors (different 
type or mixed type) followed by a contraction, we obtain s a new tensor called an 
inner product of the given tensors. The process is called inner multiplication.

 As for example, given the tensors andij p
qrkA B  the outer product is ij p

qrkA B . Letting j = q 

we obtain the inner product ij ipp
jrk krA B C= . Letting j = q, i = r another inner product 

ij pp
jik kA B D= is obtained.

Notes :
(i) Inner or outer multiplication of tensors is commutative and associative.
(ii)  The summation convention generally applies to two indices one of which is a super-

script and the other a subscript.
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 Theorem 10. Every tensor, which has at least two contravariant or two covariant in-
dices, can be expressed as the sum of two tensors, one of which is symmetric and the 
other skew-symmetric in a pair of contravariant or covariant indices.

Proof : Without loss of generality, let the tensor be ij
kA , then we may write

   ( ) ( )1 1 –
2 2

ij ij ji ij ji
k k k k kA A A A A= + +  ...(82)

Denoting,   ( )1
2

ij ji ij
k k kA A B+ =

and     ( )1 –
2

ij ji ij
k k kA A C=

we find,   and –ij ji ij ji
k k k kB B C C= =

Hence,   ij ij ij
k k kA B C= + , ...(83)

in which ij
kB is symmetric and ij

kC  is skew-symmetric.

 Note : The symmetry and anti-symmetry are sometimes shown by putting the  parentheses 
and brackets respectively.ʹHere the symmetric part may be written as ( )ij

kB . and anti-sym-
metric part is [ ]ij

kC .

Example 1. If Ars is skew-symmetric and Brs is symmetric, prove that Ars Brs = O.

Solution: Given Ars = – Ars and Brs = Bsr.

Now changing the dummy suffixes in Ars Brs, we get    

ArsBrs = AsrBsr = – ArsBrs

or    2 ArsBrs = O

or    ArsBrs = O

Example 2. If f = aijAiAj, then we can always write f = bijA
iAj where bij is symmetric.

Solution:    f = aijAiAj ...(84)
interchanging the dummy indices, we get

f = aijAiAj ...(85)
Adding (84) and (85)

2f  = (aij + aji) A
iAj 

or   f – bijA
iAj ...(86)

Where   
1 ( )
2ij ij jib a a= +  ...(87)

which is symmetric, i.e. bij = bji.
Example 3. If Aij is a skew-symmetric tensor, then show that

( ) 0i k i k
j l l j ikAδ δ + δ δ =
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Solution:

( )i k i k i k i k
j l l j ik j l ik l j ik

k k
l ik j ik

jl lj

A A A

A A

A A

δ δ + δ δ = δ δ + δ δ

= δ + δ

= +

                        = Ajl + (– Ajl)  (skew-symmetric property) 
                        = 0.

 Example 4. If aij is a symmetric covariant tensor and bi a covariant vector which satisfy 
the relation

aijbk + ajk bi + akibj = 0 
prove that either  aij = 0  or   bi = 0.
Solution: Let,  aijbk = Aijk,  ...(88)
 then Aijk is a third order covariant tensor which is symmetric with respect to the first pair 
of indices i and j due to the symmetric property of aij Also replacing the free indices i, 
j and k by j, k and i respectively on both side, we find

ajk bi = Ajki,  ...(89)
is symmetric with respect to j and k and similarly

aki bj = Akij, ...(90)
is symmetric with respect to k and i.
Hence, Aijk is a completely symmetric tensor.
Adding (.88) to (90) and using the given relation, we get

  Aijk + Ajki + Akij = 0
or  3 Aijk = 0,
or   aijbk = 0.
This implies that either aij = 0 or bk = 0 i.e. bi = 0.
 Example 5. If the tensors aij and gij are symmetric and ui and vi are components of 
contravariant vectors satisfying the equations :
    (aij – kgij) u

i = 0 

and   (aij – k1gij) v
i = 0,   k ≠ k1

prove that    gij u
i vi = 0 and aij u

i vi = 0.
Solution: Given,     aij = aii, gij = gji ...(91)

 (aij – kgij) u
i = 0 ...(92)

 (aij – k1gij) v
i = 0, ...(93)

Taking the inner product of (92) by vi and (93) by uj, we

get   aiju
iv j – kgiju

iv j = 0, ...(94)

aijv
iuj – k1gijv iu j = 0. ...(95)

 Changing the dummy indices i and j in (95) and using (91), the equation (95) may be 
written as
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aijv jui – k1gijv jui = 0.  ...(96)
From (94) and (96), it follows 

(k1 – k) gijv
iu  

j = 0,

or   gijv
iu j = 0, as k ≠ k1

Substituting this in (96), we find aiju
iv j = 0.

 Example 6. If uij ≠ 0 are the components of a tensor of the type (0, 2) and if the equation :
fuij + guji = 0

holds, then prove that either f = g and uij is skew-symmetric or f = – g and uij is symmetric.
Solution: Given that   fuij + guji = 0. ...(1)
Changing the free indices, we may write it as

Fuji + guij = 0.  ...(2) 
Adding (1) and (2), we get

(f + g) (uij + uji) = 0 ...(3)
which implies that

(i) either, uij + uji = 0, i.e. uij is skew-symmetric and then from (1) it follows that f = g,
(ii) or, f = – g and then from (1) it follows that uij is symmetric.
Example 7. If Aij is skew-symmetric, then prove that 

( ) 0i k i k
j l l j ikB B B B A+ =

Solution:

           
( )i k i k i k i k

j l l j ik j l ik l j ik

k i i k
j l ki l j ik

B B B B A B B A B B A

B B A B B A

+ = +

= +
 

(changing the
 

  dummy indices in the first term) 

       ( )k i
j l ki ikB B A A= +  

       = 0. (since Aik is skew-symmetric) 

Quotient Law of Tensors

36.16 QUOTIENT LAW

 In tensor analysis it becomes sometimes necessary to ascertain whether a given entity is 
a tensor or not. In theory we may say that if the components of the entity obey tensor 
transformation laws, then it is a tensor otherwise not However, in practice this is trouble-
some and a simple test is provided by a law known as Quotient law which states :
 Statement : An entity whose inner product with an arbitrary tensor is a tensor, is 
itself a tensor.
Proof: It will suffide to set out the proof for the following particular case :

 In the coordinate system xi let A(i, j, k) be the given entity. Let ij
mB  be an arbitrary tensor 

whose inner product with A(i, j, k) is a tensor Cmk i.e.
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A(i, j, k) ij
mB  = Cmk.  ...(97)

We have to show that A(i, j, k) is a tensor. 

In the transformed coordinates ix , we have

( , , ) pq
n nrA p q r B C=  ...(98)

But,  
p q m

pq ij
n mi j n

x x xB B
x x x

∂ ∂ ∂
=
∂ ∂ ∂

 ...(99)

and   
m k

nr mkn r
x xC C
x x
∂ ∂

=
∂ ∂

 ...(100)

Hence equation (98) may be written as

( , , )
p q m m k

ij
m mki j n n r

x x x x xA p q r B C
x x x x x

∂ ∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂ ∂

 ( , , )
m k

ij
mn r

x x A i j k B
x x
∂ ∂

=
∂ ∂

 [using (97)]

or  ( , , ) – ( , , ) 0
m p q k

ij
mn i j r

x x x xA p q r A i j k B
x x x x

 ∂ ∂ ∂ ∂
= 

∂ ∂ ∂ ∂ 
 

 On inner multiplication by 
n

s
x
x

∂
∂

 (i.e. taking outer product by 
t

s
x
x
∂
∂

 and then contraction 
with n = t) yields

( , , ) – ( , , ) 0
m p q k

ij
mn i j r

x x x xA p q r A i j k B
x x x x

 ∂ ∂ ∂ ∂
= 

∂ ∂ ∂ ∂ 

or  ( , , ) – ( , , ) 0
p q k

ij
si j r

x x xA p q r A i j k B
x x x

 ∂ ∂ ∂
= 

∂ ∂ ∂ 
 ...(101)

 From this we cannot jump immediately to the conclusion that the quantity inside the 
parentheses vanishes. We must remember that here i and j are dummy indices which 
imply summation and it is the sum which is zero. However since ij

sB is an arbitrary ten-
sor we can arrange that only one of its components is non-zero. Now each component 
of ij

sB may be chosen in turn as that one which does not vanish. Therefore the expression 
in brackets is identically zero. 

Hence,  ( , , ) ( , , )
p q k

i j r
x x xA p q r A i j k
x x x

∂ ∂ ∂
=

∂ ∂ ∂
 ...(102)

Again on inner multiplication with 
i j

m n
x x
x x
∂ ∂
∂ ∂

, we get

( , , ) ( , , )
k i j

p q
m n r m n

x x xA p q r A i j k
x x x
∂ ∂ ∂

δ δ =
∂ ∂ ∂

or        ( , , ) ( , , )
i j k

m n r
x x xA m n r A i j k
x x x
∂ ∂ ∂

=
∂ ∂ ∂

 ...(103)

 This equation shows that A(i, j, k) is a tensor of third order, which is covariant in i, j and 
k and therefore may be written as Aijk.
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 Remark : In the above proof it is necessary that ij
mB  should be arbitrary and does not 

possess any symmetric or skew-symmetric properties. If it is not so, then (102) is not a 
logical consequence of (101).
 Example 1. An entity A(p, q, r, s), which is a function of coordinates xi transform to 

( , , , )A i j k l  in another coordinate system ix  according to-the law

( , , , ) ( , , , )
p j k l

i q r s
x x x xA i j k l A p q r s
x x x x

∂ ∂ ∂ ∂
=
∂ ∂ ∂ ∂

Answer the following questions :
(i) Is the given entity a tensor ?
(ii)  If so, give the suitable notation indicating its contravariant and covariant characters 

artel the rank.
 Solution: (i) Yes, the given entity is a tensor because it obeys the tensor  
transformation law.

(ii)  The suitable notation for the given entity is qrs
pA in the coordinate system xi and jkl

iA  

in the coordinate system ix .This indicates that it is a mixed tensor of Order 4, con-
travariant of order 3 and covariant of order one, i.e., of the type (3,1).

Example 2. Use Quotient law to prove that Kronecker delta is a mixed tensor of order two.
 Solution: Let Aj be an arbitrary contravariant vector, then by an obvious property of 
the kronecker delta.

i
jδ Aj = Ai,

which is again a tensor (Ai is contravariant tensor of order one). 

Hence, by Quotient law i
jδ  is a tensor.

 Moreover i
jδ  has two indices i and j and with its product with Aj the summation is car-

ried out over j i.e. it should be covariant in j and since the result is the contravariant 
vector Ai it should be contravariant in i. Thus i

jδ  is a mixed tensor. 

 Example 3. If Ai and Bi are arbitrary contravariant vectors and CjjA
iBj is an invariant, 

show that Cjj is a covariant tensor of the second order. 
Solution: Since CijA

iBj is an invariant, we have

    pij
pi

q
j qC CB AA B= . ...(104)

Further, Ai and Bi are contravariant vectors, therefore 
p

p i
i

xA A
x

∂
=
∂

 ...(105)

and    
q

q j
j

xB B
x
∂

=
∂

 ...(106)

Substituting these in (104), we get ʹ

– 0
p q

i j
i p ij q j

x xC
x x

C A B
 ∂ ∂

=  ∂ ∂ 
 ...(107)
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But Ai, Bj W being arbitrary vectors, it follows that AiBj is an arbitrary tensor and therefore

p

ij

q

pq i jC x xC
x x

∂ ∂
=

∂ ∂
 ...(108)

 which is the law of transformation of a contravariant tensor of the order two. Hence 
the result.
 Example 4. If Ai is an arbitrary contravariant vector and CijA

iAj is an invariant, show 
that Cij + Cji is a covariant tensor of the second order.
 Solution: Proceeding as in Example 16, the equation (107) in the present case may be 
written as

  – 0
p q

i j
i p ij q j

x xC
x x

C A A
 ∂ ∂

=  ∂ ∂ 
 ...(109)

 This quadratic form, vanishes for arbitrary Ai, but we cannot jump to the conclusion that 
the quantity inside the parent-heses vanishes because AiAj is not arbitrary but a symmetric 
tensor. We must remember that in the form bijA

iAj the coefficient of the product A1 A2 
is mixed up with the coefficient of A2 A1; it is in fact b12 + b2 Thus interchanging the 
dummy indices i and j, and adding the two results, we can deduce only that

  
p q p q

pq qpi jji ii jjC x x x x
x x

C C C
x x

∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂
 ...(110)

The trick now is to interchange the dummies p and q to the last term; this gives

  ( ) ( )
p q

pq qpi ji ij j
xC C xC C
x x

∂ ∂
+ = +

∂ ∂
 ...(111)

establishing the tensor character of (Cij + Cji) as a covariant tensor of the order two. 

36.17 RELATIVE TENSOR

If the components of an entity
1 2

1 2

...
...

r

s

i i i
j j jA

transform according to the equation
1 2 1

1 2 1 2

1 2 1 21 2 1

... ...
... ...... ...

sr
r r

s sr s

w jp p p j
p p p i i i

q q q j j ji i i q q
x x x x x xA A
x x x x x x
∂ ∂ ∂ ∂ ∂ ∂

= ⋅
∂ ∂ ∂ ∂ ∂ ∂

 ...(112)

 then the given entity is Called a relative tensor of weight w, where 
x
x
∂
∂

 is the  Jacobian 

of transformation. If w = 0, the entity is called absolute tensor or simply tensor. If  
w = 1, the relative tensor is called the tensor density. 

Notes :
(i)  The algebraic operations, multiplication, addition subtraction of relative tensor are 

same as those of absolute tensors.
(ii)  The outer product of two relative tensors is itself a relative tensor of rank and weight 

equal to the sum of the ranks and the sum of weights of the given relative tensors 
respectively.

(iii) Unless or otherwise stated we are dealing with absolute tensors in this text. 
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Conjugate Tensors

36.18 CONJUGATE TENSORS (OR RECIPROCAL TENSORS)

 Lemma 1. Consider a symmetric covariant tensor of the second order Aij whose determi-
nant | |ijA ≠ 0. Let G(A) (i, j)* denote the cofactor of Aij in the determinant | |ijA  and let

   ( ) ( , )
| |
Aij

ij

G i j
B

A
= . ...(113)

 We shall now prove that Bij represents the components of a symmetric contravariant 
tensor of the order two.
 We have labelled the indices i and j in Bij as contra variance indices in anticipation of 
the result.
 Proof. Since Aij is symmetric, | |ijA  is symmetric which implies that G(A) (i, j) is sym-
metric and therefore Bij is symmetric.
From the properties of determinants we have the following two results 

 Aij G(A) (i, j) = | |ijA  ...(114)

 Aij G(A) (i, k) =  0, j ≠ k.  ...(115)
Hence, using (113) we may write the above two results by a single equation

  ik k
ij jA B = δ  ...(116)

 Although k
jδ  is a tensor and Aij is a tensor, we cannot apply Quotient law to  establish 

tensor character of Bik to this equation because Aij is not arbitrary. It is a symmetric 
covariant tensor.
Let Ci be a chosen arbitrary contravariant vector, then

Ci Aij = Di,  ...(117)
 so that Di is an arbitrary covariant vector, because the above equations can be solved 
uniquely as | |ijA ≠ 0. Consequently.

Cj Aij B
ik = DiB

ik

or      Cj k
jδ  = DiB

ik

or          Ck = DiB
ik ...(118)

 We can now apply the Quotient law to equation (118) and see that Bik is a contravariant 
tensor of the second order.
Lemma 2.  Let us now form another tensor Eij from Bij by the same process as defined 

in Lemma 1, i.e.

   ( ) ( , ).B
ij ij

G i j
E

B
=  ...(119)

Since . 1ij
ijA B =  and 0ijA ≠ , it follows that 0ijB ≠ . We shall now prove that Eij=Aij.

Proof : By the theory of determinants
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 .ik k
ij jE B = δ   ...(120)

Inner multiplication by Akl yields,

 ik k
ij kl j klE B A A= δ using (116),. i

ij l jlE A=δ

 Elj = Ajl = Alj ...(121)
Hence the proposition.
 Thus we see that, by virtue of (116), the relation between the tensors Aij and Bij is 
of reciprocal nature. We, therefore, give the following definition of conjugate tensors  
(or reciprocal tensors) :
 Definition : Two second order symmetric tensors Aij and Bij. one covariant and the other 
contravariant, are said to be conjugate (or reciprocal) tensors if they satisfy the equation

ik k
ij jA B = δ  and . 0.ij

ijA B ≠

 Note : if the tensor Aij is given, Lemma 1 describes the process by which its conjugate 
Bij can be determined. Similarly, Lemma 2, describes the process to determine Aij when 
Bij is given.
 Example 1. If Aij is a symmetric covariant tensor of the order two and Bij is formed by 
dividing the cofactor of Aij in the determinant ijA a=  (say) by ijA itself, show that :

(i) 1ijB a=  and (ii) AijB
ij = N.

Solution: By the theory of determinants

  ik k
ij jA B = δ  ...(122)

(i) Now,  . ik k
ij jA B = δ or 1ika B =

1ikB
a

=   ...(123)

(ii) Again, from (122) identifying j and k, we get

  .ij j
ij jA B N= =δ  ...(124)

 Example 2. If Aij = 0 for i ≠ j, show that the conjugate tensor Bij = 0 for i ≠ j and 
1ii

ii
B

A
=  (no summation).

Solution: We have   ik k
ij jA B = δ  ...(125)

(i) Let k ≠ j, then
  0 = AijB

ik

    = A1jB
1k + A2jB

2k + ...+ AjjB
jk + ...+ ANjB

Nk

    = 0 + 0 + ...+ AjjB
jk + ...+ 0

    = AjjB
jk (No summation over j).

But,          Ajj ≠ 0 (No summation over j).
Hence         Bjk = 0, j ≠ k    i.e.,     Bij = 0, i ≠ j ...(126)
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(ii) Let k = j, then from (125)
         1 = AijB

ij

            = Ai1B
i1 + Ai2B

i2 + ...+ AiiB
ii + ...+ AiNBiN

            = 0 + 0 + ...+ AiiB
ii + ...+ 0

            = AiiB
ii. (No summation over i).

But,          Aii ≠ 0 (No summation over i).

Hence         
1ii
iiB

A
=  (No summation) ...(127)

 Note : We shall use the results of Example  19, hereafter, as the standard results in the 
succeeding chapters.
 Example 3. If Aij and Aij are reciprocal symmetric tensors and if ui are components of 
a covariant vector, show that Aiju

iuj=Aijuiuj, where ui = Aiαuα.

Solution: Since  ui = Aiαuα

taking the inner multiplication by Air, we get

  .i i
ir ir r rA u A A u u u= = =α α

α αδ  ...(128)
Now with the help of   (128), we have

Aijuiuj = Aij(Akiu
k) (Alju

l) = j k l
ljk u A uδ

         = Alju
luj

         = Aiju
iuj.

 Example 4. If the relation Bijku
iujuk = 0 holds for any arbitrary contravariant vector 

ui, show that
Bijk + Bjki + Bkij + Bjik + Bikj + Bkji = 0.

Solution: We have  Bijku
iujuk = 0.

Also, be changing the dummy indices, we get successively

Bjkiu
jukui = 0, Bkiju

kuiuj = 0, Bjiku
juiuk = 0,

Bikju
iukuj = 0, Bkjiu

kujui = 0. 

In this way all the permutations are exhausted. On addition, these six equations give

(Bijk + Bjki + Bkij + Bjik + Bikj + Bkji)u
iujuk = 0.

This implies for arbitrary ui, i.e. for not necessarily zero contravariant vector ui,

Bijk + Bjki + Bkij + Bjik + Bikj + Bkji = 0.

 Example 5. If the tensor Bijk is symmetric in i and j and the relation BijkA
iAjAk = 0 holds 

for any arbitrary contravariant vector Ai, show that  Bijk + Bjki + Bkij = 0.

 Solution: The symmetry of the tensor Bijk in i and j implies the symmetry in its first 
two free indices, i.e.

  Bijk = Bjik,   Bjki = Bkji, and  Bkij  = Bikj ...(1)

 Further, changing the dummy indices and taking all the permutation as explained  
in Example 21, we conclude from BijkA

iAjAk = 0, that 
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  Bijk + Bjki + Bkij + Bjik + Bikj + Bkji = 0 ...(2)
From (1) and (2), we get the desired result
  Bijk + Bjki + Bkij = 0. Proved.
 Example 6. If a tensor Aijkl is symmetric in i and j and anti-symmetric in j and l, show 
that Aijkl = 0.
 Solution: The given conditions imply that the tensor Aijkl is symmetric in the first and 
second indices and anti-symmetric in second and fourth indices. Using the symmetric 
and anti-symmetric properties, we may write
  Aijkl = Ajikl = –Ajlki ...(1)
Also,  Aijkl = –Ailkj = –Alikj = Aljki = Ajlki ...(2)
Adding (1) and (2), we get
  2Aijkl = –Ajlki + Ajlki = 0
Hence,  Aijkl = 0. Proved.

 Example 7. If i jk i
jkA B C= is a contravariant vector and Bjk is an anti-symmetric  tensor, 

then show that i i
jk kjA A+ is a tensor.

Solution: Given that .i jk i
jkA B C=  ...(1)

In the transformed coordinates , we have

  .qrp P
qr BA C=  ...(2)

But qrB and PC  are tensors, therefore

  ,
q r

qr jk
j k

x xB B
x x
∂ ∂

=
∂ ∂

  ...(3)

and  C .
p

p i
i

xC
x

∂
=
∂

  ...(4)

Hence equation (2) may be written as

    
q r p p

p jk i i jk
qr jkj k i i

x x x xA B C A B
x x x x

= =
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 [using (1)]

or .           0
q r p

p i jk
qr jkj k i

x x xA A B
x x x

 
− = 

  

∂ ∂ ∂
∂ ∂ ∂

. ...(5)

 Since Bjk is an anti-symmetric tensor (not arbitrary) from this we cannot jump to the 
conclusion that the quantity inside parentheses vanishes. Interchanging the dummy indices 
j and k, we get

 .                    0.k

q r p
p i kj

qr kjij
x x xA A B
x x x

 
− = 

  

∂ ∂ ∂
∂ ∂ ∂

 ...(6)

 Now changing the dummy indices q and r within the parentheses and writing  
Bkj = - Bjk, equation (6) may be written as 

  0.
q

k

r p
p i kj

rq kjij
x x xA A B
x x x

 
− = 

  

∂ ∂ ∂
∂ ∂ ∂

 ...(7)
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Adding (5) and (7), we get

   ( ) ( ) 0.
p

p p i i
qr rq jk kj i

q r
jk

j k
x x xA A A A B
x x x

 
− + = 

  
+

∂ ∂ ∂
∂ ∂ ∂

 ...(8)

This implies that (because the result still holds good when j and k are interchanged),

( ) ( ) 
q r p

p p i i
q jr rq jk kk j i

x x xA A A A
x x x

= ++
∂ ∂ ∂
∂ ∂ ∂

or   ( ) ( ) 
i q r

i i p p
jk p j kkj qr rq

x x xA A A A
x x x

+ +=
∂ ∂ ∂
∂ ∂ ∂

 ...(9)

establishing the tensor character of ( )i i
jk kjA A+ as a mixed tensor of the type (1,2).

 Proved.

36.19  ASSOCIATION OF A SKEW SYMMETRIC TENSORS OF ORDER TWO 
AND VECTORS

We associate the skew symmetric tensor of order two.

  aij = ∈ ijkak ...(1)
The tensor aij is skew symmetric for

  aji = ∈ jlkak = –∈ ijkak = –aij

The relation (1) is equivalent to statements
a23 = a1, a32 = –a1; a31 = a2, a13 = –a2; a12 = a3, a21 = –a3; a11 = 0, a22 = 0; a33 = 0.

On the inner multiplication with Îijm we obtain from (1)

∈ijm aij = ∈ijm ∈ijk ak  ∈ijk ∈pqk = dipdjq – diqdjp

 = 2dmkak  ∈ijk ∈pjk = dipdjj – djpdij

 = 2am when k = m   = 3dip – dip = 2dip

Hence 
1
2m ijm ija a= ∈

This shows that association is one-one.

EXERCISE 36.1

 1. Write down the laws of transformation for the tensors ij
kA  and ij

klmB

 2. Evaluate: (a) j k
i iδ δ  (b) j k

i
l

i iδ δ δ

 3. Show that the velocity of a fluid at any point is a contravariant tensor of rank one.

 4. If i
jA is a mixed tensor of rank two, show that i

jA is also a tensor.

 5.  In an N-dimensional space, how many different expressions are represented by k it
ir

i
k

p
sjA B C ? 

When each expression is written out explicitly, how many terms does it contain?
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 6. If j
k
iA  and pq

rB are tensors, show that ij pi
i iA B   is not a tensor.

 7. If ij
klA is a tensor, show that ii

klA and ij
kkA  are not tensors.

 8. If ijk
lmA  is a tensor, show that , ,ijk ijk ljm

jk kj lmA A A and  lmk
lmA are contravariant vectors.

 9.  Show that any covariant or contravariant  tensor of the second rank can be expressed as the 
sum of a symmetric tensor and an antisymmetric tensor of the same rank and type.

 10.  If a, b, c are three-dimensional vectors, show that their scalar triple product can be written as  
(a × b). c = eijkaibjck, where ai, bi, ci are the cartesian components of a, b, c respectively, and 
summation convention is used.

 11. If ai is any vector, show that eijkaj ak = 0.

   If Ai are the components of an absolute contravariant tensor of rank one, show that i

j

A
x
∂
∂

 are 
the components of a mixed tensor.

 12.  If Aji and Aij are reciprocal symmetric tensors and xi are the components of a covariant tensor 
of rank one, show that Aijx

ixj, = Aijxixj where xi = Aiαxα.
 13.  If the components of a tensor are zero in one co-ordinate system, then prove that the components 

are zero in all co-ordinate systems.

 14.  Show that the expression A(i,j,k) is a tensor if its inner product with an arbitrary tensor jl
kB   is 

a tensor.
 15.  Aij is a contravariant tensor and Bi a covariant tensor. Show that AijBk is a tensor of rank three, 

but AijBj is a tensor of rank one.
 16.  If gij denotes the components of a covariant tensor of rank two, show that the product gij dxi 

dxj is an invariant scalar.

ANSWERS

 1. ,
i j r i j r s t

ij ijpq rq
r rstk klmp q k p q k l m

x x x x x x x xA A B B
x x x x x x x x
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

  2. (a) ( ) j
i i
k bδ δ

Metric Tensor

36.20 EUCLIDEAN SPACE OF THREE-DIMENSIONS

 In the familiar Euclidean space of three-dimensions in rectangular cartesian coordinates the 
distance ds between two neighbouring points (x1, x2, x3) and (x1 + dx1, x2 + dx2, x3 + dx3) 
is given by
   ds2 = (dx1)2 + (dx2)2 + (dx3)2 = dxi dxi, (i = 1, 2, 3). ...(1)
The distance ds is also called the line-element.
 The formula (1) is called the metric of the Euclidean space of three dimensions and it 
contains within itself all the basic elements of the geometry of a rectangular space of 
three dimensions.
 In equation (1) the coefficients of the squares of dx1, dx2 and dx3 are equal to unity 
and no terms like dx1dx2, etc. occur. These properties are, however, due to the use of 
orthogonal cartesian coordinates and disappear if any other coordinate systems are used.
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 If instead of rectangular cartesian coordinates we take the coordinates of the points in 
curvilinear coordinates (e.g. cylindrical or spherical polar coordinates) such as 

( )1 2 3, ,x x x′ ′ ′  then xi are functions of ix′  and idx are linear homogeneous functions of 

the idx′ given by (c.f. §3)

  ( , 1, 2,3)m
i

i
m

x dx
x

dx i m′=
′

=
∂
∂

 ...(2)

 When we substitute these linear functions in (1) we get a homogeneous quadratic expres-
sion in idx′  viz.,

  2
i i

m n
n

x x dx dd
m

s x
x x

 ∂ ∂ ′ ′=   ′∂ ′∂ 
 (Summation over i )  ...(3)

which may be written as

  2 m n
mng dds x dx′ ′ ′=  (m, n = 1, 2, 3) ...(4)

where  (   )
i i

m nmn
x x Summation over i

x x
g ∂

=
′∂

′ ∂
′∂

 ...(5)

 No matter what curvilinear coordinates are used, the distance between two given points 
has the same value, i.e. ds (or ds2) is an invariant.
 The differential expression on the right hand side of (2.4) which represents ds2 may be 
called the metric form or fundamental form of the space under consideration. It may 
also be called the square of the line element.
 Motivated by this, the idea of distance was extended by Riemann, originator of tensor 
calculus, to a space of N-dimensions.

Metric and Fundamental Tensors

36.21 RIEMANNIAN SPACE, METRIC TENSOR

Definition�:�If�the�square�of�the�line�element�ds between two neighbouring points, 
whose coordinates in a VN are xi and xi + dxi,�is�given�by�the�quadratic�differential�form

  ds2 = gijdxidxj, ...(6)
where gij are functions of xi and g = |gij|�≠�0,�the�space�is�said�to�be�Riemannian�space.
 In addition to this we postulate that the line element ds is independent of the coordinate 
system i.e. ds2 is an invariant. It follows from (6) (see theorem 1) that gij is a symmetric 
covariant tensor of the order two. It is called the fundamental covariant tensor or metric 
tensor of the Riemannian space. The quadratic differential form gijdxidxj is called the 
Riemannian metric or simply the metric of the space.
Theorem 1. The fundamental tensor gij is a covariant symmetric tensor of the order two.
Proof : Since gijdxidxj is an invariant, we have

  i j p q
ij pqg dx dx g dx dx=  ...(7)

      =
p q

i j
pq i j

x xg dx dx
x x

∂ ∂
∂ ∂
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or   0.
p q

i j
ij pq i j

x xg g dx dx
x x

 ∂ ∂
− =  ∂ ∂ 

 …(8)

we deduce from equation (8) that

  ( )
p q

ij ji pq qp i j
x xg g g g
x x

∂ ∂
+ = +

∂ ∂
 ...(9)

establishing that (gij + gji) is a covariant tensor of the second order.
 We can write

  ( ) ( )1 1
2 2ij ij ji ij jig g g g g= + + −  ...(10)

 Then ( ) ( )1 1
2 2

i j i j i j
ij ij ji ij jig dx dx g g dx dx g g dx dx= + + −  ...(11)

also, on interchanging the dummy indices on the R.H.S., we get

    ( ) ( )1 1
2 2

i j i j j i
ij ji ij ji ijg dx dx g g dx dx g g dx dx= + + −  ...(12)

Adding equations (11) and (12), we get

  ( )2 i j i j
ij ij jig dx dx g g dx dx= +  ...(13)

 This equation implies that gij is symmetric. Thus combining the two conclusions that  
(gij + gji) is a covariant tensor of the second order and gij is symmetric, we conclude 
that 2gij, or gij is a symmetric covariant tensor of the second order.
 Note : If we compare (1) and (6) we find that in a three dimensional Euclidean space, 
referred to a system of rectangular axes, all the components of fundamental tensor are 
zero except g11 = g22 = g33 = 1
We shall call a N-dimensional space as Euclidean space of N-dimensions if its metric is

  ( ) ( ) ( )
2 2 22 1 2 ...... Nds dx dx dx= + + +   ...(14)

i.e. gij = 0, i ≠ j and gii = 1 (no summation).
Indicator
It is implied that the metric of a Euclidean space is positive definite. i.e.

  ds2 ≥ 0. ...(15)
 In special theory of relativity the metric of the four dimensional space (space-time) is 
given by

  ( ) ( ) ( ) ( )
2 2 2 22 1 2 3 2 4ds dx dx dx c dx= − − − +  ...(16)

 where c is the velocity of light and x4 is the time coordinate. This metric is not positive 
definite, we see that ds2 is positive when x1, x2, x3 are constants along the curves, it is 
zero when, say, x2 and x3 are constants and x1 = cx4, and negative when x4 is constant.

 Thus, in general, for some displacements dxi the form ds2 may be positive and for 
others it may be zero or negative. If ds2 =0, for dxi not all zero, i.e. the two points are 
not coincident the displacement is called a null displacement. A curve along which the 
displacement gijdxi dxj is null despite the fact that the two points are not coincident 
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is called a null curve. For any displacement dxi which is not null, we introduce an 
indicator e, which is +1 or –1, so as to make ds2 always positive, i.e.
  ds2 = e gij dxi dxj …(17)

36.22 CONJUGATE METRIC TENSOR

Since gij is a symmetric covariant tensor of the second order and g = |gij| ≠ 0, we can define

  
( , ) ,ij G i jg
g

=   ...18)

Where G (i,j) is the expression formed by the cofactor of gij in the determinant |gij|.
 If follows that gij is a symmetric contravariant tensor of the second order and is said to 
be the conjugate of gij, i.e. conjugate metric tensor. It is also called the fundamen-
tal contravariant tensor. Hence the fundamental covariant tensor gij and fundmental  
contravariant tensor gij, being conjugate, are related to each other by the equation.

   ik k
ij jg g = δ  ...(19)

36.23 METRIC TENSOR IN CARTESIAN COORDINATES

Show that the metric of a Euclidean space, referred to Cartesian coordinate is given by
ds2 = dx2 + dy2 + dz2

Here we have

ds2 = gijdxidxj = p q
pqg dx d x  …(1)

In Cartesian coordinates

  2 3,  ,  ,x x x y x z= = =  …(2)
By covariant law

 .
i j

pq ijp q
x xg g
x x
∂ ∂

=
∂ ∂

 
2 22 2 3

11 22 331 1 1 1 1.
i j

n ij
x x x x xg g g g g
x x x x x

   ∂ ∂ ∂ ∂ ∂ ∴ = = + +        ∂ ∂ ∂ ∂ ∂     

        
2 2 2x y z

x x x
∂ ∂ ∂     = + +     ∂ ∂ ∂     

        = 1 + 0 + 0 = 1
Similarly,   22 331,  1g g= =

and  12 21 13 31 23 32 0g g g g g g= = = = = =

∴  ( ) ( ) ( )2 2 22 1 2 3
11 22 33ds g dx g dx g dx− − −= + +

    = dx2 + dy2 + dz2

The metric tensor pqg   in cartesian coordinates, is
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1   0   0
0  1   0
0  0   1

pqg
 
 =  
  

 ...(3)

and the conjugate metric tensor pqg , which is the inverse of the matrix(3) is

  
1   0   0
0  1   0
0  0   1

pqg
 
 =  
  

36.24 METRIC TENSOR IN CYLINDRICAL COORDINATES

 Example. Show that the metric of a Euclidean space, referred to cylindrical coordinates 
is given by

( ) ( ) ( )2 2 22 .ds dr rd dz= + +θ

Determine its metric tensor and conjugate metric tensor.
Solution: We have

 ds2 = gij dxi dxj = pq p qg dx dx  ...(1)
In cylindrical coordinates

   1 2 3,  ,  ;  cos ,  sin ,   = x r x x z x r y r z z= = = = =θ θ θ  ...(2)

and ?pqg =

By covariant law

   = .
i j

pq ijp q
x xg g
x x
∂ ∂
∂ ∂

Therefore,

  11 1 1 = 
i j

ij
x xg g
x x
∂ ∂
∂ ∂

    
2 2 21 2 3

11 22 331 1 1 = x x xg g g
x x x

     ∂ ∂ ∂
+ +          ∂ ∂ ∂     

    
2 2 2

 = x y z
r r r
∂ ∂ ∂     + +     ∂ ∂ ∂     

    2 2 = cos sin 0 1.+ + =θ θ  ...(3)

  
2 2 2

22  x y zg ∂ ∂ ∂     = + +     ∂ ∂ ∂     θ θ θ

    2 2 2 2 2 = sin cos 0r r r+ + =θ θ  ...(4)

  
2 2 2

33  x y zg
z z z
∂ ∂ ∂     = + +     ∂ ∂ ∂     
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  = 0+0+1=1 ...(5)

               12 1 2  
i j

ij
x xg g
x x
∂ ∂

=
∂ ∂

1 1 2 2 3 3

11 22 331 2 1 2 1 2 = x x x x x xg g g
x x x x x x

        ∂ ∂ ∂ ∂ ∂ ∂
+ +                ∂ ∂ ∂ ∂ ∂ ∂        

 = x x y y z z
r r r
∂ ∂ ∂ ∂ ∂ ∂        + +        ∂ ∂ ∂ ∂ ∂ ∂        θ θ θ

 = -rcos sin rsin cos 0+ +θ θ θ θ

  = 0 ...(6)
Similarly,
 13 23  0,g g= = and due to symmetric property 21 31 32  0.g g g= = =

Hence,

 ( ) ( ) ( )2 2 22 1 2 3
11 22 33 = ds g dx g dx g dx− − −+ +

      ( ) ( ) ( )2 2 2 = dr rd dz+ +θ  ...(7)

The metric tensor in cylindrical coordinates is

  2

1  0  0

 = 0   0
0  0   1

pqg r

 
 
 
 
 

 ...(8)

Clearly,  2 = pqg g r=  ...(9)

and the conjugate metric tensor ,pqg which is the inverse of the matrix (8), is 

 2

1 0 0

 = 0 1 0
0 0 1

pqg r

 
 
 
 
 
  

 Ans.

36.25 METRIC TENSOR IN SPHERICAL COORDINATES

 Example. Show that the metric of a Euclidean space, referred to spherical coordinates 
is given by

  ( ) ( ) ( )2 2 22 = sinds dr rd r d+ +θ θ φ

Determine its metric tensor and conjugate metric tensor.
Solution: We have

  2 = i j p q
i j pqds g dx dx g d x d x=  ...(1)

In spherical polar coordinates

  1 2 3,  ,  x r x xθ φ= = =

   sin cos ,  sin sin ,  cosx r y r z r= = =θ φ θ φ θ  ...(2)
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We have to find .pqg

By covariant law

 
i j

pq ijp q
x xg g
x x
∂ ∂

=
∂ ∂

Therefore,

 
4

11 1 1

j

ij
x xg g
x x
∂ ∂

=
∂ ∂

   
2 2 21 2 3

11 22 331 1 1
x x xg g g
x x x

     ∂ ∂ ∂
= + +          ∂ ∂ ∂     

   
2 2 2x y z

r r r
∂ ∂ ∂     = + +     ∂ ∂ ∂     

   2 2 2 2 2sin cos sin sin cos 1= + + =θ φ θ φ θ  ...(3)

 
2 2 2

22
x y zg ∂ ∂ ∂     = + +     ∂ ∂ ∂     θ θ θ

   2 2 2 2 2 2 2 2 2cos cos cos sin sinr r r r= + + =θ φ θ φ θ  ….(4)

 
2 2 2

33
x y zg

     ∂ ∂ ∂
= + +     ∂ ∂ ∂     φ φ φ

   2 2 2 2 2 2sin sin sin s cos 0r r= + +θ φ θ φ

   2 2sin .r= θ   ...(5)

 12 1 2

i j

ij
x xg g
x x− −
∂ ∂

=
∂ ∂

   
1 1 2 2 3 3

11 22 331 2 1 2 1 2
x x x x x xg g g
x x x x x x− − − − − −
∂ ∂ ∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂ ∂ ∂

   
x x y y z z
r r r
∂ ∂ ∂ ∂ ∂ ∂        = + +        ∂ ∂ ∂ ∂ ∂ ∂        θ θ θ

      ( )( ) ( )( ) ( )( )sin cos cos cos sin sin cos sin cos sinr r r= + + −θ φ θ φ θ φ θ φ θ θ

      ( )2 2sin cos cos sin sin cosr r= + −θ θ φ φ θ θ

       = 0. (6)
Similarly,
 13 23 0g g= =  and by symmetric property 21 31 32 0g g g= = =

Hence,

 ( ) ( ) ( )2 2 22 1 2 3
11 22 33ds g dx g dx g dx= + +
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   ( ) ( ) ( )2 2 2sindr rd r d= + +θ θ φ  …(7)

The metric tensor pqg in spherical polar coordinates is therefore given by

  2

2 2

1 0 0

0 0

0 0 sin
qpg r

r

 
 

=  
 
 θ

 …(8) 

Clearly,

  g = 4 2sinpqg r= θ  ...(9)

and the conjugate metric tensor pqg ,  which is the inverse of the matrix (8), is

  
2

2 2

1 0 0

0 1 0

0 0 1 sin

pqg r

r

 
 

=  
 
 θ

 Ans.

Example 1. If the metric of a V3 is given by

( ) ( ) ( ) ( )( ) ( )( )2 2 22 1 2 3 1 2 2 35 3 4 6 4 ,ds dx dx dx dx dx dx dx= + + − +

Find (i) g and (ii) gij

Solution: Comparing the given metric, with the metric

  2 ,   ( , 1,2,3)i j
ijds g dx dx i j= =

We find

  
11 12 21

22 23 32

33 13 31

5,  g 3
3,  g 2
4,  g g 0.

g g
g g
g

= = = −
= = =

= = =
Hence,

  
5  3 0

3  3  2
0    2  4

ijg

 
 − =
 −
 
 

 ...(1)

and

  4ijg g= =   ...(2)

To get the conjugate of gij, i.e. the inverse of the matrix equation (1)

 G(1,1) = 8, G(1,2) = G(2,1) = 12, G(2,3) = G(3.2) = –10,

 G(2,2) = 20, G(3,1) = G(1,3) = −6,
 G(3,3) = 6
Since,

 gij = 
( . )G i j
g

, we obtain
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 g11 = 2  , g12 = g21 = 3.

 g22 = 5  , g23 =g32 = 
5
2

−  

 g33 = 
3
2

  , g31 = g13 = 
3
2

−

Hence,

  

32 3
2
53 5
2

3 5 3
2 2 2

ijg

 − 
 
 = − 
 
 − −
  

 Ans.

Example 2. Show that
 (i) (ghj gik − ghk gij) g

hj = (N − 1) gik

 (ii) 
jx

∂
∂
φ  (ghk gil − ghl gik) g

hj = 1ilk g
x x
∂ ∂

−
∂ ∂
φ φ

 g ik; f is a scalar.

 (iii)  If gij and aij are components of two symmetric tensors and g ij a kl − g il a kj 
+ g kj a il − g kl aij = 0

 (i, j, k, l = 1, 2,…., N), show that a ij = α g ij, where α is a scalar.
Solution: We have
   gij g ik = gk

j

 (i) (ghj gik − ghk gij) g
hj = g hj g

hj − g hj ghk g ij 
  = Ng ik − dj

k gij

  = Ng ik − g ik

  = (N − 1) g ik

 (ii) 
jx

∂
∂
φ  (ghk gil − ghl gik) g

hj = hj
hk ilj g g g

xjx
∂ ∂

−
∂∂

φ φ
ghl g

hj gik

   j j
il ikk lg g

xj xj
∂ ∂

= −
∂ ∂
φ φδ δ

   il ikk lg g
x x
∂ ∂

= −
∂ ∂
φ φ

 (iii)  Since gij is the conjugate tensor of the given tensor gij, taking the inner product 
of the given tensor equation by g ij, we have

g ij (gij akl − gil ajk + gjk ail − gkl aij) = 0
or g ij gij akl − g ij gil ajk + g ij gjk ail − g ij a ij g kl = 0
or Na kl − d jl a jk + d i

k ail − b gkl = 0
[Since g ij gil = d il and g ij a ij = a scalar ( = b, say)]
or  Nakl − alk + akl − b g kl = 0
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or  Na kl = b g kl,  [a lk = a kl]

or     a kl klg
N

= =
β

 αg kl,  [α = β/N, a scalar]

or      a ij = αg ij Proved
Example 3. Show that

  (i) g ij g kl dgik = −dg jl  (ii) gij gkl dg ik = − dg jl
Solution: We have

(i) g ij gik = δ  jk ...(1)
On differentiation
 g ij dgik + gik dg ij = 0
or  g ij dgik = − gik dg ij = 0 ...(2)
Taking inner product of (2) by g kl, we get
 g ij g kl dgik = − g kl gik dg ij

  = − dl
i dg ij

  = − dg lj

  = − dg jl (by symmetric property) Proved.
(ii) Relation (1) may be written as
  g ik gij = δk

j
On differentiation
  gij dg ik + g ik dg ij = 0
or  gij dg ik = − gik dgij ...(3)
Taking inner product of (3) by gkl, we get
  g ij gkl dg ik = − g ik gkl dgij
        = − di

l dgij
        = − dglj
        = − dgjl Proved

Associate Tensors

36.26 ASSOCIATE VECTORS

�Definition:�The associate vector of a contra variant vector A j s defined as the inner 
product of the fundaments tensor g ij and A j and denoted by Ai.

Thus Ai = g ij A
j ...(1)

 The covariant vector Ai is the associate vector of the contravariant vector A j and the 
process is called the lowering of the superscript.
In a similar manner we may define the associate vector of the covariant vector Bi by
  B i = g ij Bj. ...(2)
 The contravariant vector B i is the associate vector of the covariant vector Bj and the 
process is called the raising of the subscript.
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Theorem 2. The relation between a vector and its associate is reciprocal.
Proof: Let Ai be a given contravariant vector and Aj be its associate, then
 Aj = gij A

i ...(3)
The associate of the covariant vector Aj is , by definition (say Bi )
 Bi = Aj g ij [substituting (3), after
  = g ij gkj A

k changing the dummy suffix i]
  = di

k A
k = Ai ...(4)

 This show that the associate of the associate is the vector itself and thus establishes the 
reciprocal character. Proved.

36.27 ASSOCIATE TENSORS

 The process of raising and lowering the indices can be performed on tensors of higher 
order. From the tensor Aijk

lm we can from associate tensors like
   A jkrim = gir A

ijk
lm 

 A…k
rslm = gir gjs A

ijk
lm

   Arijk
..m = g rl Aijk

lm

The dot notation is used to indicate the indices which have been raised or lowered.
 The dots may be omitted when there is no scope of confusion, e.g., we may write Apq = 
g ip g jq Aij. It may be noted that an associate tensor of gij is

g pi g qj gij

= g pi δq
i

= g pq

 This shows that the fundamental tensors gij and g ij, besides being conjugate are also 
associate tensors. However, any second.
Order tensor and its associate, like Aij and A ij may not be conjugate as a rude.
Example. Show that A αβ dgαβ = − Aαβ dg αβ

Solution. We know that:- dg jt = −gij gkl dg ik

Taking the inner product by A jl, we get
A jl dgjl = − gij A jl gkl dg ik

    = − A l
i g kl dg ik

    = − A ik dg ik,
Changing the dummy indices, we get the required result
  Aαβ dgαβ = −Aαβ dg αβ Proved

36.28 MAGNITUDE OF A VECTOR

 The fundamental quantities required for any geometrical measurement are length and 
angle. These can be defined and calculated with the help of the metric tensor and that 
is why the metric tensor often refers to as geometry of the space.
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�Definition:�The magnitude of a contravariant vector Ai, which is usually denoted by A, 
is defined by the square of length or norm of vector Ai as
 (A)2 = e(A) gij A

iA j, ...(5)
or (A)2 = e(A) Aj A j ...(6)
 where e(A) is the indicator +1 or –1, which make A real. The magnitude A is a invariant. 
In Euclidean space V3 referred to rectangular cartesian coordinates, there is no difference 
between contravariant and covariant vectors and e(A) = +1, the relation (2.56) reduces to 
the familiar definition of the magnitude of a vector, viz.,

(A)2 = (A1)
2 + (A2)

2 + (A3)
2.

Similarly, the magnitude B of the covariant vector B I is defined by
 (B)2 = e(B) g ij Bi Bj ...(7)
or (B)2 = e(B) B jBj ...(8)

Unit Vector: A vector whose magnitude is unity is called a unit vector.
It may be noted that

ds2 = eg ij dx idx j

or    1 
i j

ij
dx dxeg
ds ds

  
=     

  
 ...(9)

 This show that (dxi/ds) is a unit contravariant vector. It is a unit tangent vector to the 
curve in VN.
Null Vector: A vector whose magnitude is zero is called a null vector.
For example the tangent vector to a null curve is a null vetor.
Note: The indicator e(A) may be dropped, if it is obvious that (A)2 is positive.

36.29 ANGLE BETWEEN TWO VECTORS

In familiar vector algebra the scalar product of two vectors A and B is defined as
 A.B = AB cos θ ...(10)
where θ is the angle between A and B.

Hence, cos θ 
.BA

A B
=  ...(11)

Motivated by this the angle between two vector Ai and Bi in Riemannian space is defined by

 cos θ
( )( ) ( )

i
i

l m
A l B m

A B

e A A e B B
=

    
( )( )( ) ( )8

i j
ij

l p m q
A lp B mq

g A B

e g A A e B B
=  ...(12)

If the two vectors Ai and Bi are unit vectors, then
 cos θ = AiBi = g ij A

i B j = Ai B
j. ...(13)
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 Orthogonal Vectors: Two vectors are said to be orthogonal if the angle between them is 
a right angle, i.e. cos θ = 0. Hence it follows from (12) that the necessary and sufficient 
condition for orthogonality of two vector Ai and Bi is
 gij A

iBi = 0 ...(14)
or     AiBi = 0 ...(15)

 Note: We do not define the angle between two vectors, when one or both of them happens 
to be null vector. However, (14) is still taken as the definition of orthogonality of two null 
vectors. It may be noted that for a null vector dxi

 gij dxidx j = 0. ...(16)
This show that the null vector is self-orthogonal.
Theorem 3. The angle between two unit vectors Ai and Bi , in a VN,�is�defined�by

cos θ = gij A
iBj.

Show that cos θ ≤ 1, if the metric of the Riemannian space VN�is�positive�define.
 Proof: If the metric of the Riemannian space is positive definite then the magnitude of 
the vetor lAi + μBi is greater then or equal to zero for all real values of l and μ, i.e.,
  gij (l Ai + μBi) (lAj + μ Bi ) ≥ 0, ...(17)
for all real value of l and μ.
Hence, gij (l

2 Ai Aj + lμBi Aj + lμAi Bj + μ2 Bi Bi) ≥ 0
or  l2 + lμ cos θ + lμ cos θ + μ2 ≥ 0
or  (l + μ cos θ)2 + μ2 (1 – cos2 θ) ≥ 0 ...(18)

Since this is true for all real value of l and μ, it follow that
1 – cos 2 θ ≥ 0

i.e.        cos θ ≤  ...(19)
Hence the proposition.
 Note: If the metric is not positive then the angle between two real unit vectors need not 
be real.
 Example 1. If Xij are components of a symmetric covariant tensor and ui, vi are unit 
vectors orthogonal to wi and satisfying the relations:

(Xij – ωgij) u i + ρwj = 0
(Xij – ωʹgij) v i + ρʹwj = 0

where ω ≠ ω′, prove that ui and vi are orthogonal, and that
Xij u

i vi = 0.
Solution: Since the unit vectors ui, vi are orthogonal to wi we have
     ui wi = 0, ...(1)
     vi wi = 0. ...(2)
Taking the inner product of the given relation

(Xij – ωgij) u
i + ρwj = 0,

With vi and using (2), we get
    (Xij – ωgij) u

ivi = 0. ...(3)
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Similarly, the inner product of the second relation
    (Xij – ωʹgij) v

i + ρʹwj = 0
with uj and using (1), we get
  (X ij – ωʹgij) v

iuj = 0. ...(4)
Since X ij and g ij are symmetric tensors, interchanging the suffixes I and j in (4), we get
  (X ij – ωʹgij) v

jui = 0. ...(5)
Subtracting (5) from (3), we find
  (ω – ωʹ) gij u

i v j = 0
This implies
  gij u

i v j = 0; as ω = ωʹ ...(6)
i.e. ui and vi are orthogonal vectors.
Further, from (5) and (6) we conclude
  Xij u

i v j = 0. Proved.
 Example 2. In a three-dimensional coordinate system show that the angles between the 
coordinate curves are given by

cos θ12 
13 2312

13 23
11 22 11 33 22 33

,cos ,cos
g gg

g g g g g g
= = =θ θ

Solution: Along the x 1 coordinate curve, x2 = cont. and x3 = cont. Therefore,
ds2 = g11(dx1)2,dx2 = 0, dx3 = 0.

or   
1

11

1dx
ds g

=  ...(1)

 Thus a unit tangent vector, which is a contravariant vector along the x 1 – curve has the 

components 
11

1 ,0,0
g

 
 
 
 

 and if we denote it by Ar
1, then

   1 1
11

1r rA
g

= δ  ...(2)
where r = 1, 2, 3.
Similarly, the components of the unit tangent vector along the x2–curve are given by

   2 2
22

1r rA
g

= δ  ...(3)

and along the x3–curve by

   3 3
33

1r rA
g

= δ  ...(4)

 Now, the angle between the coordinate curves x1 and x2 is the angle their unit tangent 
vectors (2) and (3):
Hence,  cos θ12 = gpq A

p
1 A

q
2

   = gpq δ
p
1 δ

q
2 

12

11 22 11 22

1 g
g g g g

=   ...(5)
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Similarly,

  cos θ13 
13 23

23
11 22 22 22

and cos
g g

g g g g
= =θ   ...(6)

Example 3. In an orthogonal coordinate system V3 show that

 (i) g12 = g23= g31 = 0  (ii) g11 2211 22
1 1g

g g
= =  and g33 33

1
g

=

Solution: (i) In the orthogonal coordinate system
θ12 = θ23 = θ13 = 90°

Therefore, from (5) and (6) it follows that
 g12 = 0, g13= 0 and g23 = 0 ...(1)
 (ii) We know that
   θgij g jk = δk

i ...(2)
Let k = i = 1, then

g1j g j1 = δ1
1

or  g11 g
11 + g12 g

21 + g13 g
31 = 1

or  g11 g
11 + 0 + 0 = 1, [using (1)]

Therefore,   g11 11
1

g
=   ...(3)

In a similar manner, by taking k = i = 2 and k = i = 3 respectively, we get

  g22 22
1

g
=  and g33 33

1
g

=  ...(4)

Example 4. Show that the angle θ between the vectors Ai and Bi is given by

sin2 θ 
( )( ) ( )

( ) ( )

h i j k
A g hi jk hk ij

h i j k
A B hi jk

e e g g g g A A B B

e e g g A A B B

−
=

Solution: We have, be definition

  cos θ 
( ) (B)

i j
ij

h i j k
A hi jk

g A B

e g A A e g B B
=   ...(1)

Therefore,

  cos2 θ 
( )( )

( )( )( ) (B)

i j h k
ij hk

h i j k
A hi jk

g A B g A B

e g A A e g B B
=

 where it is kept in mind that the dummy suffix, in multiplication, should not be repeated 
more than twice.
Hence,        sin2 θ = 1 – cos 2 θ

( ) ( )
1

i j h k
ij hk

h i j k
A B hj jk

g g A B A B

e e g g A A B B
= −
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( )( ) ( )

( ) ( )

i j h k
A B hj jk ij hk

h i j k
A B hj jk

e e g g g g A B A B

e e g g A A B B

−
=  Proved.

Example 5. If Ai and Bi are orthogonal unit vectors, show that
(ghj g ik – g hk g ij) A

h BiAjBk = 1
Solution: Since A i and Bi are orthogonal unit vectors, we have
    gij A

iBj = 0 and ghj A
h Ai = 1,

  gjk B
j Bk = 1 

Now, (ghj gik – ghk gij) A
hBiAjBk 

 = ghj A
h Aj gi k B

i Bk – g hk A
h B k g ij B

i Aj

 = (1) (1) – (0) (0)
 = 1 Proved.

 Example 6. Prove that (1,0, 0, 0) and ( )2,0,0, 3/c  and unit vectors in the V4 with 
the metric

ds2 = − (dx1)2 − (dx2)2 − (dx3)2 + c2 (dx4)2

Show also that the angle between these vectors is not real.

Solution: Let, Ai = (1, 0, 0, 0) and Bi = ( )2,0,0, 3/c

Also for he metric
 ds2 = − (dx1)2 − (dx2)2 − (dx3)2 + c2 (dx4)2

 g11 = −1, g22 = −1, g33 = −1, g44 = c2

and g ij = 0, i ≠ j
Now, (A)2 = e (A) g ij A

i Aj =− g 11 A
1 A 1 =1

and (B)2 = e (B) g ij B
i Bj

    = e (B) { g 11 B
1 B1 + g 44 B

4 B4}

    2
( ) 2

32Be c
c

 = − + 
 

    = ( + 1) ( − 2 + 3) = 1
Hence, A i and Bi are unit vectors.
Further,       cos θ = gij A

i Bj

 = g 11 A
1 B1, other terms being zero by virtue

 = − 2  of the given values of Ai, Bi and g ij

i.e.  cos θ  = 2 > 1
This show that the angle θ is not real. Proved

Principal Directions

36.30  PRINCIPAL DIRECTIONS FOR A SYMMETRIC COVARIANT TENSOR OF 
THE SECOND ORDER

 Let Aij be the components of a symmetric covariant tensor of the second order. Since Aij 
can be written as a square matrix; we consider the determinantal equation
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  Aij − lgij  = 0, ...(1)
which is of degree N in l.

By the covariant law, we have

 Aij 
p q

pqi j
x x A
x x

∂ ∂
=
∂ ∂

and gij 
p q

pqi j
x x g
x x

∂ ∂
=
∂ ∂

Hence, in a new coordinate system 
i

x , the equation (1) transform to

  ( ) 0
p q

pq pqi j
x x A g
x x

∂ ∂
− =

∂ ∂
λ

or   0
p q

pq pqi j
x x A g
x x

∂ ∂
− =

∂ ∂
λ

or   0pq pqA g− =λ  ...(2)

Since, 0
p q

i j
x xJ
x x

∂ ∂
= ≠

∂ ∂
 ...(3)

 The equations (1) and (2) are of the same form and hence the N-roots  
l(k) (k = 1, 2,…, N ) of this invariants. The parentheses in k emphasise that it has no 
tonsorial significance.
Let l(k) is a simple root (not repeated) of the equation (1) then the equations
   (A ij − l (k) g ij) L

i
(k) = 0, ...(4)

 which are N in number, determine the values of N-components Li
(k). We shall now show 

that  Li
(k) are the components of a contravariant vector.

 Since the tensor (Aij − l(k) gij) is not arbitrary, we cannot apply Quotient law to estab-
lish the tensor character of  Li

(k). Therefore, changing to the coordinate system 
i

x  the 

equation (4) may be written as

        ( )( ) ( ) 0
p q

i
pq k kpq i j

x xA g L
x x

∂ ∂
− =

∂ ∂
λ   ...(5)

Taking inner multiplication by 
j

r
x

x

∂

∂
 yields

  ( )( ) ( ) 0
p

q i
pq k r kpq i

xA g L
x

∂
− =

∂
λ δ

or  ( )( ) ( ) 0
p

i
pq k kpr i

xA g L
x

∂
− =

∂
λ  ...(6)
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 These equations, which are N in number, determine the values of the N components of 

the entity ( )

p
i
ki

x L
x

∂
∂

which we represent by ( )
p
kL  in the coordinate system 

i
x .

Thus, ( ) ( )

p
p i
k ki

xL L
x

∂
=
∂

 ...(7)

This shows the Li
(k) are the components of a contravaiant vector.

 The equation (4) implies that without loss of generality the components Li
(k) .may be taken 

as the components of a unit vector.
Hence,
  e(k) gij L

i
(k) L

j
(k) = 1

or  gij L
i
(k) L

j
(k) = e(k) ...(8)

where e(k) is the indicator corresponding to the vector Li
(k) .

Let l (M) is another simple root of the equation (1), which is not l(k) , i.e.
l (M) ≠ l(k) ...(9)
 Then the components of the corresponding contravariant unit vector Li

 (M) are given by 
the equation
  (Aij − l (M) g ij) L

i
(M) = 0 ...(10)

In this case
  gij L

i
(M) L j(M) = e(M) ...(11)

Now, take the inner multiplication of (2.86) by Lj
(M) and that of (10) by Lj

(k) we find
  Aij L

i
(k) L j(M) − l(k) L

i
(k) L j(M) = 0 ...(12)

  ( ) ( ) ( ) ( ) ( ) 0i j i jij M k M ij M kA L L g L L− =λ  ...(13)

Since, Aij and gij are both symmetric the equation (13) may be written as

  ( ) ( ) ( ) ( ) ( ) 0,i j i j
ji M k M ji M kA L L g L L− =λ

Then changing the dummy suffixes i and j, we get

  ( ) ( ) ( ) ( ) ( ) 0.j i j i
ij M k M ij M kA L L g L L− =λ  ...(14)

Subtracting (14) from (12), we get

  ( ) (k) ( ) (M) 0.i j
M ij kg L L  − =   λ λ  ...(15)

Since, ( ) (k)M ≠λ λ we have

  ( ) (M) 0.i j
ij kg L L =  ...(16)

 This shows that the two unit vectors ( )
i

kL and (M)
iL corresponding to the two different 

roots, are orthogonal.
 Thus we conclude that if all the N roots of the equation (1) are real and distinct, then 
the corresponding N unit contravariant vectors, determined by the covariant symmetric 
tensor Aij are mutually orthogonal.
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 The directions of these N unit vectors at a point, which are mutually orthogonal, are called 
the principal directions determined by the covariant symmetric tensor Aij. The condition 
for the existence of the real principal directions is that the roots of (3) are real, which 
will be satisfied if the metric of the space is positive definite.
 In Euclidean space of N-dimensions, the metric of the space is given by (previ-
ous section) and the components of the fundamental tensor gij form the N × N unit  
matrix, i.e. [gij] = I.   ...(17)
 Therefore the roots of the equation (1) in this case are eigen values of the matrix Aij and 
the principal directions are the directions of the eigen vectors.
 If Aij = lgij at a point,  then the principal directions are indeterminate at that point. If  
Aij = lgij at all points of a space VN, the space is said to be homogeneous with respect 
to the symmetric tensor Aij.
 Example 1. Show that the principal directions at a point for the symmetric tensor Aij 
correspond to the maximum and minimum values of  l defined by

  
i j

ij
l m

lm

A L L

g L L
=λ  

Solution: We are given that

  
i j

ij
l m

lm

A L L

g L L
=λ  ...(1)

or i j l m
ij lmA L L g L L= λ

   ( ) 0.ij
i j

ijA g L L− =λ  (l, m are dummy suffixes) ...(2)

For maximum or minimum values of  l, we have

  0.jL
∂

=
∂
λ

 ...(3)

Differentiating (2) with respect to Lj and using (3), we get

   ( )2 0ij
i

ijA g L− =λ

or     ( ) 0.i
i

ij jA g L− =λ  ...(4)

 Equation (4) implies that the directions Li determined by Aij are the principal directions, 
which is the required result.
Example 2. Prove that

  (( ) ( ) ) ( )
i j

ij k k k keA L L = λ  [No summation over (k)]

and   ( ) ( ) 0.i j
ij k mA L L =

Solution: From equation (4), we conclude that

 ( )( ) ( ) ( ) ( ) .ijk
i j i j

ij k k k kA L L L Lg= λ

Now, using the relation (8), we get

  ( )( ) ( ) ( ) .
i j

ki kj k kA L eL = λ
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Similarly, from (16), we have

  ( )( ) ( ) ( ) ( )
i j i j

ij k m ij k mkA L L g L L= λ

and now using the relation (16), we get the required result, viz,

  ( ) ( ) 0.i j
ij k mA L L =  Proved

36.31 PERMUTATION SYMBOLS AND TENSORS

 The permutation symbol is written as eijk and in the Euclidean three dimensional space 
V3 is defined by
  0  , if any two of i, j, k are equal
 eijk = { 1, If i, j, k is a cyclic permutation ...(1)
  –1 , if i, j, k is anti-cyclic permutation

Thus,
e112 = e113 = e221 = e223 = e331 = e332 = e111 = e222 = e333 = 0
e123 = e231 = e312 = 1
e132 = e321 = e213 = –1 ...(2)

We now introduce the entities defined by

  
1; ,ijk

ijk ijk ijkge e
g

= =ε ε  ...(3)

 where g is the determinant of the metric tensor gij of the space referred, which may not 
necessarily be rectangular. We shall now prove that although eijk is not a tensor, in gen-
eral, both ijkε  and ijkε are tensors, covariant and contravariant respectively, and are called 
permutation tensors in three dimensional space. The generalization to higher dimen-
sions is possible. It is clear from the definitions of eijk, ijkε and ijkε that they are skew-
symmetric in all their indices.
Theorem 4. The entities defined by (permutation tensors)

 
1, ,ijk

ijk ijk ijkge e
g

= =ε ε

 are respectively covariant and contravariant tensors, where eijk is a permutation symbol 
and g is the determinant of the metric tensor gij.

Proof  : We see that

   1 1

i j k j i k

ijk jikm n m n
x x x x x xe e
x x x x x x
∂ ∂ ∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂ ∂ ∂

   (interchanging the dummy indices i and j)

      
i j k

ijk m l n
x x xe
x x x
∂ ∂ ∂

= −
∂ ∂ ∂

   (using the skew-symmetric property of ijke )
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 This show that 
i j k

ijk l m n
x x xe
x x x
∂ ∂ ∂
∂ ∂ ∂

is skew-symmetric in l and m,

Similarly, it can be shown that it is skew-symmetric in all l, m and n. But this expres-

sion, apart from sign, is the Jacobian determinant .
r

s
x
x
∂
∂

From the theory of determinants, it 
therefore follows that

  
i j k r

ijk lmnl m n s
x x x xe e
x x x x
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

 ...(4)

Now, by covariant law we know that

  .
i j

pq ijp q
x xg g
x x
∂ ∂

=
∂ ∂

Therefore, 
i j

pq ijp q
x xg g
x x
∂ ∂

=
∂ ∂

or  
2

.
r

s
xg g
x
∂

=
∂

 ...(5)

Let, in the coordinate system ,ix−  the entity ijkε be denoted by lmnε  where

lmn lmnge=ε  ...(6)

Now, using (2.017) and (2.108), from (2.109) we find

  ijk e
i j k

lmn l m n
x x xg
x x x
∂ ∂ ∂

=
∂ ∂ ∂

ε

        
i j k

ijk l m n
x x x
x x x
∂ ∂ ∂

=
∂ ∂ ∂

ε  ...(7)

This shows that ijkε is a third order covariant tensor.

Also, writing elmn for elmn and ijke− for eijk we have

  
1 r lmn

lmn lmn
s

x ee
g x g

∂
= =

∂
ε  [using (5)]

  
1 l m n

ijk
i j k

x x xe
g x x x

− ∂ ∂ ∂
=

∂ ∂ ∂
 [using (4)]

   
l m n

ijk
i j k

x x x
x x x

− ∂ ∂ ∂
=

∂ ∂ ∂
ε  ...(6)

This shows that lmnε  is a contravariant tensor of the third order. Hence the  proposition.
 Remark: In rectangular cartesian coordinates g = 1, therefore the permutation tensors 
have components as those of permutation symbols and there is no distinction between 
contravariant and covariant components, i.e.
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   .ijk
ijk ijke= =ε ε

Example. Prove that

  g g lmn
ijk il jm kng=ε ε

    
1g g g glmn

il jm kn il jm kn lmng g e
g

=ε  [By definition (3)]

    =
1

il jm kn lmng g g e
g

 ...(7)

But, 1 2 3 2 3 1 3 1 2g g g g g g g gil jm kn lmn i j k i j k i j kg e g g g= + +

  1 3 2 2 1 3 3 2 k1g g g g g gi j k i j k i jg g g− − −

  
1 2 i3

1 2 j3

1 2 k3

    g
    g

    g

i i

j j

k k

g g
g g

g g

=

  .ijkge=  ...(8)

Combining (7) and (8), we get

  g g .lmn
il jm kn ijk ijkg ge= =ε ε  ...(9)

Hence the proposition. Proved.

36.32  ALTERNATING TENSOR

Consider an abstract entity of order 3 and dimension 3 such that its components relatively 
to every system of co-ordinate axes are the same and given by ∈ijk where
  0 if any two of ijk are equal

 ∈ijk = {1  if ijk is a cyclic permutation 1,2,3
  –1 if ijk is an anti cyclic permutation 1,2,3

Thus for unequal values of the suffixes, we have

  ∈123 = ∈312 = ∈231 = 1,  ∈132 = ∈213 = ∈321 = –1

Let OX1, OX2, OX3, 321, ,OX OX OX  be two systems of rectangular axes. We want to 

show that ∈ijk is a tensor of order three. Consider, now expression

lip ljq lkr∈ijk

 For any given system of values p, q, r, the expression (1) consists of a sum of 33 = 27 terms 
of which 6 only are non-zero, for the other 21 terms corresponds to a case when atleast 
two of i, j, k are equal. The expression (1) can be written as in the form of determinant

  
1 2 3

1 2 3

1 2 3

    

    

    

p p p

q q q

r r r

l l l

l l l

l l l

=
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From properties of determinants,
  0 if any two of p, q, r have equal value.

Above determinant = { 1 if p, q, r is a cyclic permutation of 1, 2, 3
  –1 if p, q, r is a non cyclic permutation of 1, 2, 3

 Thus we see that the components of the given entity in any two systems of rectangular 
axes satisfy the tensorial transformation equations so that the entity is a tensor. This tensor 
is known as Alternate tensor. Thus, we see alternate tensor is same as skew-symmetric 
tensor. ∈ijk, always denote the alternating tensor.

EXERCISE 36.2
 1. Find g and gij corresponding to the metric

  ( ) ( ) ( )2 2 22 1 2 3 1 2 2 35 3 4 6 4 .ds dx dx dx dx dx dx dx= + + − +  

 2. Find the values of g and gij, if 

  ( )
2

2 2 2 2 2
2

2

sin ,
1

drds r d d
r
R

= + θ + θ φ

−

 where R is constant

 3. Prove that for an orthogonal co-ordinate system

  (a) g12 = g23 = g31 = 0 (b) 11 22 33

11 22 33

1 1 1, ,g g g
g g g

= = =

 4.  Surface of a sphere is a two dimensional Riemannian space. Find its fundamental metric tensor. 
If a be the fixed radius of the sphere.

 5. If the covariant vectors ei are orthogonal, show that

  (a) gij is diagonal,  (b) 1/iig gii=  (no summation),  (c) 1 / .i
iε = ε  

 6. Prove that ( )( ) .i j i
j k kε ⋅ ε ε ⋅ ε = δ

ANSWERS
 1. g = 4, g11 = 2, g22 = 5, g33 = 5, g12 = 3, g23 = –2.5, g13 = –5

 2. ( )
4 2 2

11 22 33
2 2 22 2

2

sin 1 1; 1 , , , 0
sin1

ijr rg g g g g i j
r
R

R r r
θ

= = − = = = ≠
θ

−

 4. g11= a2, g22= a2sin2 q, g = a4sin2 q, 
22 12 21

2
1

2 2
1 1 1, , 0 .

sin
g g

a
g

a
g = ==

θ
=
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37.1 SPECIAL THEORY OF RELATIVITY

Michelson Morley experiment and sits out come;
 The Michelson Morley experiment was supposed to be one of the most famous null ex-
periment to detect the presence of other. The experiment bad helped Lorentz, Fitzgerald, 
Poincare to but their observations and also helped Einstein to describe. The propagation 
of light thought space and time.
 Earlier it was proved that sound needs a medium (water, air, etc) to travel from one wave 
to another and in 1864 James clerk Maxwell proved that light is an electromagnetic wave 
and thus it was assumed. that there must exist an other which helps in propagation of light 
wave. It we assumed that other exists everywhere and is on effected  by the Matter. The 
Michelson - Morley, was conducted in the year 1887 to select the of existence of ether.
 The experiment was con wet with the help of two mirrors M, sm. The beam splitter and 
with a light source and a telescope to observe the interference pattern.

Basis of the experiment:
The experiment was conducted in two stages:

(1) Which the mirrors are at rest position 

L2

L1

M2

Light
source

M1

Telescope

Let us taken, L1 = L2 = L

The time taken by light beam for both arms is 2t
c

=

Special Theory of  
RelativityCHAPTER

3737
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(ii) Where the  objects (Mirrors) started moving with a velocity  v w. r. t other them 

L

C

D
A

BB
M1M1

M2
E

Beam
splitter

Speed of light

Speed of objects

C

V

Light
source

Let us assume that 

Time taken by ray from A to B = 1
1t

Time taken by ray from A to B 
Then from B to C = t1

⇒	 1 1
1 2

tt =

Also AB = 1
1ct

 AB = 1
1ct

 AD = 1
1vt

In r + ∠ d ∆ABD
 AB2 = AD2 + BD2

⇒ C2 1
1t = V2 

21
1t + L2

⇒ L2 = (C2 − V2) 
21

1t

⇒ L2 = 
21

1t (C2 − V2)

Also 1
1 2 2

Lt
C V

=
-

Also t1 = 2 1
1t

⇒ 1
1 2 2

2Lt
C V

=
-

⇒ 1 2

2

2Lt
VC
C

=

1-

Now we calculate the time taken by ray w. r. t M2

The time taken is

 
2

CE EC
Relativespeed Relativespeed

t = +
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1

L Lt
C V C V

= +
+ −

2 2 2

2CL
C V

t⇒ =
−

2

2 2 2

2L C,
C C V

t⇒ =
−

 

2 2

2

2L 1,
C V1

C

t⇒ =
 
− 

 

The time difference will be 

 ∆t = t1− t2

 

11

11

2 2

11
VV CC CC

= −
 
−−  

 

 

22

22

2L 1 1
C VV 11 CC

t

 
 
 = −
  

− −  
   

On rotating the positive of mirrors by 90° we get.

 

1
22

22

2L 1 1
C VV 11 CC

t

 
 
 = −
  

− −  
   

Now the time difference is

1
2 2

2 2

2L 1 1
C V V1 1C C

t t

 
 
 ∆ − ∆ = −
 
− − 

 

 

21

21

2 1 1

11

L
C VV

CC

 
 
 − −
  

− −  
   

1 1/22 2

2 2

2L V V1 1
C C C

− −     = − − −        
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11/22 2

2 2

2L V V1 1
C C C

− −     − − − −        

Using binomial expansion and negleeting the higher times we get 
2 2 2 2

1
2 2 2 2

2L V V V V1+ 1+ + +1
C C 2C 2C C

t t
 

= ∆ = − − − 
 

2
1

2

2L V.
C C

t t  = −∆  
 

2

2

2L V
C C

T  =  
 

We know that

Frequency =
C
λ

C λγ⇒ =

C
T
λ

⇒ =

T
C
λ

⇒ =

2

2

2 .L C
C CV

λ
⇒ =

2

. CL
V

λ
α

 ⇒ =  
 

Where λ
γ

 = path difference.

⇒ Interference bringe will shift after a path difference of λα  .
The value of L was taken as 11m
λ = 5.5×10−7m

4  10V
C

−=

2

. . 0.4CL
V

α
λ

 ⇒ = 
 

  It shows 40% shift in interference bringe but actually no shift food hence the theory 
of existence of ether was nullified.

37.2 FUNDAMENTAL POSTULATE OF EINSTEIN THEORY OF RELATIVITY

(1)  The fundamental laws of physics are of the same form in all inertial frames of  
reference.
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(2)  The speed of the light is same in all inertial frames of reference, regardless of the 

motion of the source relative to the observer.
 for Einstein in all frames (space-time) co-ordinates are Relative or changable.

37.3 LORENTZ’S TRANSFORMATION

 “These are the equations which enable us to find the relation between the space and the 
time co-ordinates of an event in two different inertial-frames in uniform relative motion 
w.r.t each other, in accordance with the Postulate of special Theory of Relativity.” 

r

S

o
x

z

y S�

�

o�

z�

� (uniform)

P

r�
�

x�

(x, y, z t)

(x , y , z t )� � � �

Both are inertial frame.
 Suppose  t = t′  = 0 at O, O′ , when they coincide then a flash of light is sent out 
from ‘O’ along x-axis in wave-front. The light wave will Travel outward in all  
direction with speed ‘C’ and hence will be an expanding sphere, At any time ‘t’, to the 
observer of frame ‘S’, at any time t, the light wave will appear a Sphere of Radius ‘ct′,  
(c → in all frame is constant).

Whose equation ( )1/22 2 2x y zOPt
C C

+ +
= =  

⇒ x2 + y2 + z2 = c2t2 ...(1)

and ( )1/22 2 2x y zO Pt
C C

′ ′ ′+ +′
′ = =

⇒	 2 2 2 2 2x y z c t′ ′ ′ ′+ + =  (2)

According to Gallilean Transformation
 , , ,  x x vt y y z z t t= − =′ =′ ′ =′

So from equation (2) 2 2 2 2 2( )x vt y z c t− + + =  

⇒	 2 2 2 2 2 2 22x v yxvt z c tt+ + + =− 	 ...(3)

 Here equation (3) not resembles with (1) Here (−2xvt + v2t2) is extra factor. So Gallilean 
Transformation are not satisfied. Now from the Property of Homogenity and Isotropy 
of the free space.

(1) Transformations should be linear and simple

(2) at v << c these Transformation change in Gallilean Transformation
 ( )x k x vt′ = −  ...(4)

from (1)st Postulate all laws in nature same so
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 ( )x k x vt′ ′= +  ...(5) and y y′=  and z z′=  ...(6)

from (4) & (5)  ( )x k x vt′ ′= +

 ( )x k xk vtvt ′+= −    

 ( )2x k x v kvt t= − + ′  ⇒	 ( )2 21t k v kk t xv ′ = + −

⇒	
( )21 k xt kt

k v

−
=′ +  or 2

1 1 xt k t
vk

  = + −    
′  ...(7)

from (2)nd Postulate C is same in all frames so

 x = ct, x ct′ ′=  ...(8)

from (4), (7), (8) so

 
2

1( ) 1xk x vt ck t
v k

  − = + −    

or ( )2

11 1ckx ckt kvt kt c v
v k

  − − = + = +    

 
ct 2

11 1 ct
v k
c  − − =    

1 v
c

 + 
 

 

2

2 2 2

1 11 1c v v
v ck k c
 − = ⇒ = − 
   

⇒ 
2 2

1
1 /

k
v c

=
−

 is never negative because v << c.

from (7) 
2

2 21 1v x vxt k t k t
vc c

    ′ = + − − = −       

⇒	
2

2 2

/
1 /
t vx ct

v c
′ −
=

−
So Lorentz Transformation equations are

Transform S to S′is

2

2 2 2

2

,  , ,
1 /1

vxtx vt cx y y z z t
v v c
c

−− ′′ ′= = =
−

′=

−

Now take Lorentz Inverse Transformation equations are
2

2 2 2

2

,  , ,
1 /1

x vt t vx cx y y z z t
v v c
c

′ ′ ′+ +′= = = =
−

′

−

′
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If v << c so 
2

2 1,v
c

<< so they change in to Gallilean Transformation

 Numerical: Prove that the spherical wave-front of light is Invarient under Lorentz’s 
Transformation.
or      x2 + y2 + z2 − c2t2 = 0.
⇒ x′2 + y′2 + z′2 − c2t′2 = 0

 

2
22

2 2 2

2 2 2
2

0
1 /1

x vt t vx cy z c
v v c

c

 
   − −

+ + − =   
−  −

 

 

( )
2

2 2
2

2 2
2

2

0.
1

vxx vt c t
c y z

v
c

 − − − 
  + + =

−

⇒ 
2 2 2 2x v t xvt+ −

2 2
2 2

2 2v xc t xvt
c

− − +
2 2

2 2 0
1 /

y z
v c

+ + =
−

⇒ 

2 2
2 2 2

2 2
2 2

2 2

1 1
0

1 /

v vx c t
c c

y z
v c

   
− − −   

    + + =
−

⇒ x2 − c2 t2 + y2 + z2 = 0. Prove that.

38.4 Consequences of Lorentz Transformation
1. Length contraction or Lorentz- Pitzerland Contraction 2. Time dialation
3. Transformation of velocities or Addition of velocities 4. Transformation of Acceleration
5. Relativity of Simultanity     6. Relativity of mass
7. Mass – Energy Equivalance.

1. Length contraction
y

S

Rod

x
x1 l0 x2

fixed

z

y� S�

�

x1� l x�2

x�

z�

Consider a Rod lying at rest along x-axis of S frame, so
Proper length of Rod l0 = x2 – x1
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 Now we see measurement in S′ frame which are going in +ve direction from S with 
velocity ‘V’ →

So observe length 2 1l x x′ ′= −

Here 1 2
1 22 2

2 2

,
1 1

x vt x vtx x
v v
c c

′ ′+ +
= =

− −

′ ′
 

So 2 1
2 1 2 21 /

x xx x
v c

′

−

′−
− =  ⇒ 0l l= γ  l0 > l 

2

2

1

1

         or 1

v
c

 
 
 ∴γ =
 

− 
 

γ >

But in perpendicular directions ,y y z z=′ ′ =  no change in length
 Thus length of the Rod in all other frame of Reference in uniform motion with respect 
to the frame in which the Rod is at Rest, is Shorter than its Proper length.
Example.  A Sphere will look like as a spheroid due to decrease in its diameter  

Parallel to x-axis.
Sphere Spheroid

(S )�(S)

2. Time-dilation
(Relativity of time)

Clock

t , t1 2

S

y

x

z

�t = t – t2 1

� =

S�

�

t , t1 2� �

Clock

x�

z�

� � �t = t – t0 2 1

0� =

y�

 Consider a clock placed at the O paint x’ in the frame S′ moving with uniform velocity 
‘v’ along x-axis with respect to frame ‘S′. Suppose at any instant, observer of frame S’ for 
which clock is at rest, have time 1t ′  So the observer of frame ‘S’ will find the time to be

 

1 2

1 2

21

vxt
ct
v
c

′
+

=

−

′
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 If some time later, the observer of frame S’ notes the time as 2t ′  the observer of frame 

S will record it as 
2

2 2

2

2

1

vxt
ct
v
c

′
+

=

−

′

So 
02 1

2 1 0 02 2

2 2

 and 
1 1

t tt t y
v v
c c

′ ′ τ−
− = ⇒ τ = = τ τ > τ

− −

 So time interval noted by an observer w.r.t. whom the clock is at rest is smaller than the 
time interval noted by the observer w.r.t whom clock is in motion.
4. velocity Transformation ( Relativistic Addition of velocities) →
 Consider a body moving with a constant linear velocity u w.r.t. S frame along x-axis 
and u′  w.r.t S’ frame along x′− axis. Frame S’ moves with velocity V in same direction 
w.r.t frame S.
 Suppose Ux, Uy, Uz are component of velocity w.r.t frame S and , ,x y zu u u′ ′ ′ are component 
of velocity w.r.t frame S′.
Here S frame fixed.

In S frame    ,  ,  x zy
dx dy dzu u u
dt dt dt

= = =

In S′ frame , ,x y z
dx dy dzu u u
dt dt dt

′ ′ ′= = =
′ ′ ′

According to Lorentz Transformation
2

2 2 2

2

/,  ,  ,
1 /1

x vt vx cx y y z z t
v v c

t

c

−′ ′ ′ =′
−

= = =
−

−

Now differentiate it

2

2 22 2
,  ,  ,

1 /1

dx vdtdx dy dy d

vdxdt
z dz dt

v c
c

v c

−
′ ′ ′−
= = = =

−−
′

Now 
2 2 21 1

x
x

x

dx v u vdx dx vdt dtu
vdx v dx vdt dt u

dtc c c

− −−′ = = = =
− − −

′
′

 ...(1)

 

2 2
2 2

2 2

1 / 1

1
y

v vdy dy dtdy c cu
vdx v dxdt dt

dtc c

− −′
=

−
′ =

−′
=

 

2 2

2

1 /

1

y
y

x

u v c
u

v u
c

−′ =
−

 ...(2)
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Similarly 
2 2

2

1 /

1

z
z

x

u v cu
v u
c

−′ =
−

 ...(3)

 So equations (1) (2) and (3) give Transformation equations for velocity components in 
S to S′ frame.
 The inverse velocity Transformation equations from S′ to S frame is

2 2 2 2

2 2
2

1 / 1 /, ,   
1 11

yx z
x y z

x x x

u v cu v u v cu u u
v vvu u u
c cc

′′ ′−+ −
= = =

′ ′ ′+ ++

Case 1. when v << c so equation (1) (2) and (3) are

, , . y zy zx xu u v u u u u= − = =′ ′ ′

Called classical (Newtonian) Gallilean Law of addition of velocity.
 Case 2. If we consider the particle to be a photon moving with velocity ‘C’ in fame S’ 

which is also moving with velocity ‘C′ along x-axis so 

21

x
x

x

u v
u

vu
c

+
=

+

′

′
If xu c′ =  

21 1
x

c v c vu c
vc v

cc

+ +
= = =

+ +

 So speed of light is an absolute constant, independent of the motion of the frame of 
reference and all frame of Reference.
5. Relativity of mass (variation of mass with velocity)

m1 u1 u2

m2

BA

(m + m )1 2

�

o�o

y�y

S S�
�

z�z

m
u� –u� m

BA

�
2m

(At Rest)

(Identical and perfectly
elastic baily)

(Before collision)

(After collision)

x�x

 According to newtonic (classical) mechanics mass of moving Particle does not depend 
on velocity. But Relatively see below.
	Suppose to the observer of frame S, the masses of the bodies ‘A’ and ‘B’ appears to be m1 
and m2 and velocities u1 and u2 after collision the two bodies come to rest momentarily 
in frame S′ they together will appear to be moving with the velocity of frame S′ with 
velocity v to the observer of frame S.
According to law of conservation of momentum is

 ( )1 1 2 2 1 2m u m u m m v+ = +

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



Special Theory of Relativity  11

 1 2

2 1

m v u
m u v

 −
=  − 

 ...(1)

from inverse velocity Transformation equation we have

 
21

x
x

x

u v
u

vu
c

+
=

′
+

′

 The Body A moves with velocity u′ in frame S′ and appears to be moving with velocity 
u1 to the observer of frame S.

Set xu u′ ′=  and ux = u1

So velocity of Body A in frame S is 1

21

u vu
vu
c

+
=

+

′
′  ...(2)

Similarly set xu u′ = − ′ and ux = u2

So velocity of Body ‘B’ in frame S is 2

21

u vu
vu
c

− +

−

′
′=  ...(3)

From equation (2) & (3) in (1)

 2
1

2
2

2

1 1

1
1

2

u vv vu vu
m c c

u v vum vvu c
c

 
 − +

−  ′ − + 
 = =

′
′

− −
+

′ ′
′

+
 ...(4)

Now from equation (2)
(Tricky Point)

 

22
2

2 2 2

2 2 2

2

1

2

11 ( )
11 1

1 1

vu u v
u u v c c

vuc c vu
c c

′   ′+
′

′

− +  +  − = − = 
  + ′
+    
2 22 2 2 2

2 22 4 2 2
1
2 2 2

2 2

1 11
1

1 1

v uv u u v
c cu c c c

c vu vu
c c

′  ′ ′ − −  + − −    − = = 
     + +   
   

′ ′

 

2 2

2 2 2

2 2

2

1 1
1

1 1

v u
c cvu

c u
c

  
− −  

    ⇒ + =     −

′




′
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2 2

2 2

1
2 2

2

1 1
1

1

v u
c cvu

c u
c

  
− −  

    ⇒ + =     −

′




′




 ...(5)

Similarly from equation (5) ( )1 2&u u u u′ → − ↔′  

 

2 2

2 2

2 2
2
2

1 1
1

1

v u
c cvu

c u
c

′  
− −  ′    − =     − 
 

 ...(6)

Equation (4) & (5) Put in (4)

 

2 2
21

2 2
2

1 /

1 /1

u cm
m u c

−
=

−

Now If w.r.t. S frame, Before collision velocity of Particle B is zero

 So u2 = 0.

 
1

2 2
2 1

1  
1 /

m
m u c

=
−

 or 
2

1 2

21 1

mm
u
c

=

−
 

So Body ‘B’ at Rest so m2 = m0

 

0
1 2

21 1

m
m

u
c

=

−

 Hence above equation can be considered to be applicable ot a single body whose rest 

mass is no and moves with velocity v so 0

2

2

m
m

va
c

=

−

Discussion of Result
(1) When v << c so m = m0 (likely classical Mechanics)

(2) If v = c so m = α imaginary (which is impossible)

 If v > c so m = imaginary (which is impossible)

 also say when velocity incase so effective mass of body increased. 
m = �

CV

m

m0
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Experimental verification

(1)  For high energy electrons and β-particles emitted by same radio –active substance by 
bunchier, Kauffmann, guge and lavanchy)

(2)  Splitting of spectral line in µ-spectrum and phenomenon of fine – structure of H- spectrum 
by Summerfield Relativistic Co-reaction.

(3) Particle accelerator (cyclotron, betation) have mass increase with velocity increase. 

Mass–Energy Equivalence
 Mass is depend on velocity so K.E is also change with velocity use Newton second law 
& work energy the omen both are invariant in all frame by 1st postulate. 

�Suppose a force ‘F’ act over a body whose Rest mass is ‘m0’ over a distance dx, the 
amount of work done by the force will appear as increase in K.E (dt)

So     dt = Fdx  ...(1)

We know ( )dp d dv dmf mv m v
dt dt dt dt

= = = +
�

Here m & v variable and m0 & c are constant Quantity.

So dv dmdT m dx v dx
du dt

= +

dT = mv dv + v2dm ...(2) ( v = 
dx
dt

 at any instant)

we know 
2

0
22

22

or
11

mmm
vv
cc

=
−−

⇒ m2 = 
2 2

2 2 2 2 2 20
02 2

m c
m c m v m c

c v
⇒ − =

−
 ...(3)

Differentials equation (3) ( )2 2 22 2 2 0mc dm mv dm m vdv/// / /− + =/ /

 C2dm – (mvdv + v2dm) = 0

⇒ mvdv + v2dm = c2dm ...(4)

From equation (2) & (+) dT = c2dm  ...(5)

 It shows that change in (K. E) of a body can be expressed in terms of change in its 
mass due to motion.

 When a body is accelerated from rest to a velocity ‘V’ it’s mass increases from m0 t0 
m and K.M acquired is obtained by integrating equation (5) between the limts m0 to m 
Therefore

 T = 
0

2 2
0( )

m

m

c dm c m m= −∫
So K.E energy of moving particle is equal to c2 times the gain in mass due to motion.
m0  is Rest mass of the particle and m0c

2 is Rest energy called internal energy.

ISBN: 9789355012531 I HK Dass: Mathematical Physics I © S. Chand And Company Limited 



14   Mathematical Physics

So total energy E = T + m0c
2 = C2 (m − m0) + m0C

2 = m c2 ...(6) 
So E = mc2 is Einstein mass – Energy equivalence theorem.

Discussion of the Result 
(1)  Relation E = mc2 shows that equivalence of mass and energy so thus special theory of 

Relativity ascribes energies to all masses and masses to all energies.
(2)  In classical mechanics, the law of conservation of mass and energy are two separate 

peinciple independent of each other The Relations E = mc2 leads to unified ion of the 
two  laws into one law called low of conservation of Relativistic energy. 

(3)  In classical mechanics mass is considered something fundamental to matter while energy 
is a property of the matter acquired by virtue of its position or motion. The Relation  
E = mc2 puts an end to such a distinction between mass and energy. 

(4) The kinetic energy of a particle travelling with a velocity v is
 T = c2 (m − m0)

Here 0

2 21

m
m

v c
=

−

So 
1/22

2
0 021 vT c m m

c

−  
 = − − 
   

 

1/22
2

0 21 1vT m c
c

−  
 = − − 
   

 

2 4
2

0 2 4

1 31 1
2 8

v vT m c
c c

  
= + + + − − − −  

    
[ ]( ) ( )1

1 1 2
2

n n n
x nx− +

− = + + ×∵

 

4
2

0 2

1 3
2 8 o

vT m v m
c

= + + − − −

 When v << c

 So 21
2 oT m v�  → formula of K.E is classical picture. 

Experimental evidence in support of the Mass–Energy Equivalance 
(1) For electron m0 = 9.1 × 10−31 kg 

So E = mc2 = 
31` 16

1̀3

9.1 10 9 10 .511
1.6 10

Mev Mev
−

−

× × ×
=

×
 [∴ lev = 1.6 × 10−19j]

For 1 amu = 1.67 × 10−27kg
So  1 amu = 931 Mev

(2) Pair – production and An illation of matter also support the equivalence of mass and energy. 

(3)  Fission and fusion processes are the direct applications of the Einstein’s mass – energy 
Relation.
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EXERCISE 38.1

Chapter-end Exercises

MULTIPLE CHOICE QUESTIONS
 1.  According to the special theory of relativity, something that happens at a particular point in 

space at a particular instant of time is called ....................
 (i) Event (ii) Phenomenon (iii) Incident (iv) Happening 
 2.  According to the special theory theory of relativity, a person or equipment meant to observe and 

take measurement about the event is called ....................
 (i) Supervisor (ii) Observer (iii) Examiner  (iv) Invigilator 
 3. A frame of reference is specified by a 
 (i) Observer  (ii) Decimal system (iii) coordinate system  (iv) metric system 
 4.  The frame of reference in which the law of inertia is satisfied is called .................... frame  

of reference. 
 (i) Einstein’s  (ii) Newton’s  (iii) Non-inertial  (iv) Inertial 
 5.  The frame of reference in which the law of inertia is not satisfied is called .................... frame 

of reference.
 (i) Einstein’s  (ii) Inertial  (iii) Non-nertial  (iv) Newton’s 
 6. A car moving with a constant velocity represent .................... frame of reference. 
 (i) Einstein’s  (ii) Inertial  (iii) Non-inertial  (iv) Newton’s
 7.  According to the special theory of relativity, physical laws are the same in frames of  

reference which
 (i)   move at uniform velocity (ii)  accelerate
 (iii) move in circles  (iv) move in ellipses. 
 8.  clocks in a moving reference frame, compared to identical clocks in a stationary frame,  

appear to run 
 (i) Slower (ii) At the same rate  (iii) Faster  (iv) Backward in time 
 9.  A spaceship, moving away from the Earth at a speed of 0.9c, fires a light beam backward. An 

observer on Earth would see the light arriving at a speed of.
 (i)   0.1c (ii)  More than 0.1c but less than c
 (iii) c  (iv) More than c but less than 1.9c
 10. The term “relativistic’’ refers to effects that are.
 (i)   Observed when speeds are near the speed of light. 
 (ii)  Noticed about a moving object.
 (iii) Observed when objects move backward in time.
 (iv)  Measured by stationary observers only. 
 11. The purpose of the Michelson- Morley experiment was to 
 (i)   Determine the velocity of light.
 (ii)  Detect possible motion of the Earth relative to the sun. 
 (iii) Detect possible motion of the sun relative to the ether. 
 (iv)  Detect possible motion of the Earth relative to the ether. 
 12.  A spaceship approaches the Moon, traveling at 0.5c with respect to the moon. It crew shines a 

laser at the Moon. The beam strikes a lunar mirror and is reflected back to the ship. The crew on 
the ship will measure the speed of the reflected Beam to be 

 (i) 2.0c (ii) 1.5c (iii) c (iv) 0.75c
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 13.  A train has a rest length  of 100m. the traveling at a very high velocity, it goes through a tunnel 
of length 80m. observers located at both ends of the tunnel . what is the Velocity of the train 
expressed in units of c?

 (i) 0.866c (ii) 0.33c (iii) 0.50c (iv) 0.60c
 14. Relative to its period on the earth, the period a pendulum on the moon is
 (i)   Shorter (ii)  Longer 
 (iii) The same as on the earth  (iv) Varies with time
 15. Lorentz transformations are converted into Galilean transformation for .................... particle. 
 (i) Large mass  (ii) Small velocity  (iii) Large velocity (iv) Small mass 
 16. According to the special theory of relativity a moving clock always go
 (i) Slow (ii) Down (iii) Up (iv) Fast
 17. The energy momentum relation in special theory of relativity is given by

 (i) 2 4 2 2
0E m c c p= +  (ii) 4 4 4 4

0E m c c p= +  (iii) 2 4 2 2
0E m c c p= −   (iv) 2 2 2

0E m c c p= +

 18. Calculate the velocity of a body if its total energy is three times its rest energy
 (i) 0.54c (ii) 0.76c (iii) 0.94c (iv) none of these 
 19. The relativistic mass expression is given by ....................

 (i) 0
2

21

mm
u
c

′ =
−

 (ii) 0
2

21

Em
u
c

′ =
−

 (iii) 0
2

21
m

u
c

µ′ =
−

 (iv) 0
2

21

m
u
c

′µ =
−

 20. Lorentz transformation of momentum for Y component ....................
 (i) P′Y = PY (ii) P′Y = Pz (iii) P′Y = Ex (iv) P′Y = Bx
 21. The speed of light is represented by ....................
 (i) E (ii) M (iii) Q (iv) C
 22.  According to Einstein’s special Theory of Relativity, laws of physics can be formulated  

based on ....................
 (i)   Inertial frame of Reference (ii)  Non inertial frame of Reference
 (iii) Both non and inertial frame of Reference  (iv) Quantum state 
 23. As an object approaches the speed of light, it’s mass becomes ....................
 (i) Zero  (ii) Double  (iii) Remain same  (iv) Infinite
 24. In relativity an electric field and magnetic fields are ....................
 (i) Dependent (ii) Independent (iii) Interdependent  (iv) Null 
 25. A charged particle in an electromagnetic field experience a force called ....................
 (i) Gravitational forces (ii) Lorentz force (iii) Frictional force (iv) Restoring force
 26. The electric force is represented  as ....................
 (i) F = qE (ii) F = qE + q(uxB) (iii) F = q(E − uB) (iv) F = 0
 27. The Maxwell first equation is knows as .................... law.
 (i) Coulombs (ii) Newtons  (iii) Gauss (iv) Keplers
 28. Which of the following is Einstein’s mass energy relation?
 (i) Ek = (m − m0)c

2  (ii) E2 – p2c2 = m0
2c4 (iii) Ek = mv2/c2 (iv) E = mc2

 29. Relative to a stationary observer, a moving object ....................
 (i)   Appears longer than normal
 (ii)   Can do any of the above. It depends on the relative velocity between the observer and  

 the object
 (iii) Appears shorter than normal.
 (iv) Keeps its same length time
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 30. In the classical mechanics the kinetic expression of a particle of mass m and ....................
 (i)   Force (ii)  Moving with velocity u 
 (iii) Momentum  (iv) Acceleration

Answers to Selected Questions
 1. (i) 2. (ii) 3. (iii) 4. (iv) 5. (iii)
 6. (ii) 7. (i) 8. (i) 9. (iii) 10. (i)
 11. (iv) 12. (iii) 13. (iv) 14. (ii) 15. (ii)
 16. (i) 17. (i) 18. (iii) 19. (i) 20. (iii)
 21. (iv) 22. (i) 23. (iv) 24. (iii) 25. (ii)
 26. (i) 27. (iii) 28. (iv) 29. (iv) 30. (ii)

SHORT ANSEWER TYPE QUESTIONS 
 1. Define Event and Observer 
 2. Define Inertial frame of reference and Non-Inertial frame of reference. 
 3. Derive the energy-momentum relationship for a particle moving at relativistic speed. 
 4. Write a short note on aluminiferous ether. 
 5. State the two postulates of special theory of relativity.
 6. Discuss the major conclusions of Michelson-Morley experiment. 
 7. Write the equations for Galilean transformation equations.
 8. Write the equations for the Lorentz transformation equations.
 9.  With the help of an example explain why Lorentz Fitzgerald length contraction is not applicable 

to the objects which are not moving with relativistic speed. 

LONG ANSWER TYPE QUESTIONS.
 1.  Define frame of reference and discuss the inertial an non- inertial frames of references with the 

help of necessary diagrams. 
 2. Discuss the Galilean transformation equations in detail
 3. Explain the concept of aluminiferous ether and state the postulates of theory of relativity.
 4.  What is aluminiferous ether? Discuss the Michelson-Morley experiment for the search of either, 

derive the necessary equations and state its major conclusions. 
 5.  With the help of necessary diagram discuss the Michelson- Morley experiment and enlist its 

major outcomes. 
 6.  Explain the failure of Galilean transformation equations and derive the Lorentz transformation 

equation with the help of necessary diagrams and equations. 
 7. Discuss the phenomenon of Lorentz-Fitzgerald length contraction along with an example. 
 8. Write a detailed note on Time Dilation. 
 9. Explain why a moving clock (at a relativistic speed) appears to go slow.
 10.  Derive the expression for the kinetic energy of a particle moving at relativistic speed and hence 

establish the relationship showing the equivalence of its mass and energy.
 11. Obtain the energy-momentum relationship for a particle moving at relativistic speed. 
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38.1 INTRODUCTION

�The�calculus�of�variations�primarily�deals�with�finding�maximum�or�minimum�value�of�
a�definite�integral�involving�a�certain�function.

38.2 FUNCTIONALS

�A� simple� example� of� functional� is� the� shortest� length� of� a� curve� through� two� points� 
A(x1, y1) and B(x2, y2).�In�other�words,�the�determination�of�the�curve�y = y(x) for which  
y = (x1) = y1, y (x2) = y2 such that

  
2

1

2

1
x

x

dy dx
dx

 +   ∫ � ...(1)

�is�a�minimum.
An�integral�such�as�(1)�is�called�a�Functional.
�In�general,�it�is�required�to�find�the�curve�y = y (x) where y (x1) = y1and  y (x2) = y2 such 

that�for�a�given�function� , , ,dyf x y
dx

 
  

   
2

1

, ,
x

x

dyf x y dx
dx

 
  ∫  ...(2)

is�maximum�or�minimum.
Integral�(2)�is�known�as�the�functional.
�In�differential�calculus,�we�find�the�maximum�or�minimum�value�of�functions.�But�the�
calculus�of�variations�deals�with�the�problems�of�maxima�or�minima�of�functionals.�
A functional I [y (x)]�is�said�to�be�linear�if�it�satisfies.
(i) I [cy (x)] = c I [y (x)], where c�is�an�arbitrary�constant.
(ii) I [yl (x)+ y2 (x)] = I [yl (x)] + I [y2 (x)], where yl (x)∈M and y2 (x)∈M 

38.3 DEFINITION
 A functional I [y (x)]�is�maximum�on�a�curve�y = y (x), if the values of I [y (x)] on any curve 
close to y = y1 (x)�do�not�exceed�I [y1 (x)].�It�means�∆I = I [y (x)] – I [y1 (x)]�≤�0�and�∆I�=�0�on 
y = y1 (x).
In�case�of�minimum�of�I [y (x)],�∆I�=�0.
 Extremal: A function y = y (x)� which� extremizes� a� functional� is� called� extremal� or�
extremizing�function.

0

Y

X

A (X ,Y )1 1

B (X ,Y )2 2
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38.4 EULER’S EQUATION IS

 – 0f d f
y dx y

 ∂ ∂
= ∂  ∂ ′

 (D.U. II Sem. 2012)

This is the necessary condition for  

( )
2

1

, ,
x

x

I f x y y dx′= ∫ to be�maximum�or�minimum.

 Proof: Let y = y (x)� be� the� curve�AB�which�makes�
the�given�function I�an�extremum.
Consider�a�family�of�neighbouring�curves
 Y = u(x) + ah(x)� ...(1)
where�α�is�a�parameter,�and�η(x)�is�an�arbitrary�differentiable�function.
At�the�end�points�A�and�B,
 h(x1) = h(x2)�=�0
when�α�=�0,�neighbouring�curves�become�y = y (x),�which�is�extremal.
The�family�of�neighbouring�curves�is�called�the�family�of�comparison functions.

If�in�the�functional� ( )2

1
, ,

x

x
f x y y dx′∫  We replace y�by�Y,�we�get�

 
( ) ( ) ( ) ( ) ( )

2
2

1 1
, , , , .

x x

x x
f x Y Y dx f x y x x y x x dx′ ′ ′= + α η + α η  ∫ ∫

which�is�a�function�of�α,�say�I�(α).

\  ( ) ( )
2

1

, ,
x

x

I f x Y Y dx′α = ∫
For�α�=�0,�the�neighbouring�curves�become�the�extremal,�an�extremum�for�a�=�0.
The necessary condition for this is I′�(α)�=�0� ...(2)
Differentiating�I�under�the�integral�sign�by�Leibnitz’s�rule,�we�have�

 ( )
2

1
'

x

x

f x f Y f YI dx
x Y Y

′∂ ∂ ∂ ∂ ∂ ∂ ′ α = + + ∂ ∂α ∂ ∂α ∂ ∂α ∫

( )
2

1

0 as is indenpendent of
x

x

f Y f Y xI dx x
Y Y

′∂ ∂ ∂ ∂ ∂   ′ α = + = α   ′∂ ∂α ∂ ∂α ∂α   ∫ � ...(3)

On�differentiating�(1),�w.r.t.‘x’,�we�get,� ( ) ( )Y y x x′ ′ ′= + α η

Again�differentiating�w.r.t.‘α’,�we�get� ( )Y x
′∂ ′= η

∂α

Differentiating�(1),�w.r.t.,�we�get� ( )Y x∂
α = η

∂α

Now�(3)�becomes� � �
2

1

( ) ( ) ( )
x

x

f fI x x dx
Y Y

∂ ∂ ′ ′α = η + η ′∂ ∂ ∫
Integrating�the�second�term�on�the�right�by�parts,�we�get

O

Y

X

A

B

y=y(x)
(x ,y )1 1

(x ,y )2 2

y1

y2

y=u(x)
+

n(x)
α
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2 22

11 1

( ) ( ) ( )
x xx

xx x

f f d fx dx x x dx
Y Y dx Y

 ∂ ∂ ∂    = η + η − η   ′ ′∂ ∂ ∂     
∫ ∫

2 2

1 1

2 1( ) ( ) ( ) ( )
'

x x

x x

f f f d fx dx x x x dx
Y Y Y dx Y

∂ ∂ ∂ ∂   = η + η − η − η   ′ ′∂ ∂ ∂ ∂   ∫ ∫

[ ]
2 2 2

1 1 1

1 2( ) 0 ( ) ( ) ( ) ( ) 0
x x x

x x x

f d f f d fx dx x dx x dx x x
Y dx Y Y dx Y

∂ ∂  ∂ ∂    = η + − η = − η η = η =    ′ ′∂ ∂ ∂ ∂    
∫ ∫ ∫

for�extremum�value,�I′(a)�=�0

 ( )
2

1

0
x

x

f d f x dx
Y dx Y

 ∂ ∂  = − η  ′∂ ∂  
∫

h(x)�is�an�arbitrary�continuous�function.

\ 0f d f
y dx y

 ∂ ∂
− = ′∂ ∂ 

�which�is�a�required�Euler’s�equation.

Note:�Other�Forms�of�Euler’s�equation

1. ( ), ,d f dx f dy f dyf x y y
dx x dx y dx y dx

′∂ ∂ ∂′ = + +
′∂ ∂ ∂

or '
df f f fy y
dx x y y

∂ ∂ ∂′ ′′= + +
∂ ∂ ∂ � ...(4)

But�
'

d f d f fy y y
dx y dx y y

   ∂ ∂ ∂′ ′ ′′= +   ′ ′∂ ∂ ∂   
� ...(5)

On�subtracting�(5)�from�(4),�we�have
       df d f f f d fy y y

dx dx y x y dx y
   ∂ ∂ ∂ ∂′ ′ ′− = + −   ′ ′∂ ∂ ∂ ∂   

  ( )( ) [ ]0 0d f f f d ff y y y Euler s equation
dx y x y dx y

   ∂ ∂ ∂ ∂′ ′ ′ ′− − = − = =   ′ ′∂ ∂ ∂ ∂   

Hence   – – 0d f ff y
dx y x

 ∂ ∂′ = ′∂ ∂ 
� ...(6)

Which�is�an�another�form�of�Euler’s�equation.

2.�We�know�that�
f
y

∂
′∂
 is also a function x, y, y′�say�f(x, y, y′).

 d f dx dy dy y y
dx y x dx y dx y dx x y y

′ ∂ ∂φ ∂φ ∂φ ∂φ ∂φ ∂φ′ ′′= + + = + + ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 2 2 2

2
f f f f f fy y y y

x y y y y y x y y y y
     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′ ′′ ′ ′′+ + = + +     ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ′∂     

Putting�the�value�of�
'

d f
dx y

 ∂
  ∂ 

�in�Euler’s�equation,�we�get

Calculus of Variation  3
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2 2 2

2– – – 0f f f fy y
y x y y y y

∂ ∂ ∂ ∂′ ′′ =
′ ′∂ ∂ ∂ ∂ ∂ ′∂

� ...(7)

This�is�the�third�form�of�Euler’s�equation.�

38.5 EXTREMAL

 Any�function�which�satisfies�Euler’s�equation�is�known�as�Extremal.�Extremal�is�obtained�
by�solving�the�Euler’s�equation.

Case 1.�If�f is independent of , . ., 0.fx i e
x

∂
=

∂

On�substituting�the�value�of�
f
x

∂
∂

�in�(6),�we�have� 0d ff y
dx y

 ∂′− = ′∂ 
Integrating,�we�get� – '

'
ff y
y

∂
∂

 = constant

Case 2. When f is independent of y, . ., 0.fi e
y

∂
=

∂

Putting�the�value�of�
f
y

∂
∂

�in�Euler’s�equation,�we�get

 
´

d f
dx y

 ∂
  ∂ 

=�0,�Integrating�we�get�
'

f
y

∂
∂

= constant

 Case 3.�If f is an independent of ', . .,
'

fy i e
y

∂
∂

=�0.�On�substituting�the�value�of�
'

f
y

∂
∂

in the 

Euler’s�equation,�z�get� ∂
∂
f
y

 = 0

This�is�the�desired�solution.
Case 4.�If�f is independent of x and y,

we have 
f
x

∂
∂

�=�0�and� 0f
y

∂
=

∂
 or 

2
0f

x y
∂

=
′∂ ∂

 and 
2

0f
y y
∂

=
′∂ ∂

Putting�these�value�in�Euler’s�equation�(7),�we�have�
2

2" 0
'
fy

y
∂

=
∂

If�
2

2 0
'
f

y
∂

≠
∂

 then y′′�=�0�whose�solution�is�y = ax + b.

Example 1.�Write the Euler-Lagrange’s equation and explain the terms involved.
(D.U. II Sem. 2012, April 2010)

Solution.��The�Euler�Lagrange’s�equation�is� 0d f f
dx y y

 ∂ ∂
− = ′∂ ∂ 

Example 2. Prove that if f does not depend on x explicity, then f – f ′ 
´

f
y

∂
∂

 = constant.

(D.U. II Sem. 2012)
Solution.�The�Euler�Lagrange’s�differential�equation�is
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0
´

d f f
dx y y

 ∂ ∂
− =  ∂  ∂

Multiplying�above�equation�by�y′�and�adding�subtracting�the�expression y′′ 
f
y

∂
′∂

(where y′′ = 
y
x
′∂

∂
 and y′ 

y
x

∂ = ∂
,�we�get

0d f f f fy y y y
dx y y y y

 ∂ ∂ ∂ ∂′ ′ ′′ ′− + − = ′ ′ ′∂ ∂ ∂ ∂ 
 ⇒ 0d f f f fy y y y

dx y y y y
 ∂ ∂ ∂ ∂′ ′′ ′′ ′+ − − = ′ ′ ′∂ ∂ ∂ ∂ 

⇒ 0d f f f f fy y y
dx y y y x x

 ∂ ∂ ∂ ∂ ∂′ ′′ ′− − − + = ′ ′∂ ∂ ∂ ∂ ∂ 
� (adding�and�subtracting� f

x
∂
∂

)

⇒ 0d f f f f fy y y
dx y y y x x

   ∂ ∂ ∂ ∂ ∂′ ′′ ′− + + + =   ′ ′∂ ∂ ∂ ∂ ∂   

⇒ 0d f f fy
dx y dx x

 ∂ ∂ ∂′ − + = ′∂ ∂ 
 { }( , , )f f y y x′=

⇒ 0d f fy f
dx y x

 ∂ ∂′ − + = ′∂ ∂ 
� ...(1)

If�f does not depend upon x�explicitly,�then� 0f
x

∂
=

∂
 and so we must have 

 0d fy f
dx y

 ∂′ − = ′∂ 
 ⇒ 

fy f
y

∂′ − =
′∂

 constant

⇒ f – y′ 
f
y

∂
=

′∂
�constant.� Proved. ...(2)

Example 3. Test for an extremum the functional

( ) ( ) ( ) ( )
1

2 2

0

2 , 0 1, 1 2I y x xy y y y dx y y′= + − = =   ∫
Solution. Euler’s�equation

 0f d f
y dx y

 ∂ ∂
− = ′∂ ∂ 

 ...(1)

Here 2 22f xy y y y′= + −

 2 4f x y yy
y

∂ ′= + −
∂

 and 22f y
y

∂
= −

′∂

 2( 2 ) 4d f d y yy
dx y dx

 ∂ ′= − = − ′∂ 
Putting�these�values�in�(1),�we�get� ( )2 4 ' 4 ' 0x y yy yy+ − − − =

or 
12 0 or At 0, 0; At 1, .

2 2
xx y y x y x y+ = = − = = = = −

This�extremal�does�not�satisfy�the�boundary�conditions�y�(0)�=�1,�y (1)�=�2.
Hence�there�is�no�extremal.� Ans.
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 Example 4. Prove that the shortest distance between two points is along a straight line.
 (D.U. II Sem. 2012)
 Solution. Let A (x1, y1) and B (x2, y2)�be�the�two�given�points�and�s�the�length�of�the�arc�
joining�these�points.

Then 
2 2 2

1 1 1

2
21 (1 ' )

x x x

x x x

dys ds dx y dx
dx

 = = + = +  ∫ ∫ ∫ � ...(1)

  1 1, 2 2( ) ( )y x y y x y= =
If�s�satisfies�the�Euler’s�equation,�then�it�will�be�minimum

 0f d f
y dx y

 ∂ ∂
− = ′∂ ∂ 

� (Euler’s�equation)

Here in (1), 2(1 )f y′= +

f is independent of y,�i.e.,� 0f
y

∂
=

∂

 ( ) ( )
( )

1
2 2 2

2

11 1 2
2 1

d f d d d yy y y
dx y dx y dx dx y

−  ′   ∂ ∂ ′ ′ ′= + = + =    ′ ′∂ ∂      ′+ 

Putting�these�values�in�Euler’s�Equation,�we�have

  
( )2

0 0
1

d y
dx y

′
− =

′+
 or 

2
0

(1 )

d y
dx y

′
=

′+

On�integrating�
2(1 )

y

y

′

′+
 constant (c),�i.e.,�(y′)2 = c2 (1 + y′2)

or 2 2 2' (1 )y c c− =  or 
2

2 2
2'

1
cy m

c
= =

−
 or ' dyy m or m

dx
= =

Integrating��������y = mx + c� ...(2)
which�is�a�straight�line.� Ans.
Now 1 1 2 2( ) and ( )y x y y x y= =

    1 1 2 2andmx c y mx c y+ = + =  ...(3)
on�subtracting,�we�get

or 2 1
2 1 2 1

2 1
( ) or y yy y m x x m

x x
−

− = − =
−

Subtracting�(3)�from�(2),�we�get
 y – y1 = m(x – x1)

 2 1
1 1

2 1
( )y yy y x x

x x
−

− = −
−

 Proved.

 Example 5. Find the curve connecting the points (x1, x2) and (x2, y2) which when rotated 
about the x-axis gives a minimum surface.
Find the extremal of the functional.

0

Y

X

A (x1,y1)

B (x2,y2)
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2 2

1 1

22 or 2 (1 ' )
x x

x x

y ds y y dxπ π +∫ ∫

Subject to y (xl) = y1, y(x2) = y2  (D.U. April 2010)
Solution.�2p�is�constant�so�we�have�to�find�the�extremal�of�

 
2

1

2(1 ' )
x

x

y y dx+∫

Here f = y 2(1 ' )y+  which is independent of x. 0f
x

∂
=

∂
One�form�of�Euler’s�equation�is

 ' 0 or ' 0
' '

d f f d ff y f y
dx y x dx y

   ∂ ∂ ∂
− − = − =   ∂ ∂ ∂   

  
  

0f
x

∂
=

∂

On�integrating,�we�get,�f – y′ 
'

f
y

∂
∂

= constant (c)� ...(1)

 f = 
2

2

2(1 ),
2 1

f yy y y y
y y

∂ ′
+ ′ = ′ =

∂ ′ + ′

Putting�the�value�of�f and 
'

f
y

∂
∂

 (1), we have

2
2

2 '(1 ' ) '
2 (1 ' )

yy y y y c
y

+ − =
+

⇒ 
2

2 2 2 2
2

'(1 ' ) or (1 ' ) ' (1 ' )
(1 ' )

yyy y c y y yy c y
y

+ − = + − = +
+

 2 2 2 2(1 ' ) or (1 ' )y c y y c y= + = +

⇒ 
2 2 2 22 2

2
2' '

y c y cy c dyy or y or
c dx cc
− −−

= = =

 –1
2 2 2 2

cosh
– –

dy dx dy dx y x b
c c c cy c y c

= ⇒ = ⇒ = +∫ ∫

y = c cosh 
x b
c

 +   �which�is�the�equation�of�catenary.�This�is�the�required�extremal.
 Ans.
 Example 6. Find the curve connecting two points (not on a vertical line), such that a 
particle sliding down this curve under gravity (in absence of resistance) from one point 
to another reaches in the shortest time. (Brachistochrone problem).
 Solution.� Let� the� particle� slide� on� the� curve�OA� from�O�with�
zero�velocity.�Let�OP�=�s and�time�taken�from�0�to�P�=�t. By�the�
law�of�conservation�of�energy,�we�have
K.E.�at�P – K.E.�at�O�=�potential�energy�at�P.

 21 0
2

mv mgh− =

y
x0

Y

Z

(x1,y1)

(x2,y2)

ds

O

A

X

P(x,y)

(x1,y1)

Calculus of Variation  7
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⇒ ( )
21 2

2
ds dsm mgh or gy
dt dt

  = =  

Time�taken�by�the�particle�to�move�from�O�to�A

 
1 1 1 2

0 0 0 0

(1 ' )1 1
(2 ) (2 ) (2 )

x x xT yds dsT dt dx
gy g y g y

+
= = = =∫ ∫ ∫ ∫

Here,  
2(1 ' )y

f
y

+
= which is independent of x,i.e., 0.f

x
∂

=
∂

and  
2 2

1 2 ' '
' 2 (1 ' ) (1 ' )

f y y
y y y y y

∂
= =

∂ + +
Solution�of�Euler’s�equation�is�

 '
'

ff y
y

∂
−

∂
= constant c

On�substituting�the�values�of�f and 
'

f
y

∂
∂

,we�get

2

2

(1 ' ) ''
(1 ' )

y yy c
y y y

+
− =

+

⇒ 
2

2
2

1
(1 )

yy c y
y

′′+ − =
+

 or 2 2 21 ' ' (1 ' )y y c y y+ − = +

⇒ 21 (1 ' )c y y= +  or 
2

2
11 dy

dx yc
 + =    or 

2

2
1 ycdy

dx yc
−

=

⇒ 
21/ c y a ydy

dx y y
− −

= =  2
1 a
c

 =  

 
ydx dy

a y
=

−

 
0

0

y
x yx dx dy

a y
 

=   − ∫ ∫   
2Put sin

2 sin cos
y a

dy a d
= θ
= θ θ θ

 
2

2
20

0 0

sin sin2 sin cos 2 sin cos 2 sin
cossin

ax a d a d a d
a a

θ θ
θ  θ θ = θ θ θ = θ θ θ = θ θ    θ− θ ∫ ∫ ∫

 ( )
00

sin 21 cos 2
2

a d a
θθ θ = − θ θ = θ −  ∫

⇒ x = ( )2 sin 2
2
a

θ − θ  and ( )2sin 1 cos2
2
ay a= θ = − θ

� On�putting�
2
a A=  and 2q = Q 

( )
( )

sin

1 cos

x A

y A

= Θ − Θ 


= − Θ 
which�is�a�cycloid.� Ans.
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EXERCISE 38.1
 1. Find�the�extremal�of�the�functional

  ( ) 1

0

2

2
1

'
x

x
yI y x dy

y
+

  =  ∫

 2.� Solve�the�Euler’s�equation�for� ( )1

0
' ' .

x

x
x y y dx+∫

 3.� Solve�the�Euler’s�equation�for�
1

0

2(1 ') '
x

x
x y y dx+∫

� � Find�the�extremals�of�the�functional�and�extremum�value�of�the�following:

 4. 
1

0

2

2
1[ ( )]

'

x

x

yI y x dx
y
+

= ∫  5. 
1

2 2

1
2

1[ ( )] ´ subject to 1, (1) = 2.
2

I y x x y dx y y = =  ∫

 6. 
2

2

0
[ ( )] ( – ') subject to (0) 0, (2) = 4.I y x x y dx y y= =∫

 7. 
2

2 2

0
( ' – ) subject to (0) 0, 1y y dx y y

π

π = = 2 ∫

 8. 
1

2

0
( ' 12 ) subject to (0) 0, 1y xy dx y y+ = (1) =∫  9. 

2 2

1

(1 ' )
subject to (1) 0, 1.

y
dx y y

x
+

= (2) =∫

ANSWERS

 1. 1 2sinh ( )y c x c= +  2.�
2

1 24
xy c x c= − + +  3.� y = cx-1 + c2

 4.� y = sinh (c1x + c2) 5. 
cy d
x

= − + , value = 1 6.�
2

2
xy cx d= + + , value = 2

 7. y = sin x,�value�=�0� 8. 3 21,value
5

y x= =  9. y = x3

38.6 ISOPERIMETRIC PROBLEMS

�The� determination� of� the� shape� of� a� closed� curve� of� the� given� perimeter� enclosing�
maximum�area�is�the�example�of�isoperimetric�problem.�In�certain�problems�it�is�necessary�
to�make�a�given�integral.

 
2

1

( , , ')
x

x

I f x y y dx= ∫  ...(1)

maximum�or�minimum�while�keeping�another�integral
2

1

( , , ') (Constant)
x

x

I g x y y dx K= =∫ � ...(2)

�Problems�of�this�type�are�solved�by�Lagrange’s�multipliers�method.�We�multiply�(2)�by�
λ and�add�to�(1)�to�extremize�(1)
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2 2 2

1 1 1

( , , ') ( , , ') (say)
x x x

x x x

I f x y y dx g x y y dx F dx∗ = + λ =∫ ∫ ∫

Then�by�Euler’s�equation� – 0
'

F d F l
y dx y

 ∂ ∂
= ∂  ∂ 

.

 Note.�Isoperimetric�problem.�To�find�out�possible�curves�having�the�same�perimeter,�the�
one�which�encloses�the�maximum�area.
Example 7. Find the shape of the curve of the given perimeter enclosing maximum area.
Solution. Let P be the perimeter of the closed curve,

Then  
2

1

2= 1 '
x

x

P y+∫ dx ...(1)

The area enclosed by the curve, x-axis�and�two�perpendicular�lines�is

 
2

1

=
x

x

A y dx∫ � ...(2)

We�have�to�find�the�maximum�value�of�(2)�under�the�condition�(1).
By�Lagrange’s�multiplier�method.

  2= + 1+ 'f y yλ
For�maximum�or�minimum�value�of�A, F must�satisfy�Euler’s�equation� � �

  – 0
'

f d F
y dx y

 ∂ ∂
= ∂  ∂ 

1–2 2
2

1 '1– (1 ' ) (2 ') 0 or 1– 0
2 1 '

d d yy y
dx dx y

  
λ + = λ =   

   +  

Integraing�w.r.t.‘x’,�we�get� 2
'–

(1 ' )
yx a
y

λ
=

+

⇒    
2

'

(1 ' )

y

y

λ
=

+
 x – a�or�λ2 y′2 = (1 + y′2) (x – a)2

� � � �� ��[λ2 – (x – a)2] y′2 = (x – a)2

⇒   
2

–'
[ – ( – ) ]

x ay
x a2

=
λ

 or 
2

–

– ( – ) ]

dy x a
dx x a2

=
[λ

Integrating�w.r.t.�(x), we obtain
2– [ – ( – ) ]y x a b2= λ +

 ⇒ 2– – [ – ( – ) ]y b x a2= λ  ⇒ (y – b)2�=�λ2 – (x – a)2 ⇒ (x – a)2 + (y – b)2�=�λ2

This�is�the�equation�of�a�circle�whose�centre�is�(a, b) and radius λ.� Ans.

 Example 8. Find the extremal of the functional 
2

1

( – )
t

t

1A x y y x dt
2

= ∫
 

subject to the integral 

constraint 
2

1

• •
2 21 ( – ) .

2

t

t

x y dt l=∫
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Solution. Here 
1 ( – )
2

f x y x y=
 

, 
• •
2 2–g x y=

F = f + λg

  2 21 ( – )
2

F xy yx x y
• •• •

= + λ +

For A�to�have�extremal�F�must�satisfy�the�Euler’s�equation

  – 0F d F
x dx x

•

 ∂ ∂  =
∂  ∂ 

 ...(1)

  – 0F d F
y dt y

•

 ∂ ∂  =
 ∂ ∂ 

 ...(2)

From (1)   
2 2

1 2– – 0
2 2

2

d y xy
dt

x y

•
•

• •

 
λ 

+ = 
 + 

2 2

– 0

2

d xy
dt

x y

•

• •

 
 λ

= 
  + 

� ...(3)

From (2) 
2 2

1– – 0
2 2

d x yx
dt x y

•
•  

λ + =
 + 

� ...(4)

2 2

– 0d yx
dt

x y

•

• •

 
 λ

= 
 

+ 
Integrating�(3)�and�(4),�we�have

  1
2 2

– xy c

x y

•

• •

λ
=

+

 ⇒ 1
2 2

– xy c

x y

•

• •

λ
=

+

 ...(5)

  2
2 2

– yx c

x y

•

• •

λ
=

+

 ⇒ 2
2 2

– yx c

x y

•

• •

λ
=

+

 ...(6)

Squaring�(5),�(6)�and�adding,�we�get

 
2 2

2 2 2
2 1

2 2
( – ) ( – ) x yx c y c

x y

• •

• •

 
+ + = λ   + 

 2 2 2
2 1( – ) ( – )x c y c+ = λ

This�is�the�equation�of�circle.� Ans.
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 Example 9. Find the solid of maximum volume formed by the revolution of a given 
surface area.
Solution.����Let�the�curve�PA�pass�through�origin�and�it�is�rotated�about�the�x-axis.

0

2
a

S yds= π∫

2

0

2 (1 )
a

S y y dx= π + ′∫ � � ...(1)

2

0

a

V y dx= π∫ � � � ...(2)

Here�we�have�to�extremize�V�with�the�given�S.

Here  2 2, 2 (1 ' )f y g y y= π = π +

 F = f + lg

 2 22 (1 ' )F y y y= π + λ π +
For�maximum�V, F�must�satisfy�Euler’s�equation.�But�F does not contain x.

\  – '
'

FF y C
y

∂
=

∂

⇒   2 2
2

1 2 '2 (1 ' ) – '
2 (1 ' )

y yy y y y C
y

π λ
π + λ π + =

+

⇒  
2

2 2
2

2 '2  (1 + ' ) –
(1 + ' )

yyy y y C
y

πλ
π + π λ =

⇒  2
2

2

(1 )

yy C
y

π λ
π + =

+ ′
As�the�curve�passes�through�origin�(0,�0),�so�C = 0.

  2
2

2 0
(1+ )

yy
y

π λ
π + =

′

⇒  
2

2 0
(1+ ' )

y
y

λ
+ =  ⇒ 2(1 ) 2y y+ ′ = − λ

⇒  
2

2
2

41 y
y
λ

+ ′ =  ⇒ 
2 2 2

2
2 2

4 4 ––1 yy
y y
λ λ

′ = =

⇒       
2 2(4 – )ydy

dx y
λ

=

  
2 2(4 – )

ydy dx C
y

= +
λ

∫ ∫

     2 24 – y x C− λ = + � ...(1)

⇒       2 24 y x Cλ − = − −

Y

O A

P
(x,y)

X
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The�curve�expasses�through�(0,�0).�On�putting�x�=�0,�y�=�0�in�(1)�we�get
       –C = 2λ

(1) becomes      2 24 2y xλ − = − + λ

Squaring�� ������� 2 2 24 ( 2 )y xλ − = − λ

⇒ 2 2 2( 2 ) 4x y− λ + = λ
This�is�the�equation�of�a�circle.
Hence,�on�revolving�the�circle�about�x-axis,�the�solid�formed�is�a�sphere.� Ans.

EXERCISE 38.2
 1.� Show�that�an�isosceles�triangle�has�the�smallest�perimeter�for�a�given�area�and�a�given�base.
 2.� Find�the�extremal�in�the�isoperimetric�problem�of�the�extremum�of

  
1

2 2

0
( ' ' – 4 '– 4 )y z xz z dx+∫

  subject to    
1

2 2

0
( ' '– ' ) 2,y xy z dx+ =∫ y�(0)�=�0,�z�(0)�=�0,�y (1) = 1, z�(1)�=�1.�

 3.� Find�the�surface�with�the�smallest�area�which�encloses�a�given�volume.

 4.� Find�the�extremal�of�the�functional
2

1

2 2 2 2 2 2 2subject to
t

t
x y z dt x y z a+ + + + =∫

 5.� Find�the�extremals�of�the�isoperimetric�problem�
1 1

0 0

2' subject to .
x x

x x
y dx y dx c=∫ ∫  

ANSWERS

 2. 
2–5 7 , .

2 2
x xy z x= + =  3.� Sphere

 4.� Arc�of�a�great�circle�of�a�sphere. 5.� y = x2 + ax+b

38.7 FUNCTIONALS OF SECOND ORDER DERIVATIVES 

Let�us�consider�the�extremum�of�a�functional.

  
2

1

[ ( , , ', '')]
x

x

f x y y y∫  dx ...(1)

The�necessary�condition�for�the�above�mentioned�functional�to�be�extremum�is

  
2

2– 0
' ''

f d f d f
y dx y ydx

   ∂ ∂ ∂
+ =   ∂  ∂   ∂ 

Proof. Let the boundary conditions be
 y(x1) = y1, y(x2) = y2, y′(x1) = y′1, y′(x2) = y′2

Let a be a parameter and h(x)�is�a�differentiable�function.
At the end points h(x1) = h(x2)�=�0�and�h′(x1) = h′(x2)�=�0�
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Putting�y + ah(x)for y in (1), we have

 
2

1

[ , ' ' '' ''( )]
x

x

f x y x y x y x dx+ α η( ), + α η ( ), + α η∫

Writing�
2 2

1 1

[ , ' ' '' ''( )] 1
x x

x x

f x y x y x y x dx Fdx+ α η( ), + α η ( ), + α η = =∫ ∫

For�extremum�value�of�(1)

 0dI
d

=
α

  
2

1

x

x

dI F dx
d

∂
=

α ∂α∫

Differentiating�under�the�sign�of�integral,�we�get
2

1

' ''
' ''

x

x

F y F y F y dx
y y y

 ∂ ∂ ∂ ∂ ∂ ∂
= + +  ∂ ∂α ∂ ∂α ∂ ∂α ∫  

2

1

( ) ( ') ( '')
' ''

x

x

F n F n F n dx
y y y

 ∂ ∂ α ∂ ∂ α ∂ ∂ α
= + +  ∂ ∂α ∂ ∂α ∂ ∂α ∫

But� 0dI
d

=
α

when a�=�0

 
2

1

0 ' ''
x

x

f f f dx
y y y

 ∂ ∂ ∂
= η+ η + η ∂ ∂ ∂ 

∫ or
1 2 2

1 1 1

' '' 0
' ''

x x x

x x x

f f fdx dx dx
y y y

∂ ∂ ∂
η + η + η =

∂ ∂ ∂∫ ∫ ∫

Integrating�by�parts,�w. r. t.�‘x’,�we�have

2 2
2 2 2

1 1 11 1

2

2– '– .
' '' '' ''

x xx x x

x x xx x

f f f f d f d fdx dx dx
y y x y y dx y ydx

        ∂ ∂ ∂ ∂ ∂ ∂ ∂ η + η .η + η η+ η = 0       ∂ ∂ ∂  ∂  ∂  ∂   ∂     
∫ ∫ ∫

But�n (x1)  = n (x2)�=�0�and�h′(x1) = h′(x2)�=�0

so 
2

1

2

2– 0
' ''

x

x

f d f d f x dx
y dx y ydx

    ∂ ∂ ∂
+ η( ) =    ∂  ∂   ∂  

∫  ⇒ 
2

2– 0
' ''

f d f d f
y dx y ydx

   ∂ ∂ ∂
+ =   ∂  ∂   ∂ 

 Proved.

EXERCISE 38.3

 1. Find�the�extremal of 
1

0

2 2 2(16 – '' )
x

x
y y x dx+∫ .�

 2. Find�the�extremal�of� 2

–

1( '' )
2

c

c
ay by dx+∫  subject to y (– c)�=�0,�y′ (– c)�=�0,

  y (c)�=�0,�y′ (c)�=�0.�

 3. Find�the�extremal�of� 2

0
''y dx

π

∫ subject to 2

0
1y dx

π

=∫ , y�(0)�=�y (p)�=�0,�y′′�(0)�=�y′′ (p)�=�0.�

 4.� Find�the�extremal�of�
1

0

2(2 )
x

x
xy y dx+ ″′∫ .�
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ANSWERS

 1. y = cle
2x +c2e

–2x+ c3 cos 2x+ c4 sin 2x 2.� 2 2 2– ( – )
24
ay x c
b

=

 3.� y = a1 sin x + a2 sin 2x + ...... 4.�
7

7!
xy = + c1x

5�+ c2 x
4 + c3 x

3 + c4 x
2 + c5 x + c6
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